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Evidence for the Fine-Tuning of the Galaxy-Sun-Earth-Moon System for Life Support 

 The environmental requirements for life to exist depend on the life form in question. The condi-
tions for primitive life to exist, for example, are not nearly so demanding as for advanced life. A life 
form's activity level and longevity also make a significant difference.  Given these variables, I've identi-
fied six distinct clusters of these environmental necessities, from the broadest to the narrowest: 

1. for unicellular, low metabolism life that persists for only a brief time period 
2. for unicellular, low metabolism life that persists for a long time period 
3. for unicellular, high metabolism life that persists for a brief time period 
4. for unicellular, high metabolism life that persists for a long time period 
5. for advanced life that survives for just a brief time period 
6. for advanced life that survives for a long time period 

 Complicating factors exist however. For example, unicellular, low metabolism life (extremophile 
life) is typically more susceptible to radiation damage and has a low molecular repair rate. Thus, the ori-
gin of life problem is far more difficult for low metabolism life (H. James Cleaves II and John H. Cham-
bers, “Extremophiles May Be Irrelevant to the Origin of Life,” Astrobiology, 4 (2004), pp. 1-9). The fol-
lowing parameters of a planet, its planetary companions, its moon, its star, and its galaxy must have 
values falling within narrowly defined ranges for physical life of any kind to exist. References follow the 
list. 
 
1. galaxy cluster type 

if too rich: galaxy collisions and mergers would disrupt solar orbit 
if too sparse: insufficient infusion of gas to sustain star formation for a long enough time 

2. galaxy size 
if too large: infusion of gas and stars would disturb sun’s orbit and ignite too many galactic 

eruptions. 
if too small: insufficient infusion of gas to sustain star formation for long enough time. 

3. galaxy type 
if too elliptical: star formation would cease before sufficient heavy element build-up for life 

chemistry. 
if too irregular: radiation exposure on occasion would be too severe and heavy elements for life 

chemistry would not be available. 
4. galaxy mass distribution 

if too much in the central bulge: life-supportable planet will be exposed to too much radiation. 
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if too much in the spiral arms: life-supportable planet will be destabliized by the gravity and 
radiation from adjacent spiral arms.  

5. galaxy location 
if too close to a rich galaxy cluster: galaxy would be gravitationally disrupted  
if too close to very large galaxy(ies): galaxy would be gravitationally disrupted. 
if too far away from dwarf galaxies: insufficient infall of gas and dust to sustain ongoing star 

formation 
6. decay rate of cold dark matter particles 

if too small: too few dwarf spheroidal galaxies will form which prevents star formation from 
lasting long enough in large galaxies so that life-supportable planets become possible. 

if too great: too many dwarf spheroidal galaxies will form which will make the orbits of solar-
type stars unstable over long time periods and lead to the generation of deadly radia-
tion episodes. 

7. hypernovae eruptions 
if too few not enough heavy element ashes present for the formation of rocky planets. 
if too many: relative abundances of heavy elements on rocky planets would be inappropriate 

for life; too many collision events in planetary system 
if too soon: leads to a galaxy evolution history that would disturb the possibility of advanced 

life; not enough heavy element ashes present for the formation of rocky planets. 
if too late: leads to a galaxy evolution history that would disturb the possibility of advanced 

life; relative abundances of heavy elements on rocky planets would be inappropriate 
for life; too many collision events in planetary system 

8. supernovae eruptions 
if too close: life on the planet would be exterminated by radiation 
if too far: not enough heavy element ashes would exist for the formation of rocky planets. 
if too infrequent: not enough heavy element ashes present for the formation of rocky planets. 
if too frequent: life on the planet would be exterminated. 
if too soon: heavy element ashes would be too dispersed for the formation of rocky planets at 

an early enough time in cosmic history 
if too late: life on the planet would be exterminated by radiation. 

9. white dwarf binaries 
if too few: insufficient flourine would be produced for life chemistry to proceed. 
if too many: planetary orbits disrupted by stellar density; life on planet would be exterminated. 
if too soon: not enough heavy elements would be made for efficient flourine production. 
if too late: flourine would be made too late for incorporation in protoplanet. 

10. proximity of solar nebula to a supernova eruption 
if farther: insufficient heavy elements for life would be absorbed. 
if closer: nebula would be blown apart. 

11. timing of solar nebula formation relative to supernova eruption 
if earlier: nebula would be blown apart. 
if later: nebula would not absorb enough heavy elements. 

12. number of stars in parent star birth aggregate 
if too few: insufficient input of certain heavy elements into the solar nebula. 
if too many: planetary orbits will be too radically disturbed. 

13. star formation history in parent star vicinity 
if too much too soon: planetary orbits will be too radically disturbed. 

14. birth date of the star-planetary system 
if too early: quantity of heavy elements will be too low for large rocky planets to form. 
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if too late: star would not yet have reached stable burning phase; ratio of potassium-40, ura-
nium-235 & 238, and thorium-232 to iron will be too low for long-lived plate tectonics 
to be sustained on a rocky planet. 

15. parent star distance from center of galaxy 
if farther: quantity of heavy elements would be insufficient to make rocky planets; wrong 

abundances of silicon, sulfur, and magnesium relative to iron for appropriate planet 
core characteristics. 

if closer: galactic radiation would be too great; stellar density would disturb planetary orbits; 
wrong abundances of silicon, sulfur, and magnesium relative to iron for appropriate 
planet core characteristics. 

16. parent star distance from closest spiral arm 
if too large: exposure to harmful radiation from galactic core would be too great. 

17. z-axis heights of star’s orbit 
if more than one: tidal interactions would disrupt planetary orbit of life support planet 
if less than one: heat produced would be insufficient for life. 

18. quantity of galactic dust 
if too small: star and planet formation rate is inadequate; star and planet formation occurs too 

late; too much exposure to stellar ultraviolet radiation. 
if too large: blocked view of the Galaxy and of objects beyond the Galaxy; star and planet for-

mation occurs too soon and at too high of a rate; too many collisions and orbit pertur-
bations in the Galaxy and in the planetary system. 

19. number of stars in the planetary system 
if more than one: tidal interactions would disrupt planetary orbit of life support planet 
if less than one: heat produced would be insufficient for life. 

20. parent star age 
if older: luminosity of star would change too quickly.  
if younger: luminosity of star would change too quickly.  

21. parent star mass 
if greater: luminosity of star would change too quickly; star would burn too rapidly. 
if less: range of planet distances for life would be too narrow; tidal forces would disrupt the life 

planet’s rotational period; uv radiation would be inadequate for plants to make sugars 
and oxygen. 

22. parent star metallicity 
if too small: insufficient heavy elements for life chemistry would exist. 
if too large: radioactivity would be too intense for life; life would be poisoned by heavy ele-

ment concentrations. 
23. parent star color 

if redder: photosynthetic response would be insufficient. 
if bluer: photosynthetic response would be insufficient. 

24. galactic tides 
if too weak: too low of a comet ejection rate from giant planet region. 
if too strong too high of a comet ejection rate from giant planet region. 

25. H3
+ production 

if too small: simple molecules essential to planet formation and life chemistry will not form. 
if too large: planets will form at wrong time and place for life. 

26. flux of cosmic ray protons 
if too small: inadequate cloud formation in planet’s troposphere. 
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if too large: too much cloud formation in planet’s troposphere. 
27. solar wind 

if too weak: too many cosmic ray protons reach planet’s troposphere causing too much cloud 
formation. 

if too strong: too few cosmic ray protons reach planet’s troposphere causing too little cloud 
formation. 

28. parent star luminosity relative to speciation 
if increases too soon: runaway green house effect would develop. 
if increases too late: runaway glaciation would develop. 

29. surface gravity (escape velocity) 
if stronger: planet’s atmosphere would retain too much ammonia and methane. 
if weaker: planet’s atmosphere would lose too much water. 

30. distance from parent star 
if farther: planet would be too cool for a stable water cycle. 
if closer: planet would be too warm for a stable water cycle. 

31. inclination of orbit 
if too great: temperature differences on the planet would be too extreme. 

32. orbital eccentricity 
if too great: seasonal temperature differences would be too extreme. 

33. axial tilt 
if greater: surface temperature differences would be too great.  
if less: surface temperature differences would be too great.   

34. rate of change of axial tilt 
if greater: climatic changes would be too extreme; surface temperature differences would be-

come too extreme. 
35. rotation period 

if longer: diurnal temperature differences would be too great. 
if shorter: atmospheric wind velocities would be too great. 

36. rate of change in rotation period 
if longer:surface temperature range necessary for life would not be sustained. 
if shorter:surface temperature range necessary for life would not be sustained. 

37. planet age 
if too young: planet would rotate too rapidly. 
if too old: planet would rotate too slowly. 

38. magnetic field 
if stronger: electromagnetic storms would be too severe; too few cosmic ray protons would 

reach planet’s troposphere which would inhibit adequate cloud formation. 
if weaker: ozone shield would be inadequately protected from hard stellar and solar radiation; 

time between magnetic reversals would be too brief for the long term maintenance of 
advanced life civilization 

39. thickness of crust 
if thicker: too much oxygen would be transferred from the atmosphere to the crust. 
if thinner: volcanic and tectonic activity would be too great. 

40. albedo (ratio of reflected light to total amount falling on surface) 
if greater: runaway glaciation would develop. 
if less: runaway greenhouse effect would develop. 
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41. asteroidal and cometary collision rate 
if greater: too many species would become extinct. 
if less: crust would be too depleted of materials essential for life. 

42. mass of body colliding with primordial Earth 
if smaller: Earth’s atmosphere would be too thick; moon would be too small. 
if greater: Earth’s orbit and form would be too greatly disturbed. 

43. timing of body colliding with primordial Earth. 
if earlier: Earth’s atmosphere would be too thick; moon would be too small. 
if later: sun would be too luminous at epoch for advanced life. 

44. collision location of body colliding with primordial Earth 
if too close to grazing: insufficient debris to form large moon; inadequate annihilation of 

Earth’s primordial atmosphere; inadequate transfer of heavy elements to Earth. 
if too close to dead center: damage from collision would be too destructive for future life to 

survive. 
45. oxygen to nitrogen ratio in atmosphere 

if larger: advanced life functions would proceed too quickly. 
if smaller: advanced life functions would proceed too slowly. 

46. carbon dioxide level in atmosphere 
if greater: runaway greenhouse effect would develop. 
if less: plants would be unable to maintain efficient photosynthesis. 

47. water vapor level in atmosphere 
if greater: runaway greenhouse effect would develop. 
if less: rainfall would be too meager for advanced life on the land. 

48. atmospheric electric discharge rate 
if greater: too much fire destruction would occur.  
if less: too little nitrogen would be fixed in the atmosphere. 

49. ozone level in atmosphere 
if greater: surface temperatures would be too low. 
if less: surface temperatures would be too high; there would be too much uv radiation at the 

surface. 
50. oxygen quantity in atmosphere 

if greater: plants and hydrocarbons would burn up too easily. 
if less: advanced animals would have too little to breathe. 

51. 5 nitrogen quantity in atmosphere 
if greater: too much buffering of oxygen for advanced animal respiration; too much nitrogen 

fixation for support of diverse plant species. 
if less: too little buffering of oxygen for advanced animal respiration; too little nitrogen fixation 

for support of diverse plant species. 
52. ratio of 40K, 235,238U, 232Th to iron for the planet 

if too low: inadequate levels of plate tectonic and volcanic activity.   
if too high: radiation, earthquakes, and volcanoes at levels too high for advanced life. 

53. rate of interior heat loss 
if too low: inadequate energy to drive the required levels of plate tectonic and volcanic  

activity. 
if too high: plate tectonic and volcanic activity shuts down too quickly. 

54. seismic activity 
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if greater: too many life-forms would be destroyed; continents would grow to too large a size; 
vertical relief on the continents would be inadequate for the proper distribution of rain-
fall, snow pack, and erosion 

if less: nutrients on ocean floors from river runoff would not be recycled to continents through 
tectonics; not enough carbon dioxide would be released from carbonates; continents 
would not grow to a large enough size; vertical relief on the continents would become 
too great 

55. volcanic activity 
if lower: insufficient amounts of carbon dioxide and water vapor would be returned to the at-

mosphere; soil mineralization would become too degraded for life. 
if higher: advanced life, at least, would be destroyed. 

56. rate of decline in tectonic activity 
if slower: advanced life can never survive on the planet. 
if faster: advanced life can never survive on the planet. 

57. rate of decline in volcanic activity 
if slower: advanced life can never survive on the planet. 
if faster: advanced life can never survive on the planet. 

58. timing of birth of continent formation 
if too early: silicate-carbonate cycle would be destabilized. 
if too late: silicate-carbonate cycle would be destabilized. 

59. oceans-to-continents ratio 
if greater: diversity and complexity of life-forms would be limited. 
if smaller: diversity and complexity of life-forms would be limited. 

60. rate of change in oceans-to-continents ratio 
if smaller: advanced life will lack the needed land mass area. 
if greater: advanced life would be destroyed by the radical changes. 

61. global distribution of continents (for Earth) 
if too much in the southern hemisphere: seasonal differences would be too severe for advanced 

life. 
62. frequency and extent of ice ages 

if smaller: insufficient fertile, wide, and well-watered valleys produced for diverse and ad-
vanced life forms; insufficient mineral concentrations exposed for diverse and ad-
vanced life; insufficient production of high quality harbors for advanced life 

if greater: planet inevitably experiences runaway freezing. 
63. soil mineralization 

if too nutrient poor: diversity and complexity of life-forms would be limited. 
if too nutrient rich: diversity and complexity of life-forms would be limited. 

64. gravitational interaction with a moon 
if greater: tidal effects on the oceans, atmosphere, and rotational period would be too severe 
.if less: orbital obliquity changes would cause climatic instabilities; movement of nutrients and 

life from the oceans to the continents and vice versa would be insufficent; magnetic 
field would be too weak. 

