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Abstract In this work a multi-weight graph partitioning problem is intro-
duced. This problem consists in partitioning an undirected graph in a fixed
number of subgraphs such that multiple node weight constraints over each par-
tition are satisfied and the total distance between nodes in the same subgraph
induced by the partition is minimized. This problem generalizes several graph
partitioning problems like k-way equipartition, balanced k-way partition with
weight constraints, size-constrained partition, equipartition, and bisection. It
arises as a subproblem of an integrated vehicle and pollster problem from a
real-world application. Two Integer Programming formulations are provided
and several families of valid inequalities associated to the respective polyhedra
are proved. An exact algorithm based on branch and bound and cutting planes
is proposed and it is tested on real-world instances.

Keywords graph partitioning · integer programming · branch & cut.

1 Introduction

The aim of partitioning arises when a set of objects characterized by attributes
must be grouped into several subsets, such that some requirements must be
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satisfied in each group (cardinality, lower and upper bounds over quantified
attributes, etc). One can think of a network where the objects correspond to
nodes of the graph; attributes determine a set of weights for each node, and
similarity or dissimilarity between nodes can be expressed with the inclusion
of a distance function over the edges joining a pair of them. A partition of the
set of nodes is a collection of non-empty subsets, pairwise disjoint, such that
their union is the original set. If each subset of a partition satisfies constraints
involving the attributes of the nodes and some objective function is optimized,
then a multi-weight graph partitioning problem arises.

This problem appears as a sub-problem in the following real-world applica-
tion: The National Statistics Bureau of Ecuador (INEC) carries out monthly
polls to monitor the behavior of consumer prices for basic commodities, which
are collected from a fixed set of stores known a-priori and located around a
city in Ecuador [10]. Each store has to be visited once a month by a pollster,
who registers prices of some commodities previously specified by INEC. After
the information is collected at the store, each pollster moves on to the next
scheduled store. The polls must be performed on a fixed number of days and
the available number of pollsters of the Bureau office varies per day. Thus,
the task associated to the sub-problem in the previous application consists of
partitioning the set of stores in a fixed number of subsets where each subset
represents the stores to be visited in a day. The requirements on each subset
are diverse and look forward to preserve some homogeneity for the subsets
according to requirements as: number of stores, working time, pollster waiting
time, among others. The aim of the sub-problem, concerning the stores parti-
tion, consists of minimizing the total distance among stores on each subset of
the partition.

The study of graph partitioning problems started in the early seventies with
the seminal work of Kernighan and Lin [13]. Here, the authors partitioned a
graph into subsets of given sizes and they proposed a heuristic method to solve
it. Christofides and Brooker[4] studied the bipartition problem where a tree
search method imposing an upper bound on the size of nodes in one subset
is considered. Carlson and Nemhauser [2] formulated a quadratic program for
partitioning a graph in at most k subsets with no bound on the size of each sub-
set. Gröstchel and Wakabayashi [8] introduced the clique partitioning problem
on a complete graph, where the problem is studied from a polyhedral point
of view. Rao and Chopra [3] presented the k-partitioning problem where k,
the number of subsets in the partition, is given a-priori; the authors described
integer programming formulations on a connected graph together with several
facets and valid inequalities for the associated polytopes. Ferreira et al. [7]
introduced capacity constraints on the sum of node weights in each subset of
the partition. In similar way, Labbé and Özsoy [14] formulated the problem
as the clique partition problem including upper and lower bounds on the size
of the cliques and a competitive branch-and-cut algorithm was implemented.
In regard to applications, the graph partitioning problem is widely applied
in distribution of work to processors in parallel computing [11], VLSI circuit
design [12], mobile wireless communications [5], or sports team realignment
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[16]. In Buluc et al.[1], a complete survey of applications and recent advances
in graph partitioning can be found.

The paper is organized as follows. In Section 2 some formulations are de-
scribed, where reduced models preserving the strength of the relaxation are
identified. Section 3 includes some techniques attending to strengthen the ini-
tial formulations. In Section 4 multiple valid inequalities for the multi-weight
graph partitioning problem are introduced and computational experiments are
discussed in Section 5.

