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Abstract

Blockchains promise to make online services more fault tol-
erant because they are replicated on a distributed system of
nodes. Their nodes typically run different implementations
of the same protocol across different geo-distributed regions,
making the protocol supposedly tolerant to various failures
including isolated crashes, transient failures, network parti-
tion or attacks. Unfortunately, their fault tolerance has never
been compared.

In this paper, we provide the first fault tolerance com-
parison of blockchain systems. To this end, we introduce a
novel sensitivity metric, interesting in its own right, as the
responsiveness difference between a baseline environment
and an adversarial environment. We inject various failures in
controlled deployments of five modern blockchain systems,
namely Algorand, Aptos, Avalanche, Redbelly and Solana.
Our results show that (i) all blockchains except Redbelly
are highly impacted by isolated failures, (ii) Avalanche and
Redbelly benefit from the redundant information needed for
Byzantine fault tolerance while others are hampered by it,
and more dramatically (iii) Avalanche and Solana cannot
recover from transient failures.
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Figure 1. The sensitivity of Aptos to failures as the difference
in latency distributions between a baseline environment
without failure and the altered environment with failures.
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1 Introduction

One may think that blockchains [55] are fault tolerant. They
are distributed systems replicated across nodes in geodis-
tributed regions making it unlikely to be affected by a single
natural disaster. These nodes often run different implemen-
tations of the same protocol that would unlikely suffer the
exact same bug [14]. This mitigates the risk of a unique bug
leading to a global outage like the CrowdStrike one that
affected 8.5 millions of machines recently [22]. Finally, the
owners of these nodes are typically incentivized through
cryptoassets to ensure their node run correctly [60].

However, blockchains experience frequent outages. Solana
for example aims at running decentralized applications but
experienced 9 outages between September 2021 and February
2023 for a cumulative outage duration of 154.5 hours [36].
In terms of service level agreement (SLA) this translates
into offering a service whose availability (< 99%) fails to
reach two nines, while traditional cloud services offer three
nines (> 99.9%). This questions the ability of blockchains
to tolerate failures. Unfortunately, blockchains have mostly
been evaluated without failures 7, 34, 43, 54, 56].

In this paper, we provide the first fault tolerance com-
parison of blockchain systems. First, inspired by the super-
cumulative distribution function (SDF) used in econom-
ics [20], we introduce the sensitivity metric of a blockchain to
adversarial environments. To illustrate the sensitivity metric,
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consider Fig. 1 that depicts two empirical Cumulative Distri-
bution Functions (eCDFs) of latencies of the Aptos blockchain
(experimental settings are deferred to Section 3). The first
distribution illustrated with the blue curve corresponds to a
baseline environment without failures. The other distribu-
tion illustrated with the light blue curve corresponds to an
altered environment where we injected failures. The sensi-
tivity score of Aptos for this type of injected failures, repre-
sented as the pink area, is the difference of the areas under
the two eCDFs.

Second, we implement STABL (Sensitivity Testing and
Analysis for BLockchain), pluggable in continuous integra-
tion (CI) pipelines to measure a blockchain sensitivity, and
compare the fault tolerance of Algorand [40], Aptos [1],
Avalanche [61], Redbelly [32] and Solana [11], selected for
their ability to tolerate arbitrary (i.e., Byzantine) failures [48].
Given that consensus can only be solved between n nodes
in the presence of ¢t < n/3 permanent failures in an open
network [35], we study the following properties that depend
on the type and number ¢5 of failures we inject in blockchain
B € {Algorand, Aptos, Avalanche, Redbelly, Solana}: (i) Re-
silience: the insensitivity to f = tp definitive crash (or fail-
stop) failures; (ii) Recoverability: the insensitivity to f > tp
transient (or crash-recovery) failures; (iii) Partition toler-
ance: the insensitivity to the transient partition of f > tp
nodes; and (iv) Byzantine node tolerance: the insensitivity
to a mechanism to cope with f = tg Byzantine nodes.

Our results demonstrate that fault tolerance varies greatly
with the choice of blockchain system. First, we confirm that
all of these blockchains, except Redbelly, are significantly
affected by failures. Second, we show that Avalanche and
Solana cannot tolerate transient failures and stop working.
Finally, we show how sending duplicated transactions to
cope with Byzantine faults can reduce or improve the re-
sponsiveness of blockchain systems. Note that our intention
is not to address any failures but to report the failures so
that blockchain developers can improve the fault tolerance
of their systems.

The paper is organised as follows. Section 2 presents the
related work. Section 3 presents our solution. Sections 4, 5, 6
and 7 present respectively the resilience, the recoverability,
the partition tolerance and the Byzantine node tolerance
of the blockchains. Section 8 discusses our results. Finally,
Section 9 concludes the paper.

2 Background and Related Work
We present the related work and the studied blockchains.

Related work. The impairments and remedies of depend-
ability of software systems have been studied for more than
four decades [18, 49]. A long series of work studied in par-
ticular the Byzantine fault tolerance [48] as the tolerance
to arbitrary failures. It is more recently that blockchain se-
curity flaws [37, 66] were identified and that the research
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community started studying blockchain dependability [57].
A long series of blockchain security vulnerabilities can now
be found in surveys and books [26, 42, 58].

Interestingly, two recent works [17, 63] observed vul-
nerabilities in the only two blockchains, Avalanche and
Solana, that failed during our experiments. First, a theoret-
ical analysis of Avalanche consensus protocols, Snowball
and Snowflake, indicate that they do not offer a “decent”
trade-off between security and performance [17]. Second,
previous experiments showed that Solana could fork per-
manently [63], however, our observation is different as we
noticed that all the nodes of Solana crash after an injection
of transient communication delays.

Unfortunately, as of today there is no tool that allows to
systematically compare the fault tolerance of blockchain sys-
tems. Few research works injected Byzantine failures [32, 60]
or system call failures [73], others use fuzzing [52, 53, 69, 71],
add network delays [39] or configuration parameters [28]
for evaluating a particular blockchain. They cannot com-
pare the fault tolerance of different blockchains on the same
ground. Other results focus instead on injecting crash [68]
or Byzantine failures [16, 21, 51, 62] in Byzantine Fault Tol-
erance (BFT) replicated state machines and ignore other
components of the blockchain system. Actually, blockchain
evaluation frameworks focus on performance in fault-free
executions [7, 34, 43, 54, 56].