65. Jupiter distance 
if greater: too many asteroid and comet collisions would occur on Earth. 
if less: Earth’s orbit would become unstable.; Jupiter’s presence would too radically disturb or 

prevent the formation of Earth 
66. Jupiter mass 
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if greater: Earth’s orbit would become unstable; Jupiter’s presence would too radically disturb 
or prevent the formation of Earth 

if less: too many asteroid and comet collisions would occur on Earth. 
67. drift in major planet distances 

if greater: Earth’s orbit would become unstable. 
if less: too many asteroid and comet collisions would occur on Earth. 

68. major planet eccentricities 
if greater: orbit of life supportable planet would be pulled out of life support zone. 

69. major planet orbital instabilities 
if greater: orbit of life supportable planet would be pulled out of life support zone. 

70. mass of Neptune 
if too small: not enough Kuiper Belt Objects (asteroids beyond Neptune) would be scattered 

out of the solar system. 
if too large: chaotic resonances among the gas giant planets would occur. 

71. Kuiper Belt of asteroids (beyond Neptune) 
if not massive enough: Neptune’s orbit remains too eccentric which destabilizes the orbits of 

other solar system planets. 
if too massive: too many chaotic resonances and collisions would occur in the solar system. 

72. separation distances among inner terrestrial planets 
if too small: orbits of all inner planets will become unstable in less than 100,000,000 million 

years. 
if too large: orbits of the most distant from star inner planets will become chaotic. 

73. atmospheric pressure 
if too small: liquid water will evaporate too easily and condense too infrequently; weather and 

climate variation would be too extreme; lungs will not function. 
if too large: liquid water will not evaporate easily enough for land life; insufficient sunlight 

reaches planetary surface; insufficient uv radiation reaches planetary surface; insuffi-
cient climate and weather variation; lungs will not function. 

74. atmospheric transparency 
if smaller: insufficient range of wavelengths of solar radiation reaches planetary surface 
if greater: too broad a range of wavelengths of solar radiation reaches planetary surface. 

75. magnitude and duration of sunspot cycle 
if smaller or shorter: insufficient variation in climate and weather. 
if greater or longer: variation in climate and weather would be too much. 

76. continental relief 
if smaller: insufficient variation in climate and weather. 
if greater: variation in climate and weather would be too much. 

77. chlorine quantity in atmosphere 
if smaller: erosion rates, acidity of rivers, lakes, and soils, and certain metabolic rates would be 

insufficient for most life forms. 
if greater: ersosion rates, acidity of rivers, lakes, and soils, and certain metabolic rates would be 

too high for most life forms. 
78. iron quantity in oceans and soils 

if smaller: quantity and diversity of life would be too limited for support of advanced life; if 
very small, no life would be possible. 

if larger: iron poisoning of at least advanced life would result. 
79. tropospheric ozone quantity 
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if smaller: insufficient cleansing of biochemical smogs would result. 
if larger: respiratory failure of advanced animals, reduced crop yields, and destruction of 

ozone-sensitive species would result. 
80. stratospheric ozone quantity 

if smaller: too much uv radiation reaches planet’s surface causing skin cancers and reduced 
plant growth. 

if larger: too little uv radiation reaches planet’s surface causing reduced plant growth and insuf-
ficient vitamin production for animals. 

81. mesospheric ozone quantity 
if smaller: circulation and chemistry of mesospheric gases so disturbed as to upset relative 

abundances of life essential gases in lowe atmosphere. 
if greater: circulation and chemistry of mesospheric gases so disturbed as to upset relative 

abundances of life essential gases in lower atmosphere. 
82. quantity and extent of forest fires 

if smaller: growth inhibitors in the soils would accumulate; soil nitrification would be insuffi-
cient; insufficient charcoal production for adequate soil water retention and absorption 
of certain growth inhibitors; inadequate coverage of the planet by grasslands and sa-
vannah 

if greater: too many plant and animal life forms would be destroyed; too many forests will be 
converted to savannah and grassland; less carbon dioxide will be removed from the 
atmosphere resulting in global warming; less rainfall 

83. quantity and extent of grass fires 
if smaller: growth inhibitors in the soils would accumulate; soil nitrification would be insuffi-

cient; insufficient charcoal production for adequate soil water retention and absorption 
of certain growth inhibitors. 

if greater: too many plant and animal life forms would be destroyed; too many savannahs and 
grasslands will be converted to deserts; less rainfall 

84. quantity of soil sulfer 
if smaller: plants will become defieient in certain proteins and die. 
if larger: plants will die from sulfur toxins; acidity of wate and soil will become too great for 

life; nitrogen cycles will be disturbed. 
85. biomass to comet infall ratio 

if smaller: greenhouse gases accumulate, triggering runaway surface temperature increase. 
if larger: greenhouse gases decline, triggering a runaway freezing. 

86. density of quasars 
if smaller: insufficient production and ejection of cosmic dust into the intergalactic medium; 

ongoing star formation impeded; deadly radiation unblocked. 
if larger: too much cosmic dust forms; too many stars form too late disrupting the formation of 

a solar-type star at the right time and under the right conditions for life. 
87. density of giant galaxies in the early universe 

if smaller: insufficient metals ejected into the intergalactic medium depriving future genera-
tions of stars of the metal abundances necessary for a life-support planet at the right 
time in cosmic history. 

if larger: too large a quantity of metals ejected into the intergalactic medium providing future 
stars with too high of a metallicity for a life-support planet at the right time in cosmic 
history. 

88. giant star density in galaxy 
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if smaller: insufficient production of galactic dust; ongoing star formation impeded; deadly ra-
diation unblocked. 

if larger: too much galactic dust forms; too many stars form too early disrupting the formation 
of a solar-type star at the right time and under the right conditions for life. 

89. rate of sedimentary loading at crustal subduction zones: 
if smaller: too few instabilities to trigger the movement of crustal plates into the mantle thereby 

disrupting carbonate-silicate cycle. 
if larger: too many instabilities triggering too many crustal plates to move down into the mantle 

thereby disrupting carbonate-silicate cycle 
90. poleward heat transport in planet’s atmosphere 

if smaller: disruption of climates and ecosystems; lowered biomass and species diversity; de-
creased storm activity and precipitation. 

if larger: disruption of climates and ecosystems; lowered biomass and species diversity; in-
creased storm activity. 

91. polycyclic aromatic hydrocarbon abundance in solar nebula 
if smaller: insufficient early production of asteroids which would prevent a planet like Earth 

from receiving adequate delivery of heavy elements and carbonaceous material for life, 
advanced life in particular. 

if larger: early production of asteroids would be too great resulting in too many collision events 
striking a planet arising out of the nebula that could support life  

92. phosphorus and iron absorption by banded iron formations 
if smaller: overproduction of cyanobacteria would have consumed too much carbon dioxide 

and released too much oxygen into Earth’s atmosphere thereby overcompensating for 
the increase in the Sun’s luminosity (too much reduction in atmospheric greenhouse ef-
ficiency).  

if larger: underproduction of cyanobacteria would have consumed too little carbon dioxide and 
released too little oxygen into Earth’s atmosphere thereby undercomsating for the in-
crease in the Sun’s luminosity (too little reduction in atmospheric greenhouse effi-
ciency).  

93. silicate dust annealing by nebular shocks 
if too little: rocky planets with efficient plate tectonics cannot form. 
if too much: too many collisions in planetary system.; too severe orbital instabilities in plane-

tary system. 
94. size of galactic central bulge 

if smaller: inadequate production of life-essential heavy elements; inadequate infusion of gas 
and dust into the spiral arms preventing solar type stars from forming at the right loca-
tions late enough in the galaxy’s history 

if larger: radiation from the bulge region would kill life on the life-support planet. 
95. total mass of Kuiper Belt asteroids 

if smaller: Neptune’s orbit would not be adequately circularized. 
if larger: too severe gravitational instabilities generated in outer solar system. 

96. solar magnetic activity level 
if greater: solar luminosity fluctuations will be too large. 

97. number of hypernovae 
if smaller: too little nitrogen is produced in the early universe, thus, cannot get the kinds of 

stars and planets later in the universe that are necessary for life. 
if larger: too much nitrogen is produced in the early universe, thus, cannot get the kinds of stars 

and planets later in the universe that are necessary for life. 
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98. timing of hypernovae production 
if too early: galaxies become too metal rich too quickly to make stars and planets suitable for 

life support at the right time. 
if too late: insufficient metals available to make quickly enough stars and planets suitable for 

life support.  
99. masses of stars that become hypernovae 

if not massive enough: insufficient metals are ejected into the interstellar medium; that is, not 
enough metals are available for future star generations to make stars and planets suit-
able for the support of life. 

if too massive: all the metals produced by the hypernova eruptions collapse into the black holes 
resulting from the eruptions; that is, none of the metals are available for future genera-
tions of stars. 

100. quantity of geobacteraceae 
if smaller or non-existent: polycyclic aromatic hydrocarbons accumulate in the surface envi-

ronment thereby contaminating the environment for other life forms. 
101. density of brown dwarfs 

if too low: too many low mass stars are produced which will disrupt planetary orbits 
if too high: disruption of planetary orbits 

102. quantity of aerobic photoheterotrophic bacteria 
if smaller: inadequate recycling of both organic and inorganic carbon in the oceans 

103. average rainfall preciptiation 
if too small: inadequate water supplies for land-based life; inadequate erosion of land masses to 

sustain the carbonate-silicate cycle.; inadequate erosion to sustain certain species of 
ocean life that are vital for the existence of all life. 

if too large: too much erosion of land masses which upsets the carbonate-silicate cycle and has-
tens the extinction of many species of life that are vital for the existence of all life.  

104. variation and timing of average rainfall precipitation 
if too small or at the wrong time: erosion rates that upset the carbonate-silicate cycle and fail to 

adjust adequately the planet’s atmosphere for the increase in the sun’s luminosity. 
if too large or at the wrong time: erosion rates that upset the carbonate-silicate cycle and fail to 

adjust the planet’s atmosphere for the increase in the sun’s luminosity 
105. average slope or relief of the continental land masses 

if too small: inadequate erosion. 
if too large: too much erosion. 

106. distance from nearest black hole 
if too close: radiation will prove deadly for life 

107. absorption rate of planets and planetismals by parent star 
if too low: disturbs sun’s luminosity and stability of sun’s long term luminosity. 
if too high: disturbs orbits of inner solar system planets; disturbs sun’s luminosity and stability 

of sun’s long term luminosity. 
108. water absorption capacity of planet’s lower mantle  

if too low: too much water on planet’s surface; no continental land masses; too little plate tec-
tonic activity; carbonate-silicate cycle disrupted. 

if too high: too little water on planet’s surface; too little plate tectonic activity; carbonate-
silicate cycle disrupted. 

109. gas dispersal rate by companion stars, shock waves, and molecular cloud expansion in the Sun’s 
birthing star cluster 
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if too low: too many stars form in Sun’s vicinity which will disturb planetary orbits and pose a 
radiation problem; too much gas and dust in solar system’s vicinity. 

if too high: not enough gas and dust condensation for the Sun and its planets to form; insuffi-
cient gas and dust in solar system’s vicinity. 

110. decay rate of cold dark matter particles 
if too low: insufficient production of dwarf spheroidal galaxies which will limit the mainte-

nance of long-lived large spiral galaxies. 
if too high: too many dwarf spheroidal galaxies produced which will cause spiral galaxies to be 

too unstable. 
111. ratio of inner dark halo mass to stellar mass for galaxy 

if too low: corotation distance is too close to the center of the galaxy which exposes the life-
support planet to too much radiation and too many gravitational disturbances. 

if too high: corotation distance is too far from the center of the galaxy where the abundance of 
heavy elements is too sparse to make rocky planets. 

112. star rotation rate 
if too slow: too weak of a magnetic field resulting in not enough protection from cosmic rays 

for the life-support planet. 
if too fast: too much chromospheric emission causing radiation problems for the life-support 

planet. 
113. rate of nearby gamma ray bursts 

if too low: insufficient mass extinctions of life to create new habitats for more advanced spe-
cies  

if too high: too many mass extinctions of life for the maintenance of long-lived species 
114. aerosol particle density emitted from forests 

if too low: too little cloud condensation which reduces rainfall, lowers the albedo (planetary re-
flectivity), and disturbs climates on a global scale. 

if too high: too much cloud condensation which increases rainfall, raises the albedo (planetary 
reflectivity), and disturbs climate on a global scale; too much smog. 

115. density of interstellar and interplanetary dust particles in vicinity of life-support planet 
if too low: inadequate delivery of life-essential materials 
if too high: disturbs climate too radically on life-support planet 

116. thickness of mid-mantle boundary 
if too thin: mantle convection eddies become too strong; tectonic activity and silicate produc-

tion become too great. 
if too thick: mantle convection eddies become too weak; tectonic activity and silicate produc-

tion become too small. 
117. galaxy cluster density 

if too low: insufficient infall of gas, dust, and dwarf galaxies into a large galaxy that eventually 
could form a life-supportable planet. 

if too high: gravitational influences from nearby galaxies will disturb orbit of the star that has a 
life-supprtable planet thereby exposing that planet either to deadly radiation or to 
gravitational disturbances from other stars in that galaxy. 

118. star formation rate in solar neighborhood during past 4 billion years 
if too high: life on Earth will be exposed to deadly radiation or orbit of Earth will be disturbed. 

119. variation in star formation rate in solar neighborhood during past 4 billion years 
if too high: life on Earth will be exposed to deadly radiation or orbit of Earth will be disturbed. 