2 Notation and Integer programming formulations

Let G = (V,E) be an undirected graph with V = {1, . . . , n} the set of nodes,
E = {{i, j} : i, j ∈ V, i 6= j} the set of edges, d : E → R

+ a distance
function, and k ≥ 2 an integer number. Let {V1, V2, . . . , Vk} be a k-partition

of the set V , i.e., Vi ∩ Vj = ∅ for all i 6= j,
⋃k

c=1 Vc = V , and Vc 6= ∅ for all
c ∈ [k], where [k] denotes the set {1, . . . , k}. Moreover, a τ -dimensional vector
(w1

i , . . . , w
τ
i ) ≥ 0 of weights associated to each node i is defined. Each t ∈ [τ ] is

called an attribute. Similarly, lower and upper bound vectors W c
L,W

c
U ∈ R

τ
+,

with W c
L ≤ W c

U , are introduced for all c ∈ [k]. For the sake of simplicity,
wt(S) =

∑

i∈S wt
i , for S ⊂ V is defined.

The multi-weight graph partitioning problem (MWGP) consists of finding
a k-partition {V1, V2, . . . , Vk} such that the requirements

W ct
L ≤ wt(Vc) ≤ W ct

U , ∀c ∈ [k], t ∈ [τ ] (1)

are satisfied and the total cost of the edges with end nodes in the same subset
of the partition is minimized.

Notably, to the extent of our knowledge, the multi-weight graph partition-
ing problem has not been reported in the literature. In fact, other partitioning
problems can be obtained from MWGP by fixing parameters adequately. For
instance, if multi-weight constraints (1) are suppressed, the problem turns out
to be a k-partitioning problem [3]. Similarly, if τ = 1, n ≡ 0 (mod k ), the
weight of each node is fixed to one, and the lower and upper bound are equal
to n/k, the problem becomes the so-called k-way equipartition problem [15].
If lower and upper bounds over the size of the subsets in the partition are
imposed, then the size-constrained graph partitioning problem appears [14].
Moreover, when cardinalities n1, . . . , nk for each subset of the partition are
given a-priori, and by fixing W 1

L = W 1
U = n1, . . . ,W

k
L = W k

U = nk, the gen-
eral graph partitioning problem arises [6]. In the same context, if k = 2 and
n1 = n2, then the equipartition problem is obtained and if n1 6= n2 the bi-
section problem on a graph comes up [4,13]. On the other hand, if τ = 2,
where the first requirement corresponds to the cardinality and the second one
corresponds to a positive weight on each subset of the partition, the problem
becomes the balanced k−way partitioning problem with weight constraints
[17].
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It is well known that all these problems are NP-hard and thus there is a
remote possibility of finding a polynomial time algorithm to solve the MWGP
to optimality. It is also known that approaches based on Integer Linear Pro-
gramming have proven to be one of the best tools to solve these kind of hard
problems exactly.

2.1 First IP Formulation

This formulation considers two sets of binary variables: the first one related
to nodes and the second one associated to edges. Thus, let yci be the variable
that takes the value 1 if the node i ∈ V belongs to subset Vc, for all c ∈ [k],
and 0 otherwise. Moreover, xij = 1 if the edge {i, j} ∈ E corresponds to a pair
of nodes in the same subset of a partition and xij = 0 otherwise. Then, the
MWGP can be formulated as (F1):

min
∑

{i,j}∈E

dijxij (2)

∑

c∈[k]

yci = 1, ∀i ∈ V (3)

yci + ycj − xij ≤ 1, ∀{i, j} ∈ E, c ∈ [k], (4)

W ct
L ≤

∑

i∈V

wt
iy

c
i ≤ W ct

U , ∀ c ∈ [k], t ∈ [τ ] (5)

yci ∈ {0, 1}, ∀i ∈ V, c ∈ [k], (6)

xij ∈ {0, 1}, ∀{i, j} ∈ E, (7)

The objective function (2) is the total edge cost of the subgraphs (Vc, E(Vc)),
for all c ∈ [k]. Constraints (3) indicate that each node must belong exactly to
one subset, constraints (4) establish that if two nodes i, j ∈ V are assigned to
the subset Vc, then the edge {i, j} ∈ E belongs to E(Vc). Finally, constraints
(5) guarantee that the τ -dimensional requirements over each subset in the
partition are satisfied. The formulation can be considered as a generalization
of [3].