Algorand. Algorand [40] is a blockchain that leverages
cryptographic sortition through Verifiable Random Func-
tions (VRFs) to randomly select participants for specific roles
in the consensus execution. Each participant independently
computes a pseudo-random value and a proof, determining
their selection for roles such as consensus participant. The
Byzantine Agreement (BAx) protocol then uses the consen-
sus participants to propose and validate new blocks, reach-
ing consensus even in the presence of Byzantine faults. This
dynamic selection process ensures unpredictable and ever-
changing committee membership, enhancing the blockchain
security. We select tjgorand to be [1/5 — 1] as a coalition can
fork Algorand if it controls 20% of its currency [40].

To optimize network performance, Algorand adjusts the
consensus protocol’s timing based on real-time network con-
ditions using Dynamic Round Time [29], ensuring efficient
block production while accommodating slower nodes. Relay
nodes and participation nodes have distinct roles, with relay
nodes handling data propagation and participation nodes
focusing on transaction validation and consensus. However,
a single node can fulfill both functions. Transaction propa-
gation is managed through push and pull gossip methods,
with push gossip actively broadcasting transactions while
pull gossip enabling nodes to request missing transactions,
ensuring efficient data synchronization across the network.
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Avalanche. Avalanche is a blockchain based on the Snow
binary consensus protocol family [61]. The Snowflake pro-
tocol uses three parameters: k, @ > k/2, and f. Initially, each
processor starts with a color, either red or blue. The protocol
proceeds in rounds, where in each round, a processor p ran-
domly selects k other processors from the entire population
and queries them about their current color. If at least « of
the responses differ from p’s current color, p switches to that
opposite color. If p observes  consecutive rounds where at
least a of the responses are red (resp. blue), then p decides on
red as the final color (resp. blue). With the default parameter
values, Avalanche requires at least 80% of stake to be online
for consensus to operate. We select ¢ gyqianche to be [n/5 — 1]
as in the presence of 20% Byzantine nodes Avalanche safety
is violated with a probability below 1077 [61].

Avalanche offers throttling to limit its node resource usage.
Message rate-limiting and connection rate-limiting [2] limits
the amount of CPU, disk, bandwidth, and message handling
a node consumes. In particular, the message rate-limiting
can be configured based on CPU usage, disk reads/writes,
bandwidth usage, and the size and number of unprocessed
messages between validators and non-validators, the maxi-
mum burst size for bandwidth, and limits on the number of
unprocessed messages. Finally, the connection rate-limiting
controls the rate of inbound and outbound peer connections,
including the maximum number of connections accepted per
second and the frequency of connection attempts. We will
discuss how throttling impacts recovery in Section 4.

Aptos. Aptos [1] is a blockchain based on a variant of
the HotStuff consensus algorithm [72] called DiemBFT [65],
then renamed AptosBFT. In particular, DiemBFT features
a quadratic view-change mechanism instead of the linear
approach used in HotStuff, and inherits the cubic communi-
cation complexity of the Practical Byzantine Fault Tolerant
(PBFT) consensus protocol [27] that is reached when a leader
is faulty or the network is unstable. It is thus a leader-based
blockchain that tolerates up to a third of malicious partici-
pants in a partially synchronous environment and that re-
quires view-changes in order to cope with faulty leaders. We
select tapos = [1/3 — 1] as Aptos tolerates a coalition of less
than a third of validator nodes [33].

Interestingly, Aptos also features the Block-STM [38] de-
sign that optimizes the execution of blockchain transactions
through Software Transactional Memory (STM), hence the
name. In Block-STM, parallel execution leverages multiple
threads to execute different transactions concurrently, pro-
vided they access distinct memory locations. Aptos executes
transactions speculatively to dynamically manage conflicts
based on a pre-determined order, but without pre-computing
dependencies. When conflicts arise, transactions are aborted
and re-executed with their write-sets used to predict and
minimize future conflicts.
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Redbelly. Redbelly Blockchain [32] is a scalable
blockchain that builds upon the Democratic Byzantine Fault
Tolerant (DBFT) consensus algorithm [31] that is leaderless
(non leader-based) and deterministic, and works in a partially
synchronous environment. DBFT has been formally verified
with parameterised model checking [24], showing that it
solves the consensus problem in all possible executions
and for any system size. To enhance scalability further,
Redbelly uses a collaborative approach, hence appending a
superblock comprising as many valid proposed blocks as
possible. This way the number of transactions per appended
block can grow linearly with the number of nodes [32]. We
select tregperry = [n/3 — 1] as Redbelly tolerates a coalition
of less than a third of validator nodes [32].

We used the latest version of Redbelly that features the
Scalable version of the Ethereum Virtual Machine (SEVM)
that runs decentralised applications (dApps) written in Solid-
ity [64] that samples periodically a set of consensus partici-
pants among all participants [42]. This version was shown
to perform well under realistic dApps particularly in a large
geo-distributed environment when compared to other mod-
ern blockchains [64]. For the sake of security and Byzantine
node tolerance, Redbelly features a library tolerating f < n/3
Byzantine nodes, called credence. js, for a read operation
to return values that are replicated at at least f + 1 nodes.

Solana. Solana [11] is a blockchain that operates on a
pre-determined leader schedule, assigning each validator a
specific time slot, to produce a block within a larger time
frame called an epoch. The leader schedule, computed in ad-
vance using a pseudo-random algorithm based on data from
two epochs prior, ensures validators are chosen proportion-
ally to their stake. This schedule is updated at the end of each
epoch and communicated to validators beforehand. A core
structure in Solana runtime is the bank, which represents
the blockchain state at a specific slot, managing transactions,
account states, and ensuring adherence to rules during trans-
action processing. Each bank processes transactions for its
assigned slot and, upon completion, finalizes a frozen state
that includes a cryptographic hash crucial for network con-
sensus. We select tsojana = [n/3 — 1] as Solana tolerates a
coalition of less than a third of validator nodes [70].