120. gamma-ray burst events: 
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if too few: not enough production of copper, scandium, titanium, and zinc 
if too many: too many mass extinction events 

121. cosmic ray luminosity of Milky Way Galaxy: 
if too low: not enough production of boron 
if too high: life spans for advanced life too short; too much destruction of planet’s ozone layer 

122. air turbulence in troposphere: 
if too low: inadequate formation of water droplets 
if too great: rainfall distribution will be too uneven 

123.  primordial cosmic superwinds: 
if too low of an intensity: inadequate star formation late in cosmic history 
if too great of an intensity: inadequate star formation early in cosmic history 

124. smoking quasars: 
if too few: inadequate primordial dust production for stimulating future star formation 
if too many: early star formation will be too vigorous resulting in too few stars and planets be-

ing able to form late in cosmic history 
125. quantity of phytoplankton: 

if too low; inadequate production of molecular oxygen and inadequate production of maritime 
sulfate aerosols (cloud condensation nuclei); inadequate consumption of carbon diox-
ide 

if too great: too much cooling of sea surface waters and possibly too much reduction of ozone 
quantity in lower stratosphere; too much consumption of carbon dioxide 

126. quantity of iodocarbon-emitting marine organisms: 
if too low: inadequate marine cloud cover; inadequate water cycling 
if too great: too much marine cloud cover; too much cooling of Earth’s surface 

127. mantle plume production: 
if too low: inadequate volcanic and island production rate 
if too great: too much destruction and atmospheric disturbance from volcanic eruptions  

128.  quantity of magnetars (proto-neutron stars with very strong magnetic fields): 
if too few during galaxy’s history: inadequate quantities of r-process elements are synthesized 
if too many during galaxy’s history: too great a quantity of r-process elements are synthesized; 

too great of a high-energy cosmic ray production 
129.  frequency of gamma ray bursts in galaxy 

if too low: inadequate production of copper, titanium, and zinc; insufficient hemisphere-wide 
mass extinction events 

if too great: too much production of copper and zinc; too many hemisphere-wide mass extinc-
tion events  

130.  parent star magnetic field 
if too low: solar wind and solar magnetosphere will not be adequate to thwart a significant 

amount of cosmic rays 
if too great: too high of an x-ray flux will be generated 

131. amount of outward migration of Neptune 
if too low: total mass of Kuiper Belt objects will be too great; Kuiper Belt will be too close to 

the sun; Neptune’s orbit will not be circular enough and distant enough to guarantee 
long-term stability of inner solar system planets’ orbits 

if too great: Kuiper Belt will be too distant and contain too little mass to play any significant 
role in contributing volatiles to life-support planet or to contributing to mass extinction 
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events; Neptune will be too distant to play a role in contributing to the long-term  sta-
bility of inner solar system planets’ orbits 

132. Q-value (rigidity) of Earth during its early history 
if too low: final obliquity of Earth becomes too high; rotational braking of Earth too low 
if too great: final obliquity of Earth becomes too low; rotational braking of Earth is too great  

133. parent star distance from galaxy’s corotation circle 
if too close: a strong mean motion resonance will destabilize the parent star’s galactic orbit 
if too far: planetary system will experience too many crossings of the spiral arms 

134. average quantity of gas infused into the universe’s first star clusters 
if too small: wind form supergiant stars in the clusters will blow the clusters apart which in turn 

will prevent or seriously delay the formation of galaxies 
if too large: early star formation, black hole production, and galaxy formation will be too vig-

orous for spiral galaxies to persist long enough for the right kinds of stars and planets 
to form so that life will be possible  

135. frequency of late impacts by large asteroids and comets 
if too low: too few mass extinction events; inadequate rich ore deposits of ferrous and heavy 

metals 
if too many: too many mass extinction events; too radical of disturbances of planet’s crust 

136. level of supersonic turbulence in the infant universe 
if too low: first stars will be of the wrong type and quantity to produce the necessary mix of 

elements, gas, and dust so that a future star and planetary system capable of supporting 
life will appear at the right time in cosmic history 

if too high: first stars will be of the wrong type and quantity to produce the necessary mix of 
elements, gas, and dust so that a future star and planetary system capable of supporting 
life will appear at the right time in cosmic history 

137. number density of the first metal-free stars to form in the universe 
if too low: inadequate initial production of heavy elements and dust by these stars to foster the 

necessary future star formations that will lead to a possible life-support body  
if too many: super winds blown out by these stars will prevent or seriously delay the formation 

of the kinds of galaxies that could possibly produce a future life-support body 
138. size of the carbon sink in the deep mantle of the planet 

if too small: carbon dioxide level in planet’s atmosphere will be too high 
if too large: carbon dioxide level in planet’s atmosphere will be too low; biomass will be too 

small 
139. rate of growth of central spheroid for the galaxy 

if too small: inadequate flow of heavy elements into the spiral disk; inadequate outward drift of 
stars from the inner to the central portions of the spiral disk 

if too large: inadequate spiral disk of late-born stars 
140. amount of gas infalling into the central core of the galaxy 

if too little: galaxy’s nuclear bulge becomes too large 
if too much: galaxy’s nuclear bulge fails to become large enough 

141. level of cooling of gas infalling into the central core of the galaxy 
if too low: galaxy’s nuclear bulge becomes too large 
if too high: galaxy’s nuclear bulge fails to become large enough 

142. ratio of dual water molecules, (H2O)2, to single water molecules, H2O, in the troposphere 
if too low: inadequate raindrop formation; inadequate rainfall  
if too high: too uneven of a distribution of rainfall over planet’s surface 
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143. heavy element abundance in the intracluster medium for the early universe 
if too low: too much star formation too early in cosmic history; no life-support body will ever 

form or it will form at the wrong tine and/or place 
if too high: inadequate star formation early in cosmic history; no life-support body will ever 

form or it will form at the wrong tine and/or place 
144. quantity of volatiles on and in Earth-sized planet in the habitable zone 

if too low: inadequate ingredients for the support of life 
if too high: no possibility for a means to compensate for luminosity changes in star 

145. pressure of the intra-galaxy-cluster medium 
if too low: inadequate star formation bursts in large galaxies 
if too high: star formation burst activity in large galaxies is too aggressive, too frequent, and 

too early in cosmic history 
146. level of spiral substructure in spiral galaxy 

if too low: galaxy will not be old enough to sustain advanced life 
if too high: gravitational chaos will disturb planetary system’s orbit about center of galaxy and 

thereby expose the planetary system to deadly radiation and/or disturbances by gas or 
dust clouds 

147. mass of outer gas giant planet relative to inner gas giant planet 
if greater than 50 percent: resonances will generate non-coplanar planetary orbits which will 

destabilize orbit of life-support planet 
if less than 25 percent: mass of the inner gas giant planet necessary to adequately protect life-

support planet from asteroidal and cometary collisions would be large enough to gravi-
tationally disturb the orbit of the life-support planet  

148. triggering of El Nino events by explosive volcanic eruptions 
if too seldom: uneven rainfall distribution over continental land masses 
if too frequent: uneven rainfall distribution over continental land masses; too much destruction 

by the volcanic events; drop in mean global surface temperature 
149. time window between the peak of kerogen production and the appearance of intelligent life 

if too short: inadequate time for geological and chemical processes to transform the kerogen 
into enough petroleum reserves to launch and sustain advanced civilization 

if too long: too much of the petroleum reserves, both shallow subsurface and deep subsurface, 
will be broken down by bacterial activity into methane 

150. time window between the production of cisterns in the planet’s crust that can effectively collect and 
store petroleum and natural gas and the appearance of intelligent life 

if too short: inadequate time for collecting and storing significant amounts of petroleum and 
natural gas 

if too long: too many leaks form in the cisterns which lead to the dissipation of petroleum and 
gas 

151. efficiency of flows of silicate melt, hypersaline hydrothermal fluids, and hydrothermal vapors in the 
upper crust 

if too low: inadequate crystallization and precipitation of concentrated metal ores that can be 
exploited by intelligent life to launch civilization and technology 

if too high: crustal environment becomes too unstable for the maintenance of civilization 
152. quantity of dust formed in the ejecta of Population III supernovae 

if too low: number and mass range of Population II stars will not be great enough for a life-
support planet to form at the right time and place in the cosmos; Population II stars will 
not form soon enough after the appearance of Population III stars 
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if too high: Population II star formation will occur too soon and be too aggressive for a life-
support planet to form at the right time and place in the cosmos 

153. quantity and proximity of gamma-ray burst events relative to emerging solar nebula 
if too few and too far: inadequate enrichment of solar nebula with copper, titanium, and zinc 
if too many and too close: too much enrichment of solar nebula with copper and zinc; too much 

destruction of solar nebula 
154. heat flow through the planet’s mantle from radiometric decay in planet’s core 

if too low: mantle will be too viscous and, thus, mantle convection will not be vigorous enough 
to drive plate tectonics at the precise level to compensate for changes in star’s luminos-
ity 

if too high: mantle will not be viscous enough and, thus, mantle convection will be too vigor-
ous resulting in too high of a level of plate tectonic activity to perfectly compensate for 
changes in star’s luminosity 

155. water absorption by planet’s mantle 
if too low: mantle will be too viscous and, thus, mantle convection will not be vigorous enough 

to drive plate tectonics at the precise level to compensate for changes in star’s luminos-
ity 

if too high: mantle will not be viscous enough and, thus, mantle convection will be too vigor-
ous resulting in too high of a level of plate tectonic activity to perfectly compensate for 
changes in star’s luminosity 

156. quantity of mountains on land 
if too small: not enough snow and ice to provide adequate melt water for life during the dry 

seasons 
if too large: too much of the planet’s water would be trapped inside permanent snow and ice 

fields 
157. average height of mountains on land 

if too low: not enough snow and ice to provide adequate melt water for life during the dry sea-
sons 

if too high: too much of the planet’s water would be trapped inside permanent snow and ice 
fields 

158. timing of late heavy bombardment 
if too early: bombardment of Earth would be too intense; too much mass accretion; too severe a 

disruption of mantle and core; too much core growth 
if too late: bombardment of Earth would not be intense enough; too little oxygen would be de-

livered to the core; too little core growth 
159. density and thickness of atmosphere 

if too low: meteoritic bombardment would cause too much damage  
if too high: dust input to the atmosphere and soil would be too low; water input would be too 

low  
160. degree of continental land mass barrier to oceans along rotation axis 

if too low: rotation rate of planet slows down too slowly 
if too high: rotation rate of planet slows down too quickly 

161. methane emissions from living plants and plant litter 
if too low: greenhouse gas input to atmosphere inadequate to prevent runaway freezing of 

planetary surface  
if too high: greenhouse gas input to atmosphere launches a runaway evaporation of planet’s 

surface water 
162. methane emissions from animals 
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if too low: greenhouse gas input to atmosphere inadequate to prevent runaway freezing of 
planetary surface  

if too high: greenhouse gas input to atmosphere launches a runaway evaporation of planet’s 
surface water 

163. methane emissions from fossil fuel production 
if too low: greenhouse gas input to atmosphere inadequate to prevent runaway freezing of 

planetary surface  
if too high: greenhouse gas input to atmosphere launches a runaway evaporation of planet’s 

surface water 
164. lifetimes of methane in different atmospheric layers 

if too short: greenhouse gas input to atmosphere inadequate to prevent runaway freezing of 
planetary surface  

if too long: greenhouse gas input to atmosphere launches a runaway evaporation of planet’s 
surface water 

165. average mass of the first (metal-free pop III) stars to form in the universe 
if too low: inadequate initial production of heavy elements and dust by these stars to foster the 

necessary future star formations that will lead to a possible life-support body  
if too high: super winds blown out by these stars will prevent or seriously delay the formation 

of the kinds of galaxies that could possibly produce a future life-support body 
166. rate of release of biogenic bromides into the atmosphere 

if too low: tropospheric ozone and nitrogen oxides abundances in the atmosphere will be too 
high for healthy land life; greenhouse effect of the atmosphere may be too high to 
compensate for changes in solar luminosity; too much ultraviolet radiation is blocked 
out causing plant growth to suffer  

if too high: tropospheric ozone in the atmosphere will be too low to maintain a clean enough 
atmosphere for healthy land life; greenhouse effect of the atmosphere may be too low 
to compensate for changes in solar luminosity; ozone abundance in stratosphere will 
become too low to block out enough uv radiation to protect surface life 

167. rate of decomposition of biogenic bromides in the atmosphere 
if too low: tropospheric ozone and nitrogen oxides abundances in the atmosphere will be too 

high for healthy land life; greenhouse effect of the atmosphere may be too high to 
compensate for changes in solar luminosity  

if too high: tropospheric ozone in the atmosphere will be too low to maintain a clean enough 
atmosphere for healthy land life; greenhouse effect of the atmosphere may be too low 
to compensate for changes in solar luminosity; ozone abundance in stratosphere will 
become too low to block out enough uv radiation to protect surface life 

168.  solar nebula exposure to stellar winds from expanding asymptotic giant branch stars 
if too low: inadequate infusion of certain alkaline-earth elements into the solar nebula 
if too high: solar nebula would suffer too much reduction and/or disruption 

169. height of the tallest trees 
if too low: inadequate interception and capture of water from rolling fog; inadequate buildup of 

soil nutrients and biodeposits; loss of quality timber for sustaining human civilization  
if too high: inadequate tree growth efficiency; greater level of tree damage 

170. diameter of ordinary dark matter halo surrounding the galaxy 
if too small: spiral structure cannot be maintained long term; galaxy will grow too rapidly; gal-

axy structure will become too disturbed 
if too large: spiral structure cannot be maintained long term; galaxy will not grow rapidly 

enough; galaxy structure will become too disturbed 
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171. mass of ordinary dark matter halo surrounding the galaxy 
if too small: spiral structure cannot be maintained long term; galaxy will grow too rapidly; gal-

axy structure will become too disturbed 
if too large: spiral structure cannot be maintained long term; galaxy will not grow rapidly 

enough; galaxy structure will become too disturbed 
172. diameter of exotic dark matter halo surrounding the galaxy 

if too small: spiral structure cannot be maintained long term; galaxy will grow too rapidly; gal-
axy structure will become too disturbed 

if too large: spiral structure cannot be maintained long term; galaxy will not grow rapidly 
enough; galaxy structure will become too disturbed 