2.2 Second IP Formulation

The polyhedron associated to F1 can be projected into an edge-variable space
through a k-augmenting graph which is defined as follows.

Definition 1 Let G = (V,E) be an undirected graph with n nodes, a dis-
tance function d : E → R+ over the edges, a τ−dimensional weight vec-
tor (w1

i , . . . , w
τ
i ) on each node i ∈ V and a fixed integer number k ≥ 2.

The k-augmenting graph is the pair Gk = (V k, Ek), where V k = V ∪ A,
A = {n + 1, n + 2, . . . , n + k} is a set of artificial nodes (one for each sub-
set of the partition), Ek = E ∪ E1 ∪ E2, E1 = {{i, j} : i ∈ V, j ∈ A}
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and E2 = {{i, j} : i, j ∈ A, i < j}. Edges e ∈ E maintain the original dis-
tance de, edges in E2 have sufficiently large distance M > 0 and edges in E1

have distance equal to 0. Finally, original nodes mantain the vector of weights
(w1

i , . . . , w
τ
i ) and wt

j = 0 for all j ∈ A and t ∈ [τ ].

The k-augmenting graph Gk = (V k, Ek) allows us to formulate MWGP
using the classical triangular inequalities (F2):

min
∑

{i,j}∈Ek

dijxij (8)

+ xij + xjl − xil ≤ 1, ∀1 ≤ i < j < l ≤ |V k|, (9)

+ xij − xjl + xil ≤ 1, ∀1 ≤ i < j < l ≤ |V k|, (10)

− xij + xjl + xil ≤ 1, ∀1 ≤ i < j < l ≤ |V k|, (11)
∑

c∈A

xic = 1, ∀i ∈ V, (12)

W ct
L ≤

∑

i∈V

wt
ixi,n+c ≤ W ct

U , ∀ c ∈ [k], t ∈ [τ ], (13)

xij ∈ {0, 1}, ∀{i, j} ∈ Ek. (14)

As it is well known, this formulation requires a complete graph[8]. Thus, if
Gk is not complete, artificial edges with distance equal to zero are added
adequately to this graph.

The binary variables xij are defined in the same way as the previous for-
mulation for every {i, j} ∈ Ek as well as the objective function. Constraints
(9)-(11) are the classical triangular inequalities; and constraints (12) ensure
that every node i belongs to exactly one subset Vc of the partition. Finally,
inequalities (13) impose lower and upper bounds for the total weight of each
subset for every requirement.

The convex hull of the set of points (x(E), y) ∈ {0, 1}|E|×k|V | satisfying
(3)-(7) defines the polytope denoted by P xy. In similar way, the polytope

P x = conv({x(Ek) ∈ {0, 1}|E
k| : (9) − (14) are fullfilled}) is introduced. The

following Theorem establishes a correspondence between the set of points of
both polytopes.

Theorem 1 x(Ek) ∈ P x with objective value strictly less than M if and only

if (x(E), y) ∈ P xy.

Proof Let x(Ek) be a point in P x with objective value strictly less than M .
Then, x(E2) = 0 and (x(E), x(E1)) ∈ P xy where yci = xi,n+c for all c ∈ [k] and
i ∈ V . The other implication follows immediately by fixing variables x(E2) = 0
and x(E1) = y.

Note that the multi-weight constraints could make empty the polytopes
of both formulations. In this sense, a necessary condition for feasibility on
multi-weights is established in the following result:
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Theorem 2 A necessary condition for the feasibility of the multi-weight graph

partitioning problem is:

max
t∈[τ ]

{⌈
∑

i∈V wt
i

maxc∈[k]{W
ct
U }

⌉}

≤ k ≤ min
t∈[τ ]

{⌊
∑

i∈V wt
i

minc∈[k]{W
ct
L }

⌋}

Proof From constraints (5) of formulation F1, the following constraints are
given for each t ∈ [τ ]:

∑

c∈[k]

W ct
L ≤

∑

c∈[k]

∑

i∈V

wt
iy

c
i ≤

∑

c∈[k]

W ct
U ,

Since Vc = {i ∈ V : yci = 1}, the last expression can be written, for each
t ∈ [τ ], as:

k min
c∈[k]

{W ct
L } ≤

∑

c∈[k]

∑

i∈Vc

wt
i ≤ kmax

c∈[k]
{W ct

U },

k min
c∈[k]

{W ct
L } ≤

∑

i∈V

wt
i ≤ kmax

c∈[k]
{W ct

U },

Since the previous condition must be satisfied for each t ∈ [τ ], then the result
follows.