Solana runtime includes a mechanism for calculating the
Epoch Accounts Hash (EAH), a hash of all accounts, to en-
sure consistency across validators during each epoch. The
EAH is computed between the start and stop slots, typi-
cally from one-quarter to three-quarters into an epoch, and
integrated into the bank’s hash for consensus verification.
Notably, Solana does not use a memory pool (or mempool for
short), forwarding transactions directly to the current and
upcoming leaders based on the known leader schedule [9].
If a leader cannot process a transaction in its assigned slot,
it passes the responsibility to the next leader.
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Table 1. Terminology and notation used in the paper.

Term Description

Crash node is halted and not restarted during
the experiment
Transient failure node is halted and restarted later dur-
ing the experiment with the same iden-
tity
Partition missing network connectivity be-
tween subsets of nodes
Leader node responsible for proposing a block
in the current consensus round
Sensitivity a measure quantifying the change in
transaction latencies in response to
variations in the execution environ-
ment
Resilience a measure quantifying the system la-
tency under failures
Recoverability ability to recover after a transient fail-
ure
f number of failures in an experiment
tg  maximum number of failures tolerated
by a blockchain B
n number of nodes in a blockchain net-
work

3 Measuring Blockchain Sensitivity

In this section, we introduce the sensitivity score to measure
the fault tolerance of blockchain systems and explain how we
developed a tool called STABL to measure it. We summarize
the key terms in Table 1.

Sensitivity score. Previous works [44] rely on three met-
rics for their evaluation: the latency, the throughput and the
downtime. On the one hand, the latency and throughput
metrics quantify the magnitude of the impact of failures on a
system and are therefore well suited for permanent failures
of a portion of the distributed system. On the other hand, the
downtime quantifies the duration of the effect of failures on
the system and is better suited to transient failures. In order
to compare the impact of different types of failures on the
same blockchain, STABL uses the sensitivity score, a metric
that quantifies both the amplitude and the duration of an
effect over a blockchain execution. We define the sensitivity
score of a blockchain under a constant workload and in the
face of some failures as a function of two latency distribu-
tions: one distribution measured in the absence of failures
and one with failures. This function is a mapping from these
two distributions to a number defined as the area between
the eCDFs of the two distributions.
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Let X be a random variable, which can take any value
between a and b, with a CDF F. The super-cumulative distri-
bution function, or simply super-cumulative [20], is defined
as S(x) = /ax F(t)dt.

In the setting of transaction latencies, let (X, ..., X;;) be
the values of a random variable. The eCDF is given by
F(x) = £ 3™ 1x,<x, where the sum denotes the number
of elements in the sample that are less than or equal to
x. Then, we adapt the super-cumulative for the eCDF as
S(x) = T, F(i).

Consider Xj as the baseline latency measurements with
values between a; and b;, and X; as the latency measure-
ments in the altered setting with values between a; and b5,
and their corresponding empirical super-cumulatives $; and
S,. The difference §1(b1) - Sz(bz) measures the change in
the distribution of latencies from the baseline to the altered
environment, as seen in Fig. 1. However, it is possible that the
altered condition improves the performance of a blockchain
and decreases transaction latencies [25, 45], in which case
Sy(bz) will be greater than S; (b, ), producing a negative value
of the difference. Since we are measuring sensitivity as the
deviation from the baseline, we take an absolute value of
the difference, so that the score is always positive, hence the
sensitivity score is calculated as 1S1(b1) = S5(by)].

The sensitivity score has the following valuable properties
that make it an illustrative metric, as shown in Fig. 1:

e It measures both the amplitude and the duration of fail-
ure effects. Both factors skew the latency distribution
of an experiment, resulting in an increased difference
between the areas of two empirical super-cumulatives.

e Itisresilient to outliers. A smaller fraction of particular
latency values does not contribute significantly to the
difference between the areas of two empirical super-
cumulatives.

e It does not require a parameter for interpretation. For
example, we do not need a sliding window to explain
the score, which may be required to calculate through-
put in transactions per second, because the block times
might be greater than one second.

e It is an absolute metric. It allows direct comparison of
scores between blockchains and experiments, since it
is a function of transaction latencies.

Finally, notice that a blockchain that stops committing trans-
actions after a failure event has an infinite sensitivity score,
which indicates a liveness issue.

StaBL. To calculate sensitivity score, we developed STABL,
a benchmark suite to evaluate blockchains behavior in the
presence of faulty processes. STABL is built on top of Dia-
BLO [43], an open source software to assess the performance
of blockchains under realistic but benign workloads. STABL
automatically evaluates and compares the ability of several
blockchains to tolerate various types of faults. Specifically,



StABL: The Sensitivity of Blockchains to Failures

Diablo
Primary | Crasher ”Restarter” Dropper ”Restorer |
A node node node node

config: 1 D 2 3 4
- failure mode C/ i B
- failure time | | 'I”“M al }:

Figure 2. The architecture of Stabl passes fault configuration
to observers deployed on each blockchain node.

StaBL evaluates the behavior of blockchains in the face of
both permanent and transient failures. In order to accurately
evaluate distributed systems, D1aBLO is itself a distributed
system with two types of machines: the primary machine
which acts as a central coordinator for the run and many
secondary machines which simulate clients by submitting
transactions to the blockchain processes and waiting for
their response.

Observer nodes. STABL extends the architecture of Dia-
BLO in order to control failures during the execution.

Fig. 2 depicts the architecture of StaBL. Unlike simu-
lated clients, failure events take place on or between the
blockchain machines. Therefore, neither the primary nor the
secondary machines are suitable to trigger failures. Instead,
STABL uses observer processes which run on every blockchain
machine and listen to a signal coming from the primary ma-
chine. When the primary decides to trigger a failure on one
or many blockchain machines, it broadcasts a signal to the
relevant observers. To implement crash faults, the observer
processes simply kill the blockchain process running on their
node. To implement a partition, the observer processes use
the netfilter interface of their node to drop any IP packet
coming from and going to other partitions. Observer nodes
can also end the network partition by removing netfilter
rules or reboot the blockchain process.

Dependability attributes. Achieving good performance
despite faults, or the resilience metric has received some
attention for Byzantine Fault Tolerant state machine replica-
tion systems [19, 23, 30, 41, 67]. The metric captures how the
system performs with crashed nodes being present in the
network, when up to f servers are non-responsive, compared
to baseline execution, when all the servers behave correctly.