173. mass of exotic dark matter halo surrounding the galaxy 
if too small: spiral structure cannot be maintained long term; galaxy will grow too rapidly; gal-

axy structure will become too disturbed 
if too large: spiral structure cannot be maintained long term; galaxy will not grow rapidly 

enough; galaxy structure will become too disturbed 
174. density of ultra-dwarf galaxies (or supermassive globular clusters) in vicinity of the galaxy 

if too low: spiral structure will not be adequately sustained; heavy element flow into galactic 
habitable zone will be inadequate; galactic structure stability will not be adequately 
maintained 

if too high: galactic core will produce too much deadly radiation; too many heavy elements 
will be funneled into the galactic habitable zone; galactic structure stability will not be 
adequately maintained 

175. magnitude of air movement at the boundaries of water vapor clouds in planet’s atmosphere 
if too small: inadequate electrical charges induced into cloud droplets which limits how quickly 

droplets merge to form raindrops large enough to fall as precipitation 
if too large: so much electrical charge would be induced into cloud droplets as to generate too 

frequent, too widespread, and too destructive rain and electrical storms 
176. formation rate of molecular hydrogen on dust grain surfaces when the galaxy is young 

if too low: too few stars will form during the early history of the galaxy which would delay the 
possible formation of a planetary system capable of sustaining advanced life past the 
narrow epoch in the galaxy’s history during which advanced life could exist  

if too high: too many stars will form during the early history of the galaxy which would lead to 
the shutdown of star formation and spiral structure before the epoch during which a 
planetary system capable of sustaining advanced life could form  

177. number of medium- or large-sized galaxies merging with the galaxy since the formation and stabili-
zation of its thick galactic disk 

if one or more: spiral structure and star formation history will be disturbed to a degree that 
would rule out the possibility of a planetary system capable of sustaining advanced life 

178. intensity of far ultraviolet radiation from nearby stars when circumsolar disk was condensing into 
planets 

if too weaker: Saturn, Uranus, Neptune, and Kuiper Belt would have been much more massive, 
too massive for advanced life on Earth to be possible 

if too stronger: Uranus, Neptune, and the Kuiper Belt would never have formed and Saturn 
would have been smaller, making advanced life on Earth impossible 

179. magnitude of chemical exchange occurring at the liquid core-deep mantle boundary of planet 
if too small: inadequate flow of iron-rich material to planet’s surface at crustal hot spots for 

sustaining abundant nutrient rich flora 
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if too large: too much iron will be leached out of the planet’s core which will lower the dura-
tion and effectiveness of planet’s dynamo 

180. amount of methane generated in upper mantle of planet 
if too small: inadequate delivery of methane to planet’s atmosphere causing too little solar heat 

to be trapped by the atmosphere 
if too large: too great a delivery of methane to planet’s atmosphere causing too much solar heat 

to be trapped by the atmosphere 
181. amount of buildup of heavy elements in the galaxy 

if too small: not enough heavy elements will be incorporated into the  planetary system to make 
advanced life possible 

if too large: too much heavy elements will be incorporated into the planetary system resulting 
in too many planetesimals, asteroids, and comets in the planetary system; galactic 
structure becomes too disturbed and/or frayed to allow for the existence of advanced 
life 

182. timescale for the buildup of heavy elements in the galaxy 
if too short: galactic structure becomes too disturbed and/or frayed to allow for the existence of 

advanced life; planetary system will be endowed with too great of a quantity of radio-
metric elements  

if too long: planetary system will be endowed with too low of a quantity of radiometric ele-
ments; spiral structure either will collapse or too much spiral substructure will accrue 

183. level of biogenic mixing of seafloor sediments 
if too low: too low of a level of marine sediment oxygen which results in a too low biomass 

and nutrient budget for marine coastal ecosystems 
184.  production of organic aerosols in the atmosphere 

if too small: depending on the particular aerosol either too little solar radiation is reflected into 
space or too little solar radiation is absorbed into the troposphere 

if too large: depending on the particular aerosol either too much solar radiation is reflected into 
space or too much solar radiation is absorbed into the troposphere 

185. lifetimes of organic aerosols in the atmosphere 
if too short: depending on the particular aerosol either too little solar radiation is reflected into 

space or too little solar radiation is absorbed into the troposphere 
if too long: depending on the particular aerosol either too much solar radiation is reflected into 

space or too much solar radiation is absorbed into the troposphere 
186. total mass of primordial Kuiper Belt of asteroids and comets 

if too small: inadequate outward drift of Jupiter, Saturn, Uranus, and Neptune; inadequate cir-
cularization of the orbits of Jupiter, Saturn, Uranus, and Neptune; late heavy bom-
bardment of Earth would not be intense enough to bring about the necessary chemical 
transformation of Earth’s crust, mantle, and core; inadequate delivery of water and 
other volatiles to Earth 

if too large: too much outward drift of Jupiter, Saturn, Uranus, and Neptune; late heavy bom-
bardment of Earth would be too intense; too much delivery of water and other volatiles 
to Earth 

187. average distance of primordial Kuiper Belt objects from the sun 
if too short: inadequate outward drift of Uranus and Neptune; inadequate circularization of 

Uranus and Naptune’s orbits; either too much or too little outward drift of Jupiter and 
Saturn; timing and intensity of the late heavy bombardment could be altered so seri-
ously as to create conditions on Earth detrimental to advanced life 
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if too long: inadequate outward drift of Jupiter and Saturn; inadequate circularization of Jupiter 
and Saturn’s orbit; either no late heavy bombardment or the late heavy bombardment 
could be altered so seriously as to create conditions on Earth detrimental to advanced 
life; inadequate outward drift of Uranus and Neptune; inadequate circularization of 
Uranus and Neptune’s orbits 

188. quantity of sub-seaflour hypersaline anoxic bacteria 
if too small: inadequate sulfate reduction and methangenesis to sustain the global chemical cy-

cles essential for sustaining advanced life and human civilization; inadequate supply of 
concentrated metal ores for sustaining human civilization 

if too large: too high of a level of sulfate reduction and methanogeneis to sustain the global 
chemical cycles essential for sustaining advanced life and human civilization 

189. ratio of baryons in galaxies to baryons in between galaxies 
if too small: galaxies in the universe would be too few and too small, yielding inadequate 

heavy elements to make advanced life possible 
if too large: galaxies in the universe would be too large and too numerous, yielding a radiation 

and stellar density that would make advanced life impossible 
190. ratio of baryons in galaxy clusters to baryons in between galaxy clusters 

if too small: galaxies in the universe would be too few and too small, yielding inadequate 
heavy elements to make advanced life possible 

if too large: galaxies in the universe would be too large and too numerous, yielding a radiation 
and stellar density that would make advanced life impossible 

191. superwinds generated by primordial supermassive black holes 
if too few or too weak: too few baryons would be evacuated from galaxies into the intergalactic 

medium; galaxies in the universe would be too large and too numerous, yielding a ra-
diation and stellar density that would make advanced life impossible  

if too many or too strong: too many baryons would be evacuated from galaxies into the interga-
lactic medium; galaxies in the universe would be too few and too small, yielding in-
adequate heavy elements to make advanced life possible 

192. mass of moon orbiting life support planet 
if too small: inadequate ocean tides; planet’s rotation rate will not slow down fast enough to 

make advanced life possible; a mass lower than about a third of the Moon’s would not 
be adequate to stabilize the tilt of the planet’s rotation axis. 

if too large: a mass higher than two percent of the Moon’s would destabilize the tilt of the 
planet’s rotation axis; ocean tides would be too great causing too much erosion and 
disturbing continental shelf life; planet’s rotation rate would slow down so quickly as 
to make advanced life impossible. 

193. galaxy mass 
if too small: starburst episodes occur too late in the history of the galaxy; galaxy would absorb 

too few dwarf and super-dwarf galaxies thereby failing to sustain star formation over a 
long enough period of time; structure of galaxy may become too distorted by gravita-
tional encounters with nearby large and medium sized galaxies 

if too large: starburst episodes occur too early in the history of the galaxy; galaxy would absorb 
too many medium-sized, dwarf, and super-dwarf galaxies making the radiation from 
the galaxy’s core too deadly and disturbing too radically the galaxy’s spiral structure 

194.  density of galaxies in the local volume around life-support galaxy 
if too low: inadequate growth in the galaxy; inadequate buildup of heavy elements in the gal-

axy; star formation would be too anemic and history of star formation activity would 
be too short 
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if too high: galaxy would suffer catastrophic gravitational disturbances and star formation 
events would be too violent and too frequent; galaxy would grow too large and too 
quickly; astronomers’ view of the universe would be significantly blocked 

195. average galaxy mass in the local volume around life-support galaxy 
if too small: inadequate growth in the galaxy; inadequate buildup of heavy elements in the gal-

axy; star formation would be too anemic and history of star formation activity would 
be too short 

if too large: galaxy would suffer catastrophic gravitational disturbances and star formation 
events would be too violent and too frequent; galaxy would grow too large and too 
quickly; astronomers’ view of the universe would be significantly blocked 

196. rate at which the triple-alpha process (combining of three helium nuclei to make one carbon nu-
cleus) runs inside the nuclear furnaces of stars 

if too low: stars would not manufacture enough carbon and other heavy elements to make ad-
vanced life possible before cosmic conditions would rule out the possibility of ad-
vanced life; stars may too dim  

if too high: stars would manufacture too much carbon and other heavy elements; stars may be 
too bright 

197. surface level air pressure for life-support planet 
if too small: lung operation in animals would be too inefficient, eliminating the possibility of 

high respiration rate animals; wind velocities would be too high and air streams too 
laminar, causing devastating storms and much more uneven rainfall distribution; less 
lift for aircraft making air transport more dangerous and costly 

if too great: lung operation would be too inefficient, eliminating the possibility of high respira-
tion rate animals; wind velocities would be too low, resulting in much lower rainfall on 
continental land masses; too much air resistance making air transport slower, more 
costly, and more dangerous.  

198. average mass of cold dark gas-dust clouds in the galaxy 
if too small: star formation will be too anemic and stretched out over too long of a time period; 

spiral arm structure will be disrupted; galaxy will not generate stars of the right mean 
mass, mass distribution, and metallicity distribution for advanced life 

if too great: star formation will be too aggressive, occur too early, and be stretched out over too 
brief a time period; spiral arm structure will be disrupted; star density in neighborhood 
of life-support planetary system will be too high; galaxy will not generate stars of the 
right mean mass, mass distribution, and metallicity distribution for advanced life 

199. number density of cold dark gas-dust clouds in the galaxy 
if too low: star formation will be too anemic and stretched out over too long of a time period; 

spiral arm structure will be disrupted 
if too high: star formation will be too aggressive, occur too early, and be stretched out over too 

brief a time period; spiral arm structure will be disrupted; solar neighborhood would 
include too many stars 

200. level and frequency of ocean microseisms 
if too low: inadequate rainfall; inadequate redistribution of continental shelf nutrients 
if too high: storm intensities would become too great; rainfall levels would be too high; too 

much disturbance of the continental shelf environment and ecosystems 
201. average slope of the coastline land masses 

if too small: inadequate input of nutrients from the continents and islands to the continental 
shelves; energy from wave-wave interactions and from wave-shore interactions would 
be too low to adequately redistribute nutrients on the continental shelves; rainfall on 
continents would diminish and rainfall distribution patterns would be disrupted 
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if too great: erosion of continents and islands would be too great; continental shelf environ-
ments and ecosystems would be too radically disturbed; storms would become too in-
tense; too much rain would fall on the coastlines and not enough on the continent inte-
riors. 

202. depth of Earth’s primordial ocean 
if too shallow: moon-forming collider would not have ejected enough of Earth’s primordial 

ocean and atmosphere into interplanetary space; size and/or composition of the moon 
would be too radically disturbed 

if too deep: moon-forming collider would have ejected too much of Earth’s primordial ocean 
and atmosphere into interplanetary space; size and/or composition of the moon would 
be too radically disturbed  

203. rate of quartz re-precipitation on Earth 
if too low: cycling of silicon would be so disturbed as to affect the production of free oxygen 

by phytoplankton and the removal of carbon dioxide from the atmosphere by the 
weathering of silicates 

if too high: cycling of silicon would be so disturbed as to affect the production of free oxygen 
by phytoplankton and the removal of carbon dioxide from the atmosphere by the 
weathering of silicates 

204.  rate of release of cellular particles (fur fiber, dandruff, pollen,  spores, bacteria, etc.) into the atmos-
phere  

if too low: inadequate production of aerosol particles that are especially effective as cloud con-
densation nuclei thereby resulting into too little rain, hail, snow, and fog  

if too high: too much production of aerosol particles that are especially effective as cloud con-
densation nuclei thereby casing too much precipitation or precipitation that is too un-
evenly distributed 

205. rate of release of protein and viral particles into the atmosphere  
if too low: inadequate production of aerosol particles that are especially effective as cloud con-

densation nuclei thereby resulting into too little rain, hail, snow, and fog  
if too high: too much production of aerosol particles that are especially effective as cloud con-

densation nuclei thereby casing too much precipitation or precipitation that is too un-
evenly distributed 

206. rate of leaf litter deposition upon soils  
if too low: inadequate amounts of nutrients delivered to soils; inadequate amounts of silica de-

livered to soils; serious disruption of silica cycling  
if too high: soils and the ecosystems within them become too deprived of light, oxygen, and 

carbon dioxide; interferes with nitrogen fixation; 
207. availability of fossil fuels to humanity 

if less: more greenhouse gases released to the atmosphere and more air pollution as people turn 
to burning wood instead; more global warming, much more respiratory diseases, and 
more deforestation  

if much higher:  fossil fuel burning would be accelerated resulting in more significant global 
warming and local cooling from release of particulates 

208. date of star formation shutdown in the galaxy 
if too soon: no possibility of planets forming with the mix of heavy elements to support ad-

vanced life 
if too late: too high of a probability that a nearby supernova eruption or an encounter with a 

dense molecular cloud or a young bright star will prove deleterious to the life on the 
life-support planet 
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209. degree of central concentration of light-emitting ordinary matter for the life-support galaxy 
if smaller: inadequate infusion of gas and dust into the spiral arms preventing solar type stars 

from forming at the right locations late enough in the galaxy’s history.   
if larger: radiation from the bulge region would kill life on the life-support planet. 