3 Preprocessing

The preprocessing techniques described in this section attend to strengthen
the previous formulations of the graph partitioning problem. In this context,
variable reduction techniques and methods for reducing the number of con-
straints are reported.

3.1 Constraint reduction

For formulation (F2), one can identify some redundant triangular inequalities.
Thus, consider that three nodes i, j, p ∈ V are assigned to subset l. It implies
that the associated edges {i, l}, {j, l} and {p, l}must be included in the solution
and the corresponding variables are equal to one. For triangular inequalities,
if edges {i, l} and {j, l} belong to the same subset of a partition, then {i, j} is
obviously in the same partition. In similar way, considering edges {j, l}, {p, l}
and {i, l}, {p, l} determine that edges {j, p} and {i, p} are included in the
solution. Hence, the triangular inequalities associated to edges {i, j}, {j, p}
and {i, p} are not needed anymore in our formulation. Therefore, observe that
these constraints reduction allows to apply this formulation to non-complete
graphs as none of the triangular inequalities for three nodes in V appears.

The reduced model can be reformulated as follows (FR2):
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min
∑

{i,j}∈E

dijxij (15)

+ xij + xjl − xil ≤ 1, ∀ {i, j} ∈ E, l ∈ A (16)

+ xij − xjl + xil ≤ 1, ∀ {i, j} ∈ E, l ∈ A (17)

− xij + xjl + xil ≤ 1, ∀ {i, j} ∈ E, l ∈ A (18)
∑

l∈A

xjl = 1, ∀j ∈ V (19)

W ct
L ≤

∑

j∈V

wt
jxjl ≤ W ct

U , ∀ l ∈ A, t ∈ [τ ], (20)

xij ∈ {0, 1}, ∀{i, j} ∈ Ek, (21)

It is important to remark that, from now and on, only formulation F1 and
FR2 are used for theoretical and computational purposes.

3.2 Variables reduction

Initially, a pre-fixing process tries to reduce the number of variables considered
in the initial formulation. The idea follows from the simple fact that if we focus
on one node, say node 1, it must belong to some subset of the partition, say
subset 1, and therefore such node can not be included in the remaining sets
c ∈ {2, 3, . . . , k}. Taking a second node, say node 2, it could belong to subset 1
or another subset (subset 2 for example), and then such a node cannot belong
to the remaining subsets c ∈ {3, 4, . . . , k}. Up to now, the variables fixed to
zero can be excluded from the branching process without losing any feasible
solution. Extending this idea, the k−th node will belong to one of the first k
subsets and the number of node variables that will not be part of the branching
has order O(k2).

Hence, for the formulation F1 the pre-fixing process is determined as fol-
lows:

– yci = 1, for all i = c = 1,
– yci ∈ {0, 1}, for all i = 2, . . . , k, c ∈ [i],
– yci = 0, for all i ∈ [k], c = i+ 1, . . . , k.

For the formulation FR2 the pre-fixing process is stated:

– xi,n+c = 1, for all i = c = 1,
– xi,n+c ∈ {0, 1}, for all i = 2, . . . , k, c ∈ [i],
– xi,n+c = 0, for all i ∈ [k], c = i+ 1, . . . , k.

Moreover, a branching rule is presented. It reduces the size of the search
tree and increases the speed of the solution process. The branching procedure
uses only variables associated to nodes, since if two specific nodes i, j ∈ V are
assigned to subset c, for any c ∈ [k], then automatically the edge {i, j} must
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be included in the subgraph. Thus, in formulation F1 given yci = ycj = 1, then

xij = 1 is propagated. Moreover, if yci = 1 and ycj = 0 or ydj = 1 for any c ∈ [k]
and d 6= c, then it implies that xij = 0. In similar way for formulation F2 and
FR2, if xi,l = xj,l = 1 for any l ∈ A, then for triangular inequalities xij = 1 is
propagated. The second implication indicates that if xi,l = 1 and xj,l = 0 or
xj,p = 1 for any p ∈ A and p 6= l, then xij = 0 is hold.