We measure recoverability of a blockchain as its ability to
recover after a transient failure, where the number of failures
is greater than the threshold, f > t.

From the user perspective, partitions display the same
behavior as transient faults, as they both result in nodes
not being able to exchange the messages. However there
is a difference from the implementation perspective. While
recovery from transient faults is active, since the restarted
nodes immediately report their status to the rest of the net-
work after being started, partition recovery can be considered
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passive, because the nodes cannot detect that the network
connectivity was restored without constant polling.

Assessing fault tolerance. Blockchains are known to
tolerate coalitions that represent a portion of the network,
rather than an absolute number of faulty nodes. For example,
for Avalanche to progress, the owners of 80% of the stake
have to be online [15]. It is also well known that consensus
cannot be solved in networks where the upper bound on
the delay of messages is unknown and where a third of the
participants are Byzantine [35]. This is why, in our exper-
iments, we will set the number of permanent failures to a
portion lower than the threshold ¢3 claimed to be tolerated
by blockchain B and a number of transient failures greater
than tg. This will allow us to run experiments on small and
medium size networks rather than large-scale networks for
simplicity in making our experiments reproducible.

As well as simulating failures, StaBL differs from D1aBLO
and previous evaluation platforms by implementing Byzan-
tine node tolerance. Indeed, a common practice in blockchain
client applications is to reach for a single blockchain node
and trust it for transmitting the client transactions and re-
laying the responses from the network. For example 4 out of
the 5 evaluated blockchains (with the exception of Redbelly
as we will explain in Section 7) provide an SDK for client
applications that connect to and trust a single blockchain
node [4, 5, 10] even though this vulnerability has already
been reported [46]. Trusting one specific node effectively
brings the number of tolerated Byzantine faults to zero and
can lead to devastating cyberattacks [47, 66].

A common solution is to send the same requests to many,
randomly picked, blockchain nodes and compare their re-
sponses to detect any faulty response. Thanks to the dedupli-
cation mechanisms, legitimate transactions are executed only
once while their results can be observed many times. This
technique however puts an additional load on blockchain
nodes as they must deduplicate redundant transactions.
Moreover, this technique likely increases each transaction
latency since clients must wait for the slowest of many
blockchain nodes instead of one. We show in Section 7 that
the effect of Byzantine node tolerance on transaction latency
is twofold: it may benefit the transaction latency in mempool-
based blockchains, and it may cause redundant transaction
execution, even with transaction deduplication mechanisms.

Experimental settings. To deploy our blockchain net-
works, we used virtual machines spawned on a real network
of physical machines. As our focus is on fault tolerance and
not peak performance, we fixed the total sending rate to
200 TPS, a value low enough to guarantee that no blockchains
would drop transactions in our baseline executions. In partic-
ular, Avalanche capacity is limited to about 357 TPS because
its blocks are produced every 2 seconds and contain a maxi-
mum of 714 transactions (as its block limit is 15M gas while
the transfer fee is 21K gas).
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Figure 3. Sensitivity score of 5 blockchains with f = ¢ crashes, f = t + 1 transient node failures, transient network partition
isolating f =t + 1 nodes and redundant requests to cope with Byzantine fault tolerance. Bars with stripes indicate blockchains

benefiting from the altered environment.

As opposed to D1aBLO that measures blockchain perfor-
mance at large scale, STABL measures sensitivity to failures
affecting a proportion of the blockchain network. This is why
we did not reproduce the large-scale experiments of DiaBLo.
Following recent observations [50] that blockchain networks
behave similarly at large scale as at a much smaller scale, we
deployed StaBL on a distributed system of 15 nodes. Each
node runs as a virtual machine (VM) of 4 vCPUs and 8 GB of
memory and each of the 5 client nodes sends at the same rate
of 40 TPS to only one of the blockchain node. The setup con-
sists of 5 client nodes and 10 blockchain nodes, each client
sending native transfer transactions to one blockchain node.
Failures are injected on the 5 remaining blockchain nodes
that do not receive transactions from clients, this way, faulty
nodes never receive transactions they would otherwise lose.

To assess the Byzantine node tolerance of blockchains in
Section 7 we connected each client to 4 blockchain nodes
such that each of 5 blockchain nodes has two clients con-
nected to it. This duplication of requests increased the CPU
consumed by the speculative execution of Aptos, which re-
quired us to allocate more resources. We thus used VMs
with 8 vCPUs and 16 GB of memory in the Byzantine fault
tolerant experiment of each blockchain (Section 7). All the
VMs are run on a Proxmox cluster of physical servers, each
equipped with 4x AMD Opteron 6378 16-core CPUs running
at 2.40 GHz, 256 GB of RAM, and 10 GbE NICs. We used the
following versions of the blockchains: Algorand v3.22.0, Ap-
tos v1.9.3, Avalanche C-Chain v1.10.18-rc.2, Redbelly v0.36.2
and Solana v1.18.1.

In the following sections, we use the sensitivity to differ-
ent types of failures to evaluate the Resilience, Recoverabil-
ity, Partition Tolerance and Byzantine Node Tolerance of
blockchain whose results are summarized in Fig. 3.

4 Resilience

In this section we evaluate the resilience of the five tested
blockchains. Our conclusion from the sensitivity score to
permanent failures is that all blockchains but Redbelly lack
resilience. This is due to these blockchains relying on a set of

specific servers to make progress at each decision. In partic-
ular, Avalanche and Solana are the least resilient with Solana
experiencing higher sensitivity due to better performance in
the baseline condition.

Assessing resilience. The test consists of comparing
transaction latencies with constant workload in two experi-
ments. The first experiment captures transaction latencies
in a fault-free case. In the second experiment, we crash si-
multaneously at time 133 seconds f blockchain nodes.

Fig. 3a compares the sensitivity of blockchains when f =
t nodes experience permanent crash. Fig. 4 compares the
throughput over time in the baseline and altered conditions
and offers complementary data to explain the cause of the
sensitivity differences between blockchains.