210. degree of flatness for the light-emitting ordinary matter for the life-support galaxy 
if less: spiral structure either will collapse or become unstable 
if more: inadequate infusion of gas and dust into the spiral arms preventing solar type stars 

from forming at the right locations late enough in the galaxy’s history 
211. average albedo of Earth’s surface life 

if less:  would cause runaway evaporation of Earth’s frozen and liquid water 
if more: would cause runaway freeze-up of Earth’s water vapor and liquid water 

212. infall velocity of galaxy toward center of nearest grouping of galaxies 
if smaller: inadequate gas and dust would be infused into the galaxy 
if larger: galaxy would suffer serious gravitational distortions 

213. infall velocity of galaxy toward center of nearest supercluster of galaxies 
if smaller: inadequate gas and dust would be infused into the galaxy 
if larger: galaxy would suffer serious gravitational distortions 

214. distance that primordial supernovae dispersed elements heavier than helium 
if smaller: potential life-support planet either will possess to much or too little of the vital-

poison elements 
if larger: potential life support planet will lack many of the elements essential for the support of 

advanced life 
215. collision velocity of planet colliding with primordial Earth 

if too low: insufficient amount of Earth’s atmosphere would be removed; too small of a moon 
would form 

if too high: Earth would suffer too much destruction 
216. photo erosion by nearby giant stars during planetary formation phase 

if smaller: too low of a concentration of heavy elements in the planetary disk 
if larger: too radical of a truncation of the outer part of the planetary disk and hence inadequate 

formation of gas giant planets that are distant from the star 
217. dust extinction of that region of the spiral disk where the potential life support planet forms 

if smaller: a high density rocky planet will not be able to form; potential life support planet 
would lack the necessary planetary companions  

if larger: planetary system will be filled with too many asteroids and comets resulting in too 
many collision events and the delivery of too many volatiles 

218. dust extinction in vicinity of life support planet at the time of the existence of advanced life 
if too large: intelligent observers will experience a blocked view of the galaxy and the universe  

219.  surface density of the protoplanetary disk 
if smaller: number of protoplanets produced would be too many; average protoplanet mass 

would be too small 
if larger: number of protoplanets produced would be too few; average protoplanet mass would 

be too large 
220. quantity of terrestrial lightning 

if less:  too small or too unstable of a charge-depleted zone would exist in the Van Allen radia-
tion belts surrounding Earth making efficient communication satellite operation impos-
sible; too few forest and grass fires would be generated; inadequate nitrogen fixation 
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if more: Earth’s Van Allen belts would become so weak that too much hard radiation would 
penetrate to Earth’s surface to the detriment of life; too many forest and grass fires 
would be generated 

221. timing of solar system’s last crossing of a spiral arm 
if earlier: humanity would now be too close to a spiral arm and thus would face more cosmic  

rays, a colder climate, a weaker ozone shield, and a high probability of an encounter 
with a large molecular clooud 

if later: humanity would now be too close to a spiral arm and thus would face more cosmic  
rays, a colder climate, a weaker ozone shield, and a high probability of an encounter 
with a large molecular cloud; inadequate time  for the buildup of resources provided by 
previous generations of advanced life  

222. amount of iron-60 injected into Earth’s primordial core from a nearby type II supernova eruption 
if less:  inadequate differentiation of Earth’s interior layers which prevents any long-term sup-

port of plate tectonics and a strong magnetic field  
if more: Earth’s plate tectonics would become too destructive; Earth’s interior structure would 

become inappropriate for the support of life and advanced life in particular  
223. density of ultra-dwarf galaxies in the vicinity of the potential life-support galaxy 

if smaller: inadequate rate of infusion of gas and dust into the potential life-support galaxy; 
long-term stable spiral structure cannot be sustained 

if larger: too great of an infusion of gas and dust into the potential life-support galaxy; spiral 
structure will be disrupted 

224. quantity of molecular hydrogen formed by the supernova eruptions of population III stars (the first 
born stars) 

if smaller: inadequate formation of population II stars (second generation stars) 
if larger: too many population II stars would form thereby limiting the production of population 

I stars (third generation stars) 
225. quantity of soil sulfur 

if smaller: inadequate nutrients for land life 
if larger: organic matter would be too rapidly decomposed 

226. level of oxidizing activity in the soil 
if smaller: inadequate oxygenation of the soil for healthy root growth and the support of animal 

life in the soils; inadequate nutrients for land life 
if larger: organic matter would be too rapidly decomposed 

227. level of water soluable heavy metals in soils 
if lower: inadequate trace element nutrients available for life, and especially for advanced life 
if higher: catastrophic drop in soil microorganism diversity occurs 

228. quantity of methanotrophic symbionts in wetlands 
if lower: inadequate consumption and conversion of methane gas and inadequate delivery of 

carbon to mosses causing too much methane and carbon dioxide to be released to the 
atmosphere resulting in a global warming catastrophe 

if higher: too much consumption and conversion of methane gas and too much delivery of car-
bon to mosses causing too little methane and carbon dioxide to be released to the at-
mosphere resulting in a global cooling catastrophe 

229. ratio of asteroids to comets for the late heavy bombardment of Earth 
if lower: inadequate delivery of heavy elements to Earth; too many volatiles would be deliv-

ered to Earth; melting of Earth would not be sufficient to adequately transform the in-
terior of Earth  
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if higher: inadequate delivery of volatiles to Earth; bombardment would be too destructive; 
chemical transformation of Earth’s interior would become inappropriate for the long-
term support of advanced life 

230. rate of destruction and dispersal of dust as a result of supernova eruptions in the potential life-
support galaxy 

if lower: density of asteroids and comets will be too high for the potential life-support plane-
tary system resulting in too many impacts and too great a delivery of volatiles to the 
potential life-support planet; observers’ view of the galaxy and universe will be too 
heavily obscured  

if higher: inadequate heavy element material for the formation of a potential life support planet; 
inadequate delivery of volatiles and heavy elements to the potential life-support planet 
from comets and asteroids  

231. quantity and diversity of viruses in the oceans 
if lower: inadequate breakdown of particulate nutrients into usable forms for bacteria and mi-

crobial communities 
if higher: too much devastation of bacteria, microorganisms, and larger life forms in the oceans 

232. percent of baryons processed by the first stars (population III stars) in the vicinity of and inside the 
primordial Milky Way Galaxy 

if lower: inadequate conversion of hydrogen and helium into heavy elements; inadequate pro-
duction of molecular hydrogen; too few population II stars produced; buildup of metals 
will be inadequate and too slow 

if higher: too much conversion of hydrogen and helium into heavy elements; too much produc-
tion of molecular hydrogen; too many population II stars produced; star formation 
would shut down too quickly before the buildup of metals would reach the necessary 
levels for life 

233. solar system’s orbital radius about the center of the Milky Way Galaxy 
if shorter than just inside the corotation radius: solar system will pass through the spiral arms 

too many times during the history of life  
if at or very near the corotation radius: solar system will suffer a destructive mean motion reso-

nance 
if longer than the corotation radius: inadequate supply of heavy elements for the primordial so-

lar system; solar system will pass through the spiral arms too many times during the 
history of life 

234. quantity amommox bacteria (bacteria exploiting anaerobic ammonium oxidation reactions) in the 
oceans 

if lower: food chain base in oxygen depleted marine environments would be driven to too low 
of a level  

if higher: consumption of fixed nitrogen by these bacteria would deprive photosynthetic life of 
an important nutrient  

235. quantity of soluble zinc in the oceans 
if lower: too severe a limitation on the growth of nitrogen fixing marine bacteria; too severe a 

limitation on the growth of phytoplankton 
if higher: zinc absorption by marine organisms would reach toxic levels 

236. quantity of soluble silicon and silica in the oceans 
if lower: too severe a limitation on the growth of marine diatoms which would remove an im-

portant food source from the food chain and an important contributor to both nitrogen 
fixation and marine aerosol production 

if higher: silicon and silica absorption by certain marine organisms could reach toxic levels; 
diatom growth could become too predominant and thus damage the ecosystem 
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237. quantity of phosphorous and phosphates in the oceans 
if lower: too severe a limitation on the growth of nitrogen fixing marine bacteria 
if higher: growth of algae blooms could result in toxin release levels detrimental to other life 

forms 
238. availability of light to upper layers of the oceans 

if lower: inadequate phytoplankton growth in low iron content waters 
if higher: phytoplankton growth in high iron content waters would become too aggressive and 

thus upset that part of marine ecosystem; certain phytoplankton blooms would release 
too many toxins that could prove deadly to other life forms 

239. average cell size of marine phytoplankton 
if smaller: inadequate volume within the cells to support or adequately drive many important 

cell functions 
if larger: inadequate capacity of the cells to absorb important nutrients like iron and zinc 

240. amount of summer ground foliage in the arctic 
if smaller: lower reflectivity warms the arctic possibly leading to climate instabilities 
if larger: higher reflectivity cools the arctic possibly leading to climate instabilities 

241. proximity of emerging solar system nebula to red giant stars 
if closer: solar system nebula would suffer too much damage from the radiation and gravita-

tional pull of the red giant stars  
if farther: solar system would not receive an adequate injection of flourine 

242. number of red giant stars in close proximity to emerging solar system nebula 
if smaller: solar system would not receive an adequate injection of flourine 
if larger: solar system nebula would suffer too much damage from the radiation and gravita-

tional pull of the red giant stars 
243. masses of red giant stars in close proximity to emerging solar system nebula 

if smaller: solar system would not receive an adequate injection of fluorine because it would 
take too long for these stars to attain their epoch of maximum fluorine production and 
ejection 

if larger: solar system would not receive an adequate injection of fluorine because stars of such 
high mass produce too little flourine 

244. proximity of emerging solar system nebula to fluorine-ejecting planetary nebulae 
if closer: solar system would suffer too much radiation damage 
if farther: solar system would not receive an adequate injection of flourine 

245. number of fluorine-ejecting planetary nebulae in close proximity to emerging solar system nebula 
if smaller: solar system would not receive an adequate injection of flourine 
if larger: solar system would suffer too much radiation damage 

246. methane production and release to the atmosphere by plants 
if less: greenhouse effect in the atmosphere becomes too inefficient causing global cooling 

which could lead to a runaway freezing of the planet or to climatic instabilities  
if more: greenhouse effect in the atmosphere becomes too efficient causing global warming 

which could lead to a runaway evaporation of the planet’s water or to climatic insta-
bilities 

247. quantity of dissolved calcium in lakes and rivers 
if smaller: inadequate removal of carbon dioxide from the atmosphere leading to climatic in-

stabilities and possible runaway freezing 
if larger: too much removal of carbon dioxide from the atmosphere leading to climatic insta-

bilities and possible runaway evaporation of the planet’s liquid water and ice 
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248. quantity of suspended calcium in lakes and rivers 
if smaller: inadequate removal of carbon dioxide from the atmosphere leading to climatic in-

stabilities and possible runaway freezing 
if larger: too much removal of carbon dioxide from the atmosphere leading to climatic insta-

bilities and possible runaway evaporation of the planet’s liquid water and ice 
249. frequency of core collapse supernovae 

if smaller: inadequate production and distribution of certain heavy elements into the interstellar 
medium 

if greater: too many mass extinction events on the life-support planet 
250. level of rock melting during tectonic fault movements 

if smaller: advanced life would be subject to larger and more frequent devastating earthquakes. 
if larger: tectonic plate movement would become too rapid resulting in adequate continental 

stability 
251. timing of continental growth spurts 

if earlier: inadequate time for marine microorganisms to transform the chemical and physical 
conditions of Earth for the benefit of advanced life 

if later: inadequate time for land life to transform the continental crust and soils for the benefit 
of advanced life 

252. mass of the potential life support planet 
if smaller: planet will retain too light of an atmosphere and too small of an atmospheric pres-

sure; planet’s gravity will not be adequate to retain water vapor over a long period of 
time; pressure in planet’s mantle will be too low resulting in a loss of mantle conduc-
tivity and consequently a level of plate tectonics that is too weak 

if greater: planet will retain too heavy of an atmosphere and too great of an atmospheric pres-
sure; gravitational loss of low molecular weight gases from the atmosphere will be too 
low; tectonic activity level will be too strong and too short lived (it will die out too 
quickly) 

253. quantity of clay production on continental land masses 
if smaller: inadequate conditioning of soil for advanced plants; inadequate removal of carbon 

dioxide from the atmosphere; inadequate oxygenation of the atmosphere 
if greater: inadequate aeration of soil for advanced plants; too much removal of carbon dioxide 

from the atmosphere 
254. timing of advent of clay production on continental land masses 

if earlier: reduction of Earth’s atmospheric greenhouse effect overtakes the increasing luminos-
ity of the sun; bacteria will not have had sufficient time to transform the metals and nu-
trients into the forms needed by clay-producing life forms 

if later: increasing luminosity of the sun overtakes the reduction of Earth’s atmospheric green-
house effect; insufficient time for the clay-forming life forms and the ecosystems they 
support to build up the necessary biodeposits for humans and human civilization before 
the narrow time window for human civilization comes to an end 

255. quantity of bacteriophages  
if smaller: inadequate protection for advanced life against bacterial diseases 
if greater: too much destruction of bacteria that are beneficial to advanced life 

256. diversity of bacteriophages  
if smaller: inadequate protection for advanced life against bacterial diseases 
if greater: too much destruction of bacteria that are beneficial to advanced life 

257. timing of potential life-support planet’s birth relative to spiral substructure formation 
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if earlier: inadequate supply of life-essential heavy elements from previous generations of stars 
in the galaxy 

if later: too much radiation and/or gravitational disturbances from the development of spiral 
substructure (spurs, feathers, and filaments) 

258. level of warping in the Milky Way Galaxy’s spiral disk 
if smaller: the lack of any significant warp would imply that the MWG has had so few encoun-

ters with dwarf galaxies that it would not have received an adequate infusion of gas 
and dust to sustain a long enough history of star formation and the buildup of heavy 
elements to make advanced life possible  

if greater: such warping would cause gravitational instabilities that would either pull the solar 
system out of its finely tuned orbit about the galactic center or expose it to deadly ra-
diation from the galactic center or one of the adjacent spiral arms 