4 Valid inequalities

In this section, a variety of classes of valid inequalities is stated. The polytopes
defined by the convex hull of integer solutions of the formulations is uniquely
determined by the parameters k, lower and upper bounds W ct

L ,W ct
U for c ∈ [k],

t ∈ [τ ], and wt
i for i ∈ V , t ∈ [τ ].

Theorem 3 Let G = (V,E) the graph associated to the second formulation

and let Gk = (V k, Ek) be its augmenting graph. For every two disjoint subsets

S ⊆ V k, R ⊆ V k, the inequality induced by S and R:
∑

{i,j}∈Ek:
i∈S,j∈R

xij −
∑

{i,j}∈Ek(S)

xij −
∑

{i,j}∈Ek(R)

xij ≤ min{|S|, |R|}

is valid for Px

Proof First, we add dummy edges to Gk with weights equal to zero in order to
obtain a complete graph. As any feasible solution of the MWGP is a feasible
solution of the clique partitioning problem, then the result follows from the
well-known 2-partition inequality of [8].

The following corollary follows from the fact that the value of the variables
associated to every two artificial nodes in the set A are equal to zero.

Corollary 1 Let G = (V,E) the graph associated to the second formulation

and let Gk = (V k, Ek) be its augmenting graph. For every two disjoint subsets

S ⊆ V , R ⊆ A, the inequality induced by S and R:
∑

{i,j}∈Ek:
i∈S,j∈R

xij −
∑

{i,j}∈Ek(S)

xij ≤ min{|S|, |R|}

is valid for Px

Considering the relation between variables xij , i ∈ V, j ∈ A and variables
yci , i ∈ V, c ∈ [k], the following corollary is stated.

Corollary 2 Let G = (V,E) the graph associated to the first formulation. For

every pair of subsets S ⊆ V , R ⊆ [k], the inequality induced by S and R:
∑

i∈S,c∈R

yci −
∑

{i,j}∈E(S)

xij ≤ min{|S|, |R|}

is valid for Pxy
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Definition 2 A subset S ⊆ V is called a cover of a subset Vc, for some c ∈ [k],
if wt(S) > W ct

U for all attribute t ∈ [τ ].

Definition 3 The subset S ⊆ V is called a minimal cover of a subset Vc, for
some c ∈ [k], if S is a cover and for at least one requirement t, wt(S \ {j}) ≤
W ct

U , with j ∈ S.

Definition 4 The subset S ⊂ V is called a global cover of graph G if S is a
cover for all Vc, c ∈ [k]. A global cover is minimal if S is minimal for all Vc,
c ∈ [k].

The following results provide families of valid inequalities for P xy and P x.

Theorem 4 Let S = {i, j} ⊂ V , such that the edge joining nodes i and j
belongs to E. If the set S is a global cover, then xij = 0 is a valid equation for

P xy and P x.

Proof Observe that if S is global cover, then i and j cannot belong to the
same subset Vc, for any c ∈ [k]

Theorem 5 For any cycle C in G such that V (C) is a global cover, then the

inequality:

∑

{i,j}∈E(C)

xij ≤ |E(C)| − 2

is valid for P xy and P x

Proof V (C) becomes a feasible subset of any partition if and only if at least
one node (two edges) is dropped from V (C).

A generalization of the above result is the so called q-cover. A node set
S ⊂ V is a q-cover, q ≥ 1 and integer, if wt(S) > qmaxc∈[k]{W

ct
U }, for all

requirement t ∈ [τ ].

Theorem 6 For any cycle C in G such that V (C) ∈ V is a q-cover, then the

inequality:

∑

{i,j}∈E[C]

xij ≤ |E(C)| − q − 1

is valid for P xy and P x.

Proof V (C) becomes a feasible subset of any partition if and only if at least q
consecutive nodes in the cycle (q + 1 edges) are dropped from V (C).

A similar result follows when the subgraph (S,E(S)) is a tree:
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Corollary 3 Let S ⊆ V be a minimal global cover and the induced subgraph

(S,E(S)) is a tree. Then,

∑

{i,j}∈E(S)

xij ≤ |E(S)| − 1

is a valid inequality for P xy and P x.