Solana leader impacts performance. The throughput in-
stability in Solana can be explained by the design decision of
not having a mempool [9]. Instead of every node maintaining
a temporary storage for transactions, nodes send them di-
rectly to scheduled leaders. While such design decision may
improve the performance in the best case scenario, when
the scheduled leader processes the transactions, it leads to a
snowball effect when a scheduled leader is non-responsive.
With the constant workload, the new leader has to process a
higher volume of transactions since one or more scheduled
leaders are down. Hence, with crashed nodes being present
in the leader schedule, we observe periods of low throughout
when the scheduled leader is down, and throughput peaks
when the transactions are processed by a responsive node,
resulting in higher latencies, and therefore higher score.

Avalanche throttling leads to instability. In Fig. 4, we
observe that Avalanche throughput is unstable. This is ex-
plained by its throttling mechanism. Several voting rounds
should successfully pass in succession to commit a block.
Since nodes are sampled for every voting round from all
the nodes in the network, in the presence of crashes, faulty
nodes may be included in the samples as well.

Intuitively, even with node crashes, the repeated sampling
should allow the network to come to an agreement on a
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Figure 4. Throughput of the 5 blockchains over time as we crash simultaneously f = t nodes at time 133 as indicated by the

red dashed line.

block. However, as mentioned in Section 2 the current im-
plementation includes multiple layers of message throttling
based on CPU usage, bandwidth, and number of messages.
The nodes exchange the messages, including transactions
and consensus data, and the messages are first stored in
queues before being processed. With the 200 TPS constant
workload and default throttling settings, the nodes do not
process the messages, even though the messages are sent and
received over the network. The nodes consuming their re-
spective CPU quotas cause the messages not to be processed,
leading to messages not reaching the consensus module and
increasing the throughput instability.

Additionally, we discovered a previously reported bug [8]
with the help of StaBrL. However, after running the experi-
ments with a fixed version, we did not observe a measurable
performance improvement because throttling has greater
impact on performance than the bug.

Aptos mitigates the leader impact. Aptos displays sig-
nificant oscillations immediately after the crashes, however
unlike Solana and Avalanche, the throughput instability re-
duces in about 82 seconds at the 215 second timepoint. This
behavior matches the description of the DiemBFT proto-
col [65]. While we tested a network of 10 nodes and observed
noticeable performance drop, we can expect the performance
to get increasingly worse with the growth of the network
size.

Algorand adapts slowly to sudden failures. Algorand
throughput depends on the timing parameters, which are
calculated dynamically based on the observed round final-
ization times. Since the servers are selected using the VRF of
BA*, samples may include crashed nodes, which increase the
round finalization time. Initially, default timing parameters
are used, which are then reduced, explaining the through-
put increase after approximately 133 seconds have passed
since the start of the experiment. In the presence of crashes,
there are periods when the decreased timing parameters

are reset to their default values, which reduces the average
throughput and increases transaction latency. Such periodic
increases in latency are reflected in the score.

Redbelly eradicates the leader impact. Redbelly is not
affected by the presence of f = t crashes. The reason is
that Redbelly uses the leaderless consensus algorithm, called
DBFT. In particular, Redbelly features a Byzantine fault toler-
ant binary consensus algorithm and a classic reduction from
the multi-value consensus problem to the binary consensus
problem.

First, Redbelly is not affected by the slow reponsive node
that affects Solana because no individual slow node can sig-
nificantly slow down the DBFT consensus protocol. More
specifically, even if its binary consensus algorithm uses a
weak coordinator to break symmetry, a faulty weak coordi-
nation does not prevent the DBFT consensus algorithm from
converging towards a decision [31].

Second, Redbelly does not show the sign of oscillation
of Aptos. As confirmed by previous results [68] this is due
to DBFT being less impacted than HotStuff-like protocols
(including DiemBFT) when their leader crashes. As a result,
the leaderless consensus protocol reduces the effect that of
not only a single slow node but also a single crashed node
have on the overall blockchain execution.

5 Recoverability

In this section, we evaluate the recoverability to transient
failures of the 5 tested blockchains. We can conclude from our
results that two blockchains, Avalanche and Solana, cannot
recover. The other blockchains recover at varying speeds.

Assessing recoverability. To test recovery we run an
experiment that starts with no failures. We then halt f =
t + 1 nodes by killing their process simultaneously at 133
seconds and recover them simultaneously at 266 seconds by
restarting their process.
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Figure 5. Throughput of the 5 blockchains over time as we transiently stop f > t nodes at time 133 as indicated by the dashed
red line and as we recover them at time 233 as indicated by the dotted red line.

Fig. 3b depicts the score for each blockchain with the
presence of a transient failures of f =t + 1 nodes, and Fig. 5
depicts the throughput over time in the baseline and altered
conditions. When the blockchain is unable to recover from
the crashes and restore liveness, co symbol is displayed in
Fig. 3b instead of the corresponding bar. We also used bars
with stripes to indicate that the blockchain showed better
response time in the altered environment.

Solana generalized failure. We observed, surprisingly,
that the transient failures of some nodes crash all the nodes of
Solana. Our in-depth investigations led to conclude that this
is related to a bug that prevents a node from synchronizing
its state with another.

As explained in Section 2, Solana requires an Epoch Ac-
counts Hash (EAH) to be calculated for the consensus. The
panic observed in the validator node stems from an unmet
precondition during the EAH calculation process [12], specif-
ically within the wait_get_epoch_accounts_hash func-
tion. This function is responsible for ensuring that the EAH
calculation is either completed or correctly initiated at the
expected point in the epoch. The panic occurs because of
the ordering of two parallel events: the EAH calculation and
the EAH integration. In particular, no EAH calculation was
started or in-flight when the bank (described in Section 2)
attempted to integrate the EAH into the bank hash at three-
quarters (3/4) of the epoch duration, which is a critical part
of the consensus process.

By investigating the stack trace, no bank was rooted at
the beginning of the epoch, preventing the EAH calculation
from starting. As a result, when the bank reached 3/4 of the
epoch duration, it was unable to complete the EAH process
that had not started. This led to a critical failure because
the bank cannot retroactively initiate the EAH calculation,
making it impossible to fulfill the required consensus step.