259. date for opening of the Drake Passage (between South America and Antarctica) 
if earlier: planet’s surface would have been cooled down prematurely relative to the gradual in-

creasing luminosity of the sun 
if later: planet’s surface would have been cooled down too late relative to the gradual increas-

ing luminosity of the sun 
260. frequency of gamma ray burst events in the galaxy  

if smaller: insufficient number of the mass extinction events that pave the way for mass specia-
tion events that perfectly compensate for the sun’s increasing luminosity and build up 
the biodeposits required by advanced life 

if greater: too many mass extinction events would disrupt the necessary history of life on Earth 
that is necessary to properly compensate for the increasing luminosity of the sun and to 
buildup the biodeposits important for the support of human civilization 

261. density of the galaxy 
if lower: central bulge will not be big enough; spiral arms will lack the density to funnel ade-

quate heavy elements out to the distance where an advanced life planet would be pos-
sible 

if higher: dwarf galaxy merging with the galaxy will not sustain adequate star formation for a 
long enough period of time 

262. impact energy of moon-forming collidor event 
if lower: insufficient debris generated to form the moon 
if higher: resultant debris disk dissipates too rapidly thereby preventing the formation of the 

moon 
263. density of particulates in the atmosphere 

if lower: inadequate cooling of planet’s surface; inadequate cooling of planet’s troposphere and 
stratosphere; disruption of rainfall patterns 

if higher: too much cooling of planet’s surface; too much cooling of planet’s troposphere and 
stratosphere; disruption of rainfall patterns 

264. frequency of giant volcanic eruptions 
if lower: inadequate delivery of interior gases to the atmosphere; insufficient buildup of islands 

and continental land masses; insufficient buildup of surface crustal nutrients 
if higher: too much and too frequent destruction of life 

265. degree of suppression of dwarf galaxy formation by cosmic reionization 
if lower: insufficient supply of dwarf galaxies for sustaining stable spiral structure and ongoing 

star formation in the life support galaxy 
if higher: structure of life support galaxy will be disturbed too radically by merging and colli-

sion events with dwarf galaxies 
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266. rate at which abiotic processes deplete nitrogen from the atmosphere by converting that nitrogen into 
ocean-deposited nitrates 

if lower: inadequate supply of nitrates for diverse marine life to thrive 
if higher: abundance of nitrogen in the atmosphere becomes too low to serve as an adequate 

buffer gas for advanced life 
267. rate at which biological organisms convert nitrates in the ocean into free nitrogen that is subse-

quently released into the atmosphere 
if lower: abundance of nitrogen in the atmosphere becomes too low to serve as an adequate 

buffer gas for advanced life 
if higher: inadequate supply of nitrates for diverse marine life to thrive 

268. silicon abundance in planetary system’s primordial nebula 
if lower: planet formation and especially rocky planet formation will be too inefficient 
if higher: planetary system will produce an overabundance of asteroids and comets resulting in 

too many volatiles being delivered to the potential life support planet and too many 
collision events for the potential life support planet; planetary system will produce too 
many or too massive planets and planetesimals causing catastrophic gravitational dis-
turbances for the potential life support planet 

269. rate of decrease of the thickness of the gas disk in the life-support galaxy 
if lower: disk will not develop in a short enough time period the necessary concentration of 

heavy elements to make a life-support planet possible; disk will not develop the neces-
sary density of gas and dust to adequately protect a potential life-support planet from 
the deadly radiation emanating from the core of the galaxy 

if higher: spiral substructure in the galaxy forms too quickly; disk becomes too thin to ade-
quately protect a potential life-support planet from the deadly radiation emanating from 
the core of the galaxy 

270. level of upward stirring of ocean water by krill 
if smaller: inadequate replenishment of inorganic nutrients that have been depleted by phyto-

plankton causing a serious drop in the productivity of phytoplankton and the regulation 
of atmospheric chemistry by phytoplankton; inadequate exchange of atmospheric car-
bon dioxide with the stratified ocean interior 

if greater: too much carbon dioxide is removed from the atmosphere; potential for problematic 
algae blooms; disruption of the regulation of the atmospheric chemistry by phytoplank-
ton 

271. production and release of ammonium sulfate aerosols into the atmosphere 
if lower: Earth’s surface becomes warmer leading to possible climatic instabilities;  
if higher: Earth’s surface becomes colder leading to possible climatic instabilities 

272. timing of the great oxygenation event 
if earlier: inadequate filling of the great oxygen sinks would have occurred leading to probable 

large scale atmospheric oxygen abundance variations during the epoch of advanced life  
if later: atmospheric oxygen levels required by advanced life would not have been available 

during the time window in which advanced life could exist  
273. hydrogen escape from the atmosphere to outer space 

if lower: too much methane is retained in the atmosphere resulting in a warming of the atmos-
phere and surface that could cause climatic instabilities and even a runaway evapora-
tion of the planet’s liquid and frozen water 

if higher: too little methane is retained in the atmosphere resulting in a cooling of the atmos-
phere and surface that could cause climatic instabilities and even a runaway freezing of 
the planet’s water 
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274. production of H3
+ by the galaxy’s population III (first generation) stars 

if lower: inadequate production of population II stars; too long of a delay in the production of 
population II stars 

if higher: too aggressive production of population II stars; too short of a period over which 
population II stars are produced; subsequent star formation shuts down 

275. production of H3
+ by the galaxy’s population II (second generation) stars 

if lower: inadequate production of population I stars or production of population I stars is 
spread out over too long of a time period 

if higher: production of population I stars occurs over too short of a time period 
276. intensity of ultraviolet radiation arriving from the sun at the time and shortly after life’s origin on 

Earth (before photosynthesis can establish a significant ozone shield) 
if lower: synthesis of certain biochemical processes either will not proceed or will proceed too 

inefficiently 
if higher: many biological systems and organisms would be damaged beyond repair 

277. wavelength response pattern of ultraviolet radiation arriving from the sun at the time or shortly after 
life’s origin on Earth 

if longer wavelengths: synthesis of certain biochemical processes either will not proceed or 
will proceed too inefficiently 

if shorter wavelengths: many biological systems and organisms would be damaged beyond re-
pair 

278. gas density of the local interstellar medium 
if lower: inadequate suppression the heliosphere resulting in too little infall of dust from the 

Kuiper Belt and Oort Cloud and too little penetration of galactic cosmic rays which 
cause too little climatic cooling and too little ozone layer suppression respectively   

if higher: too much suppression of the heliosphere resulting in more infall of dust from the 
Kuiper Belt and Oort Cloud and more penetration of galactic cosmic rays which cause 
climatic cooling and ozone layer suppression respectively 

279. mass of the disk of dust, asteroids, and comets for the primordial planetary system 
if smaller: late heavy bombardment will not be intense enough to adequately transform the in-

terior of the potential life support planet; inadequate bombardment during life’s history 
to generate the extinction events to prepare the planet for advanced life  

if greater: orbits of the planets become too chaotic 
280. magnitude of tidal Coulomb stresses (stress imparted by tides on tectonic fault zones) 

if smaller: tectonic events will become more violent 
if greater: tides will cause too much disruption and/or destruction of continental shelf habitats 

and continental shelf life 
281. amount of methane stored in ocean clathrates 

if smaller: inadequate methane would be available for certain critical chemoautotrophs 
if greater: serious risk of one or more massive global warming events that could devastate ad-

vanced life 
282. ratio of viscous to rotational forces in the planet’s liquid core 

if smaller: inadequate chemical and physical exchanges between the lower mantle and the core 
and between the inner and outer core 

if greater: serious disruptions in the operation of the planet’s dynamo would radically disturb or 
deteriorate the planet’s magnetic field and tectonics 

283. planet’s oxygenation time (time for atmospheric oxygen to reach a level capable of supporting ad-
vanced life) 
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if longer:  planet’s star will no longer be stable enough to provide a steady, non-lethal illu-
mination 

if shorter: oxygenation either would continue rising  reaching a level that would no longer sup-
port long-lived advanced animals and would lead to too many grass and forest fires or 
the oxygenation levels would vary too much for stable advanced life ecosystems 

284. inward migration of icy rubble from the outer primordial planetary disk 
if smaller: potential life support planet will be too dry 
if greater: potential life support planet either will be too wet or too water vapor laden 

285. timing of the appearance of methanogenic bacteria relative to the timing of the appearance of photo-
synthetic bacteria 

if earlier: causes a non-linear runaway increase of the accumulation of methane in the atmos-
phere which would result in a greenhouse effect that would evaporate all of the 
planet’s water 

if later: inadequate input of methane in the atmosphere to build up enough of a greenhouse ef-
fect to compensate for the fainter sun at that time 

286. relative abundance of methanogenic life compared to photosynthetic life 
if smaller: inadequate input of methane into the atmosphere which results in too weak of a 

greenhouse effect thereby leading to catastrophic cooling 
if greater: too much input of methane into the atmosphere which results in too strong of a 

greenhouse effect thereby leading to catastrophic heating 
287. ratio of iron to chondritic meteorites at the time and place of Earth’s birth 

if smaller: Earth will not be dense enough; Earth would not sustain a long-lived strong mag-
netic field and plate tectonics 

if greater: Earth will be too dense; Earth’s crust would be too iron-rich; Earth’s dynamo will 
not be stable enough 

288. number of ultracompact dwarf galaxies in the vicinity of the potential life support galaxy during that 
galaxy’s youth 

if lower: potential life support galaxy will not grow to a large enough size; inadequate star for-
mation during the potential life support galaxy’s youth 

if higher: potential life support galaxy will grow too large; structure of the potential life support 
galaxy will become too distorted 

289. number of starless hydrogen gas clouds in the near vicinity of the potential life support galaxy 
if smaller: insufficient infusion of gas into the galaxy to sustain the spiral structure and a suffi-

ciently high level of ongoing star formation in the galaxy   
if greater: too much infusion of gas into the galaxy resulting in the formation of too much spi-

ral substructure and/or too much growth in the galaxy 
290. average mass of starless hydrogen gas clouds in the near vicinity of the potential life support galaxy 

if smaller: insufficient infusion of gas into the galaxy to sustain the spiral structure and a suffi-
ciently high level of ongoing star formation in the galaxy 

if greater: too much infusion of gas into the galaxy resulting in the formation of too much spi-
ral substructure and/or too much growth in the galaxy 

291. dust to gas ratio in and near the core of the potential life support galaxy during that galaxy’s youth 
if smaller: insufficient production of molecular hydrogen in this region leading to an inade-

quate star formation rate early in the galaxy’s history 
if greater: too much production of molecular hydrogen in this region leading to too high of a 

star formation rate early in the galaxy’s history which in turn limits the later formation 
of population I type stars  

292. dust temperature in and near the core of the potential life support galaxy during that galaxy’s youth 
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if lower than 10°K: formation of molecular hydrogen is suppressed which causes star forma-
tion in this region to cease or become severely limited 

if higher than 500°K: formation of molecular hydrogen is suppressed which causes star forma-
tion in this region to cease or become severely limited 

if too close to the ideal temperature for formation of molecular hydrogen: too high of a star 
formation rate in this region early in the galaxy’s history which limits the later forma-
tion of population I stars 

if too far from the ideal temperature for formation of molecular hydrogen: inadequate star for-
mation rate in this region early in the galaxy’s history 

293. gas temperature in and near the core of the potential life support galaxy during that galaxy’s youth 
if higher than a few hundred °K: formation of molecular hydrogen in this region is suppressed 

which causes star formation to cease or become severely limited 
if too close to the ideal temperature for formation of molecular hydrogen: too high of a star 

formation rate in this region early in the galaxy’s history which limits the later forma-
tion of population I stars 

if too far from the ideal temperature for formation of molecular hydrogen: inadequate star for-
mation rate in this region early in the galaxy’s history 

294. dust to gas ratio in the mid to outer parts of the potential life support galaxy during that galaxy’s 
youth 

if smaller: insufficient production of molecular hydrogen in this region leading to an inade-
quate star formation rate early in the galaxy’s history 

if greater: too much production of molecular hydrogen in this region leading to too high of a 
star formation rate early in the galaxy’s history which in turn limits the later formation 
of population I type stars  

295. dust temperature in the mid to outer parts of the potential life support galaxy during that galaxy’s 
youth 

if lower than 10°K: formation of molecular hydrogen in this region is suppressed which causes 
star formation to cease or become severely limited 

if higher than 500°K: formation of molecular hydrogen in this region is suppressed which 
causes star formation to cease or become severely limited 

if too close to the ideal temperature for formation of molecular hydrogen: too high of a star 
formation rate in this region early in the galaxy’s history which limits the later forma-
tion of population I stars 

if too far from the ideal temperature for formation of molecular hydrogen: inadequate star for-
mation rate in this region early in the galaxy’s history 

296. gas temperature in the mid to outer parts of the potential life support galaxy during that galaxy’s 
youth 

if higher than a few hundred °K: formation of molecular hydrogen in this region is suppressed 
which causes star formation to cease or become severely limited 

if too close to the ideal temperature for formation of molecular hydrogen: too high of a star 
formation rate in this region early in the galaxy’s history which limits the later forma-
tion of population I stars 

if too far from the ideal temperature for formation of molecular hydrogen: inadequate star for-
mation rate in this region early in the galaxy’s history 

297. quantity of carbon monoxide in the potential life support galaxy early in its history 
if lower: inadequate cooling of the molecular gas clouds causing too few stars to form at this 

time 
if higher: too much cooling of the molecular gas clouds causing too many star to form at this 

time which limits how many stars can form later 
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298. quantity of carbon monoxide in the potential life support galaxy late in its history 
if lower: inadequate cooling of the molecular gas clouds causing too few stars to form at this 

time 
if higher: too much cooling of the molecular gas clouds causing too many stars to form at this 

time, stars whose radiation and gravity could disrupt life on a life support planet 
299. number density of dark matter minihalos in the primordial Local Group 

if lower: galaxies in the Local Group will not grow fast enough and/or large enough 
if higher: galaxies in the Local Group will grow too quickly and/or grow to be too large 