More generally, for every S ⊂ V , and any induced subgraph (S,E(S)), the
following inequalities are valid.

Theorem 7 Let S ⊂ V be a minimal cover of a subset Vc for some c ∈ [k].
Then, the following cover inequalities:

∑

i∈S |δ(i)|yci ≤ 2|E(S)| −mini∈S{|δ(i)|}

are valid for Pxy, and

∑

i∈S |δ(i)|xi,n+c ≤ 2|E(S)| −mini∈S{|δ(i)|}

are valid for Px.

Proof Observe that the set S \ {v} for some v ∈ S belongs to any feasible
solution. In the worst case this is true by choosing the node with minimum
degree.

The following theorem extends the previous result for minimal global cov-
ers.

Theorem 8 Let S ⊆ V be a minimal global cover and (S,E(S)) the subgraph

induced by S. The inequality:

∑

{i,j}∈E(S)

xij ≤ |E(S)| −min
i∈S

{|δ(i)|}

is valid for Pxy and Px.

Theorem 9 Let c ∈ [k] be a fixed number and S ⊂ V with wt(S) ≤ W ct
U for all

t ∈ [τ ]. Moreover, let rt = W ct
U − wt(S) and X = {i ∈ V \ S : wt

i > rt, t ∈ [τ ]}
be a non-empty set. The (S, c)-family of inequalities with respect to S

∑

i∈S

wt
iy

c
i +

∑

j∈X

(wt
j − rt)y

c
j ≤ wt(S), ∀t ∈ [τ ],

is valid for P xy and,

∑

i∈S

wt
ixi,n+c +

∑

j∈X

(wt
j − rt)xj,n+c ≤ wt(S), ∀t ∈ [τ ],

is valid for Px.

Proof To prove this result, two cases are considered:
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– If
∑

j∈X ycj = 0, then the family of inequality are trivially valid.
– If

∑

j∈X ycj > 0, then for each t ∈ [τ ]

∑

i∈S

wt
iy

c
i +

∑

j∈X

(wt
j − rt)y

c
j =

∑

i∈S

wt
iy

c
i +

∑

j∈X

wt
jy

c
j −

∑

j∈X

rty
c
j

≤
∑

i∈V

wt
iy

c
i −

∑

j∈X

rty
c
j

≤ W ct
U − rt

= wt(S)

The validity of the second family of inequalities for Px is proven in a similar
way due to the correspondence between the variables yci and xi,n+c.

The previous family of inequalities can be rewritten in terms of the edge
variables xij which appear in both formulations.

Theorem 10 Let S ⊂ V with wt(S) ≤ minc{W
ct
U } for each t ∈ [τ ] and

X = {j ∈ V \ S : wt
j > rt, ∀t ∈ [τ ]} 6= ∅, where rt = minc{W ct

U } − wt(S). For
each fixed node i ∈ S, the (S, i)-family of inequalities

wt
i +

∑

l∈S\{i}

wt
lxil +

∑

j∈X

(wt
j − rt)xij ≤ wt(S), ∀t ∈ [τ ]

is valid for P xy and Px.

5 Computational experiments

Some computational experiments with our IP formulations and valid inequali-
ties are carried out in this section. A set of tests are fulfilled and they consist of
solving the formulations F1 and FR2 and combining them with valid inequal-
ities in different ways. For the first formulation the valid inequalities 2-partxy
(Corollary 2), cycle (Theorem 5), subgraph (Theorem 8), and upper-bound
(Theorem 10) are included, meanwhile the second reduced formulation con-
siders 2-partx (Corollary 1), cycle (Theorem 5), subgraph (Theorem 8), and
upper-bound (Theorem 10) as valid inequalities.

The corresponding instances are samples of real-world data arising from an
application of the INEC introduced in Section 1. The case study is focused in
Guayaquil, the second most populous city of Ecuador. Given two positive in-
teger numbers n and k, with n > k, a sample instance consists of n points ran-
domly chosen from a population of 820 stores together with working times for
collecting data and waiting times spent by pollsters in queues at each selected
store. The distance between two stores is the pedestrian travel time. Thus, one
can associate the location of stores with the nodes of a graph, the distance
function with pedestrian travel times between stores, and a 2-dimensional
vector of