After identifying the cause of the panic, we went to Solana
discord channel and found that Solana needed at least 360

slots per epoch [13] while being configured with a smaller
amount of slots. The reason is that Solana needs enough time
to compute the EAH and to root the relevant bank before the
3/4 mark. Given that rooting can sometimes take up to 150
slots and the freeze-to-rooting process requires at least 32
slots, a buffer is necessary to ensure everything completes
correctly. Therefore, the minimum epoch length must be
around 360 slots to allow this process to happen without
causing a panic. This ensures the EAH computation and
rooting are completed in time, preventing errors that could
occur if an epoch were too short.

The default epoch duration for the development cluster
is 8192 slots. However, with the deployment scripts pro-
vided in the Solana repository, genesis block is generated
with enable-warmup-epochs flag, which shortens the first 8
epochs to progressively smaller slot counts, beginning with
32 slots in epoch 0. These warm-up epochs follow a geo-
metric progression, where the number of slots doubles with
each epoch. The epoch size returns to normal (8192 slots)
after the warm-up period. The first full-length epoch occurs
after 54m24s, and prior to that, each epoch’s duration is
much shorter. We introduce transient faults to the system at
133 seconds during one of the warm-up epochs, specifically
when the number of slots per epoch is still under 360, leading
to the described issue.

Avalanche lack of liveness. In Avalanche, we did not
experience a generalised outage like in Solana, however,
Avalanche’s throttling implementation described in Section 4
also prevents the network from reaching consensus.

More specifically, the InboundMsgThrottler of
Avalanche contains multiple throttler structures, among
which the CPU quota-based throttler, cpuThrottler, and
the message buffer-based throttler, bufferThrottler, are
of particular interest.

First, the cpuThrottler leverages functions to block
the CPU consumption of incoming message processing.
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When a message arrives, the systemThrottler.Acquire
function checks if there is enough CPU quota avail-
able based on the current CPU usage tracked by
cpuResourceTracker.Usage. The decision is also influ-
enced by the targeter.TargetUsage, which sets a CPU
usage threshold. When the threshold is almost reached,
cpuThrottler blocks further processing of messages, ef-
fectively throttling them until CPU resources are freed, pre-
venting the system from exceeding the allocated CPU quota.

Second, the bufferThrottler rejects mes-
sages depending on the buffer availability with
inboundMsgBufferThrottler.Acquire. When the
system buffers are saturated—typically because the CPU
throttling has prevented messages from being processed—
the buffer throttler restricts further intake of messages. This
backpressure mechanism ensures that incoming messages
do not overflow the system when the processing pipeline is
already overwhelmed and cannot clear the buffers.

We observed from the logs that the messages were success-
fully sent and received by the nodes during the experiments,
but the throttling prevented them from being processed in a
timely manner, resulting in no new blocks being agreed upon.
Note that Avalanche is known to require a variant of asyn-
chrony with some form of synchrony for liveness [61]. What
this experiment seems to demonstrate is that Avalanche
stops working when some messages arrive 2 minutes late.

Algorand and Redbelly recovery. From Fig. 3¢ and
Fig. 3b Algorand and Redbelly display the best behaviors
among the studied blockchains when the number of failed
nodes exceeds the fault tolerance threshold for a short pe-
riod. After the crashed nodes are restarted (at 266 seconds),
we quickly observe a sharp peak in throughput. This peak
corresponds to processing the accumulated backlog of trans-
actions during the downtime. For the rest of the experiment,
throughput and latencies match the measurements acquired
during the first 133 seconds.

Aptos unrecoverable performance drop. Among three
remaining blockchains, Aptos is most significantly impacted
by the loss of liveness in the presence of f =t + 1 transient
failures. While the network starts to create and commit new
blocks shortly after restarting the crashed nodes, the transac-
tion throughput does not return to the values observed in the
first 133 seconds. Compared to Algorand and Redbelly, the
throughput amplitude is significantly lower for Aptos, mean-
ing that it cannot process the pending transactions as fast as
Algorand or Redbelly. Furthermore, since we record commit-
ted blocks after the end of the experiment, we can observe
that the blocks are still being created for a certain period of
time. Therefore, we can conclude that Aptos fails to clear the
backlog of transactions accumulated during the downtime,
and the performance remains degraded for the rest of the
experiment, displaying increased transaction latencies.
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6 Partition Tolerance

In this section we evaluate the partition tolerance of the 5
blockchains. We conclude that proactive monitoring of link
failures can improve the blockchain performance. We also
confirm that the blockchains that could not tolerate transient
node failures cannot tolerate partition either.

Measuring partition tolerance. To study the blockchain
tolerance to network partitions, we run an experiment in
three phases similar to the recoverability one of Section 5. For
the first 133 seconds, no messages are lost. Between 133 and
266 seconds, a partition is created between f = t+1 nodes and
the rest of the network so that the messages between the two
partitions are dropped. Finally at 266 seconds, the partition
stops and from then on all new messages go through.

We used Linux traffic control subsystem facilities to cre-
ate a transient link failure, or a network partition. First,

we used‘ tc qdisc add dev eth2 root handle 1: prio ‘to estab-

lish a priority queuing discipline at the root of the eth2
interface. Next, we used to define a set of
filters that match IP packets with a destination of IP ad-
dresses of the nodes we wanted to disconnect and direct them

to the third priority band (). Then, we applied

tc qdisc add | to introduce a | netem qdisc | on | flowid 1:3 |,

simulating 100% packet loss for the matched traffic. Finally,

we used‘ tc qdisc del dev eth2 root ‘to remove all traffic con-

trol configurations on eth2.
We report the sensitivity scores in Fig. 3¢, and show the
corresponding throughput over time in Fig. 6.

Solana and Avalanche lack of recovery. Solana and
Avalanche fail to recover and restore liveness after the par-
tition, hence we show the infinity symbol, co, in addition
to the corresponding bar. The issues that make Solana and
Avalanche fail to recover after a partition are the same as
with the transient node faults previously described in Sec-
tion 5. In Solana, the EAH calculation, which occurs after
the network connectivity is restored, causes all the nodes to
crash. In Avalanche, the throttling mechanism prevents the
nodes from exchanging transactions and reaching consensus.