300. intensity or speed of high-velocity galactic outflows during the youth of the potential life support 
galaxy 

if lower: not enough gas and dust is ejected from the galaxy resulting in the galaxy growing to 
too large of a size and especially causing the galactic bulge to become too large and 
too massive 

if higher: causes star formation to terminate too quickly; too great a loss of heavy elements 
from the galaxy 

301. thickness of the thick disk for the potential life support galaxy 
if thinner: spiral disk will not remain sufficiently stable, sufficiently flat, and/or sufficiently 

free of substructure for a long enough period of time 
if thicker: spiral disk will not be dense enough resulting in inadequate protection for the poten-

tial life support planet from deadly radiation emanating out from the galaxy’s central 
bulge 

302. rate at which the thick disk for the potential life support galaxy grows thinner 
if faster: spiral disk will not remain sufficiently stable, sufficiently flat, and/or sufficiently free 

of substructure for a long enough period of time 
if slower: spiral disk will not be dense enough resulting in inadequate protection for the poten-

tial life support planet from deadly radiation emanating out from the galaxy’s central 
bulge 

303. mass of the corona surrounding the potential life support galaxy 
if smaller: inadequate reservoir of baryons for sustaining ongoing star formation 
if greater: too large of reservoir of baryons for sustaining ongoing star formation resulting in a 

too aggressive rate of ongoing star formation 
304. diameter of the corona surrounding the potential life support galaxy 

if smaller: reservoir of baryons in the corona will too efficiently sustain ongoing star formation 
in the galaxy resulting in a too aggressive rate of ongoing star formation 

if greater: reservoir of baryons will not sustain an efficient enough ongoing star formation rate 
for the galaxy 

305. average strength of local gravitational instabilities in the potential life support galaxy 
if smaller: gas collapse is too slow and too inefficient resulting in too slow of a rate of star 

formation 
if greater: gas collapse is too quick and too efficient resulting in a too rapid rate of star forma-

tion  
306. date of the last large merging event with the potential life support galaxy 

if earlier: inadequate growth in the galaxy; inadequate infusion of gas and dust into the galaxy; 
inadequate star formation later in the galaxy’s history 

if later: morphology of the galaxy remains too disturbed at life-critical epochs in the galaxy’s 
history; star formation history would be disrupted 

307. distance of the snow line from the primordial sun at the time of planet formation 
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if closer: gas giant planets will form too close to the sun; inner solar system would be too vola-
tile rich 

if farther: gas giant planets will form too distant from the sun; inner solar system would be 
volatile poor 

308. distance of the tar line from the primordial sun at the time of planet formation 
if closer: Jupiter-type planet and main belt asteroids will form too close to the sun; inner solar 

system bodies will be gravitationally disrupted 
if farther: Jupiter-type planet and main belt asteroids will form too far from the sun; Earth will 

not be adequately protected from comet and asteroid collisions from incoming objects 
from the Kuiper Belt and Oort Cloud 

309. outer radius of the “dead zone,” the low-viscosity, very-low-ionization zone for the primordial 
planetary disk  

if closer: gas giant planets will form too close to the sun; inner solar system would be too 
gravitationally disturbed 

if farther: gas giant planets will form too distant from the sun; inner solar system would not be 
adequately protected from comet and asteroid collisions 

310. cooling efficiency of the protoplanetary disk 
if smaller: either gas giant planets will not form or they will be too small , too few, or too dis-

tant from their star 
if greater: gas giant planets either will be too close to their star or too numerous or too massive 

311. outer protoplanetary disk lifetime 
if shorter: inadequate initial inward migration of gas giant planets 
if longer: too much initial inward migration of gas giant planets 

312. solid to gas ration in the outer protoplanetary disk 
if smaller: either gas giant planets will not form or they will be too small  or too few; gas giant 

planet formation times will be too long 
if greater: gas giant planets either will be too numerous or too massive; gas giant planet forma-

tion times will be too short 
313. level of large scale turbulence in the protoplanetary disk 

if smaller: inadequate transfer of refractory phases from the inner solar system to the outer so-
lar system; inadequate transfer of carbonaceous materials from the interstellar medium 
and the outer solar system to the inner solar system  

if greater: too much transfer of refractory material from the inner to the outer solar system; too 
much transfer of carbonaceous materials from the interstellar medium and the outer so-
lar system to the inner solar system; too much chaos introduced to the protoplanetary 
disk 

314. tidal stripping of low-mass dark matter halos during the early history of the Local Group of galaxies 
if smaller: either too many dwarf galaxies would form or too many star-poor intergalactic dark 

matter structures would exist 
if greater: either not enough dwarf galaxies would form or not enough star-poor intergalactic 

dark matter structures would exist 
315. efficiency of gas cooling in low-mass dark matter halos during the early history of the Local Group 

of galaxies 
if smaller: early star formation in Local Group dwarf galaxies would be too aggressive 
if greater: early star formation in Local Group dwarf galaxies would not be aggressive enough 

316. intensity of extragalactic ultraviolet radiation in the vicinity of low-mass dark matter halos during 
the early history of the Local Group of galaxies 

if smaller: early star formation in Local Group dwarf galaxies would not be aggressive enough  
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if greater: early star formation in Local Group dwarf galaxies would be too aggressive 
317. average magnetic energy density in the quiet solar photosphere 

if smaller: inadequate heating of the solar corona; inadequate solar chromospheric radiation 
if greater: too much heating of the solar corona; too much solar chromospheric radiation 

318. number of tectonic plates making up the surface crust 
if fewer: too few continents and large islands; inadequate subduction; volcanism and tectonic 

movements either will be too little or too much 
if greater: too many continents and large islands; too much subduction; volcanism and tectonic 

movements either will be too little or too much 
319. number density of spicules on the solar surface 

if smaller: inadequate transfer of mass into the solar corona; spectral luminosity profile of the 
sun would be disturbed 

if greater: too much transfer of mass into the solar corona; spectral luminosity profile of the sun 
would be disturbed 

320. proximity of the primordial solar system nebula to the remnants of eruptions of novae 
if closer: solar system nebula would be over-enriched in silicon-carbon grains 
if farther: solar system nebula would be under-enriched in silicon-carbon grains 

321. supernova rate in the life support galaxy 
if smaller: inadequate production of heavy elements 
if greater: cosmic ray intensity would be too great 

322. timing of the initiation of enrichment of the interstellar medium with s-process elements for the po-
tential life-support galaxy 

if earlier: star formation may shut down too soon; spiral structure may collapse or become too 
chaotic 

if later: inadequate supply of s-process elements would be available for the potential life-
support planet 

323. proximity of the emerging solar system nebula to either a white dwarf or a neutron star that is ac-
creting hydrogen gas or to  the stellar winds blowing out from a neutron star or a collapsar disk 

if closer: solar system nebula will be disrupted or stripped of gas  
if farther: solar system nebula will fail to be adequately enriched with p-process elements that 

are heavier than iron 
324. density of baryons in the Local Volume of the universe 

if smaller: galaxies would be too small and numerically too sparse 
if greater: galaxies would be too big and too numerous 

325. ratio of baryons in galaxies to baryons in between galaxies in the Local Volume of the universe 
if smaller: galaxies would be too small and numerically too sparse 
if greater: galaxies would be too big and too numerous 

326. density of baryons in the Local Group of galaxies 
if smaller: galaxies would be too small and numerically too sparse 
if greater: galaxies would be too big and too numerous 

327. ratio of baryons in galaxies to baryons in between galaxies in the Local Group of galaxies 
if smaller: galaxies would be too small and numerically too sparse 
if greater: galaxies would be too big and too numerous 

328. epoch of peak star formation in the potential life support galaxy 
if earlier: not enough stars form late in the galaxy’s history 
if later: too many stars form late in the galaxy’s history 

329. mass of the galaxy’s central black hole 
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if smaller: central bulge of the galaxy will be too small; the central bulge will be too gas rich 
if greater: central bulge of the galaxy will be too large; the central bulge will be too gas poor 

330. ratio of type I to type II supernovae in the potential life support galaxy 
if smaller: will not have the right mix of heavy elements for the potential life support planet 
if greater: will not have the right mix of heavy elements for the potential life support planet 

331. ratio of polycyclic aromatic hydrocarbons to stars in the galaxy 
if smaller: planet formation in the galaxy will be suppressed; too few population I stars (late-

born stars) in the galaxy 
if greater: too many asteroids and comets will form; late history star formation will be too ag-

gressive 
332. number density of intracluster clouds in and around the Local Group of galaxies 

if smaller: inadequate infusion of gas and dust into the Milky Way Galaxy for sustaining suffi-
cient rate of ongoing star formation 

if greater: Milky Way Galaxy and hence the solar system will be too radically disturbed 
333. average mass of intracluster clouds in and around the Local Group of galaxies 

if smaller: inadequate infusion of gas and dust into the Milky Way Galaxy for sustaining suffi-
cient rate of ongoing star formation 

if greater: Milky Way Galaxy and hence the solar system will be too radically disturbed 
334. metallicity of the galaxy’s halo 

if lower; inadequate infusion of metals into the galaxy’s disk 
if higher: too much development of spiral substructure or too much disturbance of the main 

spiral structure 
335. inward migration of icy meter-sized rubble from the outer part of the protoplanetary disk 

if smaller: potential life support planet will become too dry 
if greater: potential life support planet will become too wet 

336. density of stars in the sun’s birthing star cluster 
if smaller: solar system will retain too many of its primordial Oort Cloud and Kuiper Belt ob-

jects which leads to greater impact rates on Earth; solar system will not capture enough 
bodies from protoplanetary disks surrounding nearby stars 

if greater: solar system will lose too many of its primordial Oort Cloud and Kuiper Belt objects 
which leads to an inadequate impact rates on Earth; solar system may capture too many 
bodies from protoplanetary disks surrounding nearby stars 

337. carbon abundance in the protoplanetary disk of the potential life support planetary system 
if smaller: potential life support planet will become too carbon poor 
if greater: potential life support planet will become too carbon rich 

338. number density of dark matter subhalos surrounding the galaxy 
if smaller: inadequate infusion of gas and dust into the galaxy 
if greater: too much star formation would occur in the outer parts of the galaxy’s disk 

339. average mass of the dark matter subhalos surrounding the galaxy 
if smaller: inadequate infusion of gas and dust into the galaxy 
if greater: too much star formation would occur in the outer parts of the galaxy’s disk 

340. formation times for the dark matter halo and subhales surrounding the galaxy 
if earlier: too many satellite galaxies and satellite gas clouds will form 
if later: too few satellite galaxies and satellite gas clouds will form 

341. ratio of average surface magnetic field strength to the expansion factor of open magnetic flux tubes 
on the sun 
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if smaller: solar wind speed will be too low; not enough suppression of Earth’s ionosphere or 
of ozone in the stratosphere 

if greater: solar wind speed will be too high resulting in too many and too intense geomagnetic 
storms; too much suppression of Earth’s ionosphere, and too much destruction of 
ozone in the stratosphere 

342. rate of growth of the galactic bulge in the spiral galaxy 
if slower: buildup of heavy element abundance would take place too slowly; galaxy will be too 

metal poor 
if faster: buildup of heavy element abundance would occur too quickly; galaxy will be too 

metal rich; galaxy’s physical structure would probably become too disturbed 
343. strength of the ultraviolet background for the protogalaxy 

if weaker: protogalaxy will collapse too efficiently and too quickly; spiral structure will not 
form or too much star formation will occur early in the galaxy’s history  

if stronger: protogalaxy either will not collapse or it will collapse  too slowly and too ineffi-
ciently; spiral structure will not form or too few stars will form early in the galaxy’s 
history 

344. proximity of the emerging solar system nebula to very low mass red giant and asymptotic giant 
branch stars 

if closer: emerging solar system nebula will be exposed to too much radiation and may suffer 
too much gravitational disturbance 

if farther: emerging solar system nebula will not be adequately enriched with large-grained 
graphite, silicon carbide, corundum, and spinel 

345. richness or density of galaxies in the supercluster of galaxies 
if smaller: inadequate supply of dwarf galaxies for sustaining the spiral structure and the star 

formation history for the potential life support galaxy 
if greater: density of galaxies would be so great as to disturb the structure and the star forma-

tion history of the potential life support galaxy 
346. misalignment angle between the magnetic and rotational axes of the star during the planet formation 

era 
if smaller: inadequate inward migration of the planets from their birthing sites in the  proto-

planetary disk 
if greater: too much inward migration of the planets from their birthing sites in the  protoplane-

tary disk 
347. infall velocity of matter into the dark matter halo of the potential life support galaxy 

if smaller: inadequate accretion of matter; inadequate accretion of satellite dark matter halos; 
dark matter halo remains too samll 

if greater: too much accretion of matter; too much accretion of satellite dark matter halos; dark 
matter halo becomes too large 

348. quantity of hydroxyl (OH) in the planet’s troposphere 
if smaller: too much methane and carbon monoxide would accumulate in the planet’s atmos-

phere resulting in a powerful greenhouse effect and respiratory problems for advanced 
life; too little ozone would be produced in the troposphere 

if greater: not enough methane would accumulate in the planet’s atmosphere; too much ozone 
would be produced in the troposphere 

349. quantity of hydroxyl (OH) in the planet’s stratosphere 
if smaller: too much methane and carbon monoxide would accumulate in the planet’s atmos-

phere resulting in a powerful greenhouse effect and respiratory problems for advanced 
life; too little ozone would be produced in the stratosphere 
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if greater: not enough methane would accumulate in the planet’s atmosphere; too much ozone 
would be produced in the stratosphere 

350. level of magnetization of the spiral disk for the potential life support galaxy 
if smaller: spiral structure will lack long term stability 
if greater: too much spiral substructure (spurs and feathers) will develop  

351. metallicity of the galaxy’s halo 
if smaller:  inadequate infusion of heavy elements into the habitable zone of the galaxy  
if greater: too much disturbance of the spiral structure of the galaxy or too much growth in the 

galaxy’s main structure and/or substructure 
352. strength of the wind emanating from the galaxy’s nuclear core 

if smaller: galactic bulge will grow too large; inadequate heavy element enrichment of the gal-
axy’s habitable zone 

if greater: galactic bulge will remain too small; too great a buildup of spiral substructure; too 
much disturbance of the galaxy’s habitable zone 

353. mass of the initial or primordial galaxy  
if smaller: rate if merger events with other galaxies will be too low 
if greater: rate of merger events with other galaxies will be too high 

354. mass of the galaxy’s central black hole 
if smaller: outflow from the vicinity of the black hole will not adequately suppress star forma-

tion in the galaxy 
if greater: outflow from the vicinity of the black hole will too aggressively suppress star forma-

tion in the galaxy 
355. date for the formation of the galaxy’s central black hole 

if earlier: outflows from the vicinity of the black hole may too quickly or too aggressively sup-
press star formation in the galaxy 

if greater: outflows from the vicinity of the black hole may not adequately suppress star forma-
tion early enough or aggressively enough 

356. level of mixing of the elements and chemicals in the protoplanetary disk 
if smaller: Earth will not have an adequate abundance of the lighter elements and compounds 
if greater: Earth will not possess an adequate abundance of the heaviest elements and com-

pounds 
357. level of enhanced mixing in the interiors of low-mass red giant stars that were in the vicinity of the 

solar system’s protoplanetary disk 
if smaller: inadequate infusion of flouring into the solar system’s protoplanetary disk 
if greater: too much infusion of fluorine into the solar system’s protosplanetary disk 

358. date when half the stars in the galaxy would have already been formed 
if earlier inadequate buildup of heavy elements 
if later: too much disruption of the galaxy’s structure and radiation late in its history 

359. density of dwarf dark matter halos in the vicinity of the Milky Way Galaxy 
if smaller: number of small-scale merger events will be too low to maintain the Galaxy’s spiral 

structure and ongoing star formation history 
if greater: number of small-scale merger events will be too high resulting in too much growth 

and too much disturbance of the Galaxy  
360. metallicity enrichment by dwarf galaxies of the intergalactic medium in the vicinity of the potential 

life support galaxy 
if smaller: inadequate metal enrichment of the galaxy  
if greater: too much metal enrichment of the galaxy  
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361. average star formation rate throughout cosmic history for dwarf galaxies that are in the vicinity of 
the potential life support galaxy 

if smaller: too much infusion of gas into the potential life support galaxy which results in too 
aggressive episodes of star formation in that galaxy during the potential life support 
epoch 

if greater: inadequate infusion of gas into the potential life support galaxy which results in too 
anemic episodes of star formation in that galaxy leading up to the potential life support 
epoch 

362. quantity of heavy elements infused into the intergalactic medium by dwarf galaxies in the vicinity of 
the potential life support galaxy during the first two billion years of cosmic history  

if smaller: inadequate metal enrichment of the galaxy  
if greater: too much metal enrichment of the galaxy  

363. quantity of heavy elements infused into the intergalactic medium by the superwinds of large galaxies 
in the vicinity of the potential life support galaxy during the first two billion years of cosmic history 

if smaller: inadequate metal enrichment of the galaxy  
if greater: too much metal enrichment of the galaxy  

364. quantity of diffuse, large-grained intergalactic dust in the vicinity of the potential life support  
galaxy 

if smaller: inadequate enrichment of certain heavy elements into the galaxy during its late his-
tory  

if greater: too much enrichment of certain heavy elements into the galaxy during its late history  
365. ratio of baryonic matter to exotic matter in dwarf galaxies in the vicinity of the potential life support 

galaxy 
if smaller: dwarf galaxies will not be stable enough and hence will be subject to early dissipa-

tion and/or destruction 
if greater: dwarf galaxies will cause too great of a gravitational disturbance when they are ab-

sorbed by the potential life support galaxy 
366. ratio of baryons in the intergalactic medium relative to baryons in the circumgalactic medium for the 

potential life support galaxy 
if smaller: galaxy will receive too many merger events with other galaxies 
if greater: galaxy’s structure will not be stable for a long enough period of time 

367. intergalactic photon density in the vicinity of the potential life support galaxy 
if smaller: optical depth of intergalactic space in the vicinity of the galaxy will be too low re-

sulting in too much deadly radiation from gamma ray burst events and other high-
energy phenomena in the universe 

if greater: optical depth of intergalactic space in the vicinity of the galaxy will be too high re-
sulting in an inadequate production of certain heavy elements and inadequate seeding 
of the life support planet’s atmosphere  

368. frequency of mega-volcanic eruptions on the life support planet 
if lower: inadequate replenishment of soil fertility; inadequate number of mass extinction 

events 
if higher: too much disturbance of the global climate; too many mass extinction events 

369. timing of the introduction of the equivalent  of a human species relative to the last mega-volcanic 
eruption 

if too soon: global climate and the ozone shield will not have had adequate time to recover 
if too late: too high of a risk of a subsequent mega-volcanic eruption; inadequate soil enrich-

ment 
370. percentage of the planet’s surface covered by forests 
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if smaller: inadequate absorption of carbon dioxide from the atmosphere resulting in too much 
global warming; altered albedo of the planet disturbs global climate; inadequate release 
of aerosols to the atmosphere lowers global rainfall; inadequate habitat space for cer-
tain plant and animal species 

if greater: too much absorption of carbon dioxide from the atmosphere resulting in too much 
global cooling; altered albedo of the planet disturbs global climate; too much release of 
aerosols to the atmosphere increases global rainfall; inadequate habitat space for cer-
tain species of plants and animals 

371. high latitude precipitation 
if lower: inadequate moisture for abundant high latitude biota 
if higher: too much high latitude glaciation 

372. duration of El Nino events 
if shorter: rainfall distribution becomes too uneven 
if longer: rainfall distribution becomes too uneven; too much global warming 

373. quantity and diversity of plant parasites 
if lower: inadequate nutrient cycling in the soils; reduced plant diversity 
if higher: too much devastation of plants 

374. quantity and diversity of fungi on the continental land masses 
if lower: inadequate production of clays and clay sediments leading to an inadequate rate of 

burial of organic carbon which in turn results in too little and too late oxygenation of 
the planet’s atmosphere 

if higher: too much devastation of plants and animals 
375. quantity of volatile organic compounds released into the atmosphere by trees 

if lower: inadequate removal of ground level and tropospheric ozone; inadequate removal of 
hydroxyl radicals from the troposphere; inadequate production of organic haze; inade-
quate production of organic aerosols  

if higher: too much removal of ground level and tropospheric ozone; too much removal of hy-
droxyl radicals from the troposphere; too much production of organic haze; too much 
production of organic aerosols   

376. average pore pressure at subduction zones 
if lower: inadequate lubrication of subduction zones leads to many destructive earthquakes 
if higher: too much slippage will occur at subduction zones causing continental plate move-

ments to become too rapid 
377. average rate of migration of aqueous fluids through the planet’s upper crust 

if lower: inadequate heavy-metal ore deposits will be generated 
if higher: planet’s upper crust becomes too unstable 

378. trace element abundance in atmospheric dust 
if lower: inadequate delivery of critical nutrients to surface marine life which limits both the 

rate of calcification by marine life and the sequestration of carbon into the deep ocean 
which in turn affects the global climate 

if higher: delivery of critical nutrients to surface marine life leads to large algal blooms which 
can poison certain life forms and which increases the rate of calcification by marine 
life and the sequestration of carbon into the deep ocean which in turn affects the global 
climate 

379. level of dust supply to the surfaces of oceans 
if lower: inadequate delivery of critical nutrients to surface marine life which limits both the 

rate of calcification by marine life and the sequestration of carbon into the deep ocean 
which in turn affects the global climate 
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if higher: delivery of critical nutrients to surface marine life leads to large algal blooms which 
can poison certain life forms and which increases the rate of calcification by marine 
life and the sequestration of carbon into the deep ocean which in turn affects the global 
climate 

380. soil moisture level 
if lower: inadequate precipitation upon continental land masses 
if higher: too much precipitation upon continental land masses 

381. level of deep ocean convection 
if lower: inadequate oxygenation of the deep ocean; deep sea life suffers  
if higher: inadequate oxygen supplies for life just below the ocean surface 

382. rate of remineralization of particulate organic matter 
if lower: export of carbon from the surface ocean to the deep ocean and the ocean floor is much 

reduced resulting in a buildup of carbon dioxide in the atmosphere and subsequent 
global warming and a possible runaway evaporation of water 

if higher: export of carbon from the surface ocean to the deep ocean and the ocean floor is 
much enhanced resulting in a reduction of carbon dioxide in the atmosphere and sub-
sequent global cooling and a possible runaway freezeup 

383. quantity of large-celled sulfur bacteria in the oceans 
if lower: inadequate deposition of phosphates and phosphorite on the sea floor thereby remov-

ing a major source of future phosphorus nutrients for land life and a major source of 
phosphate and phosphorite deposits for human exploitation 

if higher: inadequate phosphorus will be available to sustain a large biomass of surface marine 
life  

384. quantity of sulfuric acid in the troposphere 
if lower: inadequate formation of cloud condensation nuclei causing less rain to fall and a sig-

nificant change in the planet’s albedo 
if higher: acid rain negatively impacts the biosphere 

385. quantity of ammonia in the troposphere 
if lower: inadequate formation of cloud condensation nuclei causing less rain to fall and a sig-

nificant change in the planet’s albedo 
if higher: advanced life forms will experience respiratory problems; acid rain negatively im-

pacts the biosphere 
386. quantity of iodine oxide in the troposphere 

if lower: inadequate formation of cloud condensation nuclei causing less rain to fall and a sig-
nificant change in the planet’s albedo 

if higher: certain life forms may esperie4nce toxic levels of iodine while others may suffer 
from a lack of iodine 

387. level of atmospheric oxidation of aromatics 
if lower: inadequate formation of cloud condensation nuclei causing less rain to fall and a sig-

nificant change in the planet’s albedo 
if higher: advanced life forms will experience respiratory impairment or respiratory failure 

388. quantity of fallen leaf litter 
if lower: inadequate amounts of silica are returned to the soil 
if higher: inadequate oxygenation of the soil; damage from fires consuming leaf litter can be-

come too destructive; growth inhibitors in the soil would accumulate 
389. quantity and extent of wetland ecosystems 

if lower: inadequate burial of organic carbon resulting in too much carbon dioxide in the at-
mosphere; inadequate habitat and feeding space for a wide variety of bird species 
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if higher: too much burial of organic carbon resulting in too little carbon dioxide in the atmos-
phere 

390. quantity of endophytic methanotrophic bacteria in freshwater wetland ecosystems 
if lower: too much methane will be released to the atmosphere resulting in global warming; in-

adequate supply of carbon to wetland plants; inadequate denitrification of nitrate 
if higher: not enough methane will be released to the atmosphere resulting in global cooling  

391. quantity of marine methanotrophic archaea 
if lower: too much methane will be released to the atmosphere resulting in global warming; in-

adequate supply of carbon to wetland plants 
if higher: not enough methane will be released to the atmosphere resulting in global cooling  

392. quantity and diversity of viruses in the oceans 
if lower: inadequate control of planktonic species; inadequate control of algal blooms; impair-

ment of nutrient cycling 
if higher: mortality rate for ocean life becomes too high; impairment of nutrient cycling 

393. quantity of termites 
if lower: inadequate release of methane into the atmosphere resulting in global cooling; inade-

quate recycling of timber and other celluloid products 
if higher: too great a release of methane into the atmosphere resulting in global warming; too 

much destruction of wooden structures 
394. quantity and diversity of siderophore-secreting bacteria in the oceans 

if lower: inadequate acquisition of iron by marine life 
if higher: too great iron acquisition can lead to the development of deadly algal blooms 

395. quantity of carbon dioxide extracted from the mantle by melting beneath mid-ocean ridges 
if lower: inadequate rate of release of carbon dioxide into the atmosphere 
if higher: too great a rate of release of carbon dioxide into the atmosphere 

396. quantity of carbon dioxide extracted from the mantle by volcanic eruptions 
if lower: inadequate rate of release of carbon dioxide into the atmosphere 
if higher: too great a rate of release of carbon dioxide into the atmosphere 

397. quantity of soil nitrogen 
if lower: plant growth is limited especially the capacity of plants to remove carbon dioxide 

from the atmosphere which results in global warming 
if higher: nitrogen compounds could reach toxic levels or the growth of plants could be so 

stimulated that too much carbon dioxide is removed from the atmosphere resulting in 
global cooling 

398. quantity of marine snow (dead cells, shreds of plankton, bits of faeces, and mineral grains) in the 
oceans 

if lower: inadequate release of organic  carbon into the deep ocean and ocean bottom for the 
life forms that reside there; inadequate removal of carbon dioxide from the atmosphere 

if higher: too much removal of carbon dioxide from the atmosphere 
399. radiative thermal conductivity of the lower mantle 

if lower: convection in the mantle will be too vigorous which will make the tectonic plates too 
unstable and result in too much plate tectonic activity  

if higher: convection in the mantle will be too tepid which will result in too weak of a level of 
plate tectonic activity 

400. average size of aerosol particles in the troposphere 
if smaller: cloud drop nucleating activity will be too low causing less rain to fall 
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if larger: cloud nucleating activity will be too high either causing too much rain to fall or caus-
ing rainfall to be much less evenly distributed over the planet’s surface 

401. rate of atmospheric dust deposition into the oceans 
if lower: inadequate infusion of nutrients (iron, phosphorus, nitrogen, etc.) essential for the 

growth and productivity of plankton 
if higher: erosive effects on the continental land masses will disturb and/or destroy many land 

life forms; productivity and diversity of land life will suffer 
402. level of mixing in the early protoplanetary disk of the solar nebula 

if lower: proto-Earth would not receive a great enough diversity of elements and compounds 
if higher: the development of small bodies in the disk would be too limited; the proto-Earth 

would be enriched sufficiently in very heavy elements 
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