As we explained below (Section 6), the other three
blockchains, Algorand, Aptos and Redbelly, that recover
from transient node failures, show different scores under
network partition.

Algorand and Redbelly timeouts. The score of Algorand
and Redbelly observed under network partition is higher
than their respective score obtained under transient node
failures in Section 5. In particular, if we compare Fig. 5 to
Fig. 6, we observe that the recovery time of Redbelly in-
creased from 7 to 81 seconds while the recovery time for
Algorand increased from 9 to 99 seconds.

After investigating the code of Algorand and Redbelly, we
concluded that the recovery time was a function of specific
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Figure 6. Throughput of the 5 blockchains over time as we transiently partition f > t nodes at time 133 as indicated by the
dashed red line and as we stop the partition at time 233 as indicated by the dotted red line.

timeouts. After these timeouts expire, the nodes attempt to
reconnect with each other. By looking closer at the code
of Redbelly and discussing with its developers, we noticed
that an existing MaxldleTime timeout variable of 30 seconds,
could help speedup the recovery further.

Aptos backoff time for quick recovery. By contrast with
Algorand and Redbelly, Aptos displays the same sensitivity
to nodes being under a transient failure (Fig. 3b) and to a net-
work partition (Fig. 3c). Such a contrast can be explained by
different implementation strategies for detecting the network
connectivity being restored. Aptos checks peer connectivity
every 5 seconds by default. Validator connections are main-
tained with exponential backoff waiting time with the base
value of 2 seconds. A timeout for the connection to open
and complete all of the upgrade steps is 30 seconds. Such pa-
rameters allow quick connection recovery after the network
partition is restored compared to Algorand and Redbelly.

7 Byzantine Node Tolerance

In this section we measure the sensitivity of blockchain sys-
tems to a mechanism that copes with some Byzantine be-
haviors. This behavior consists of having clients send their
request to tg + 1 blockchain nodes instead of just 1. We
conclude that duplicating the client requests to cope with
Byzantine responses can benefit the transaction latency in
mempool-based blockchains and that this duplication should
be tested in the development process.

Assessing Byzantine node tolerance. The problem of as-
sessing whether a blockchain system is tolerant to Byzantine
failures is practically impossible. In fact, by definition the
number of possible executions involving Byzantine failures
is infinite. In order to assess Byzantine fault tolerance, we
thus implement a secure client that compares the responses
from tp+1 blockchain nodes before returning the aggregated
answer to the application.

To test whether a blockchain performance is impacted by
the secure client implementation, we sent the same transac-
tion to 4 different nodes instead of a single node, and reported
the transaction as being committed only after all 4 nodes
have responded. We used 4 nodes since it is the maximum
value for tg + 1 with n = 10 across the blockchains under test.
The experiment has a single phase during which we use the
secure client. As discussed in Section 3, we deployed VMs
with 8 vCPUs and 16 GB RAM in order to prevent dropped
transactions in Aptos, since a secure client causes extra CPU
load on the nodes, as explained later in Section 7.

We depict in Fig. 3d, the sensitivity score for each
blockchain with a secure client connected to 4 nodes.

Algorand and Solana remain unchanged. The low sen-
sitivities of Algorand and Solana in Fig. 3d indicate that nei-
ther Algorand nor Solana are significantly affected by the
redundant requests from the secure client.

In Algorand experiments, since we used a fully-connected
network, where each node acts both as relay and participant,
we do not observe the expected reduction in transaction la-
tency and throughput improvements with a secure client.
Each node maintains a transaction pool, holding transactions
in memory before proposing them in a block. Additionally,
push and pull gossip methods propagate these transactions
across all connected nodes. However, since every node is
directly connected and plays dual roles, the network lacks
the hierarchical or segmented structure that typically bene-
fits from such optimizations. Consequently, the benefits of
reduced latency and enhanced performance are mitigated by
the inherent redundancy and uniform connectivity, leading
to minimal impact on overall network efficiency.

In Solana, sending a transaction to multiple nodes nei-
ther reduce latency nor increase throughput because of its
lack of mempool. As discussed in Section 2, Solana uses an
approach where transactions are directly forwarded to the
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expected leaders based on a pre-determined leader sched-
ule. This process eliminates the need for a mempool, where
transactions typically wait to be processed by validators. As
a result, broadcasting a transaction to multiple nodes can
be seen as redundant since all correct nodes will ultimately
route the transaction to the same set of leaders, who will
anyway handle it according to the network deterministic
leader schedule.

Aptos speculative execution drawback. The root cause
of the performance degradation in Aptos on Fig. 3d seems
to come from the speculative execution of Block-STM
transactions [38]. We observe the following differences in
blockchain node logs between the baseline experiment with
a single client, and the altered case with the redundant
client connected to 4 nodes. In both executions, first, a trans-
action is added to the mempool, reported by a log mes-

sage from ‘ Mempool::add_txn | function. Then, a transac-

tion is committed and removed from the mempool, reported

by a log message from’ Mempool:log_commit_transaction ‘

function. However, in the altered execution, we additionally

observe a log message from‘ SpeculativeEvent:dispatch ‘ 10
milliseconds later with a SEQUENCE_NUMBER_TOO_OLD
error, since the transaction is already committed. This means
that some transactions are processed at least twice with the
redundant client, adding load to the nodes.

Redbelly speedup. As discussed in Section 3, the sensitiv-
ity score is always positive as it represents the difference ex-
pressed as the absolute value between the area of the baseline
environment S; (b;) and the area of the altered environment
S,(b;). Without this absolute value, the sensitivity could
be negative, if the altered environment was offering lower
latencies than the baseline environment. This interesting
scenario is observed here, because the altered environment
benefits Redbelly more than the baseline environment, i.e.,
S1(by) < S;(b,), as depicted by the crossed bar in Fig. 3d.

The slight latency drop that Redbelly experiences in the
altered environment is probably due to the superblock opti-
mization it uses to solve the Set Byzantine Consensus [64]. In
particular, as opposed to classic blockchains that decide one
of the proposed blocks, Redbelly decides a superblock that
combines the valid transactions from all the proposed blocks.
As the altered environment sends the same transactions to
multiple nodes, it can increase the chances of a transaction
being included in the superblock slightly earlier.

Finally, it is important to note that Redbelly already offers
its specific recommended library to ensure Byzantine node
tolerance [59]. This library called credence. js guarantees
to a client that the responses it obtains had identical hashes
across ¢ + 1 replicas. We decided not to use this library and
to use our modified client described in Section 7 to obtain a
fair comparison with other blockchains.
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Figure 7. The sensitivity of the tested blockchains to par-
tition, crash, transient failures and to the mechanism that
copes with Byzantine nodes.

Avalanche slower sequential execution. Avalanche ex-
periences the largest sensitivity among all blockchains
(Fig. 3d). Interestingly, however, Avalanche, just like Red-
belly in Section 7 benefits from the redundant requests sent
by the client to cope with Byzantine node tolerance, which
is indicated in Fig. 3d with S1(b1) < Sy(by). This is because
this redundancy compensates for transaction reordering and
the throttling effects, as we explain below.

First, leader rotation combined with gossip implemen-
tation can increase latency. Transactions are executed in
issuance order, enforced by a nonce counting previous trans-
actions from the same account owner. For a transaction of an
account owner to be executed, all its previous transactions
(with lower nonces) must first reach the leader. This can take
a long time depending on the leader rotation order and the
gossip protocol. Consider a client submitting two transac-
tions with nonces 1 and 2 to the network. The node receiving
the transactions may not become a leader for a certain period
of time given the leader rotation. Avalanche gossip-based pro-
tocol collects transactions from a HashMap in a loop [3], but
since HashMap keys do not enforce order [6], lower-nonce
transactions may be delayed. But sending a transaction to
multiple nodes for Byzantine fault tolerance increases the
chances of a transaction being immediately available for the
current leader and being included in a block earlier.

Second, the throttling mentioned in Section 4 prevents gos-
sip messages from being immediately processed by the nodes.
The message queues being handled by throttling include
different internal messages for consensus and transactions.
Since clients are processed separately from the blockchain
nodes, using the secure client allows to mitigate the negative
performance impact caused by throttling and to improve
transaction latency.

8 Discussion

We summarize our results and discuss possible limitations.
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Synthesizing the results. To get a better understanding
of the dependability of the 5 studied blockchains, we report
all the sensitivity scores we measured in the previous sec-
tions on Figure 7. The scores are displayed in a radar chart
with four dimensions representing their sensitivity to crash
failures, transient node failures, partitions and to the secure
client that copes with Byzantine nodes. For each type of fail-
ures, the higher the reported value, the higher the sensitivity
to this type of failure. Note that Avalanche and Redbelly
benefits from the secure client as explained in Section 7.

The first observation is that generally blockchains are
more sensitive to transient failures than permanent failures.
First, the blockchains are generally very sensitive to tran-
sient failures whether these are link failures, as illustrated by
partitions, or node failures, as illustrated by a crash followed
by a recovery of individual nodes. Second, they are not as
sensitive to the permanent failures. In fact, one can barely
see the sensitivity to Byzantine failures and the sensitivity
to crash failures is significantly lower than the sensitivity
to partitions and transient node failures. After a specific
number of transient failures, some blockchains (Solana and
Avalanche) could not even recover. Note that because of the
fault tolerance threshold of these blockchains, we introduced
less permanent failures (f < tg) than we have introduced
transient failures (f > tg). We can conclude that Solana and
Avalanche are likely tuned to only support as many slowly
responsive nodes as they can afford permanent failures.

The second observation is that some blockchains (Algo-
rand, Aptos and Redbelly) recover as one would expect but
with varying speeds. In particular, Aptos recovers partic-
ularly slowly from transient failures while Algorand and
Redbelly recover signficantly faster. Finally Redbelly is the
fastest blockchain to recover. This can be due to two things.
First, the extensive research done around its dependabil-
ity under Byzantine attacks [32] and flooding attacks [64]
required it to cope with adversarial network scenarios im-
pacting the delays of messages. Second, it was shown to have
better performance than most of the other blockchains [64]
not only due to a reduction in the number of verifications
that it needs but also due to its superblock optimization that
commits a large batch of accumulated transactions faster.

Limitations of our approach. Our work is a first attempt
towards evaluating blockchain dependability. We focused on
only five blockchains that are claimed to be Byzantine fault
tolerant and there are many more blockchain proposals with
the same claim that we could evaluate as well, however, we
were unsure of their level of maturity. It is relatively easy to
add other blockchains to our framework and we encourage
the research community to reuse our results and measure
the sensitivity of other blockchains.

The settings of our experiments may seem far from be-
ing realistic because blockchain networks are generally of
larger scales than our 15-node distributed system and the
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distance between nodes is generally larger than within a
cluster. However, recent results showed that one can get
a deep understanding of the performance (both in latency
and throughput) of a blockchain at large scale even when
deployed in a much smaller environment [50].

Finally, the workload that we use for our experiments
only sends native transfer transactions at a constant rate of
200 TPS, which is not representative of realistic fluctuating
workloads, request bursts or demanding workloads. The rea-
son for using simple transactions is that some blockchains
are unable to support complex smart contract invocations
because of the amount of gas they would consume [43]. The
reason for using a relatively low sending rate is that some
blockchains would lose transactions if the sending rate is
too high [43], which typically incurs congestion bottlenecks.
Limiting these undesirable effects allowed us to better ob-
serve the impact of failures on latencies, which was crucial
to measure sensitivity.

9 Conclusion

We presented the first fault tolerance comparison of
blockchain systems. To this end, we introduced a new sen-
sitivity metric, interesting in its own right, derived from
the super-cumulative distribution functions of service re-
sponse times. This sensitivity metric allowed us to measure
(i) the resilience, (ii) the recoverability, (iii) the partition tol-
erance, and (iv) the Byzantine node tolerance of five modern
blockchain systems: Algorand, Aptos, Avalanche, Redbelly
and Solana. We hope that the developer community will use
StABL to improve the fault tolerance of their blockchain sys-
tems. Our future work includes evaluating Byzantine fault
tolerance using recommended specialized client libraries,
such as credence. js for Redbelly. It would also be inter-
esting to measure the sensitivity of blockchains in larger
networks, especially for probabilistic consensus protocols
that rely on the law of large numbers.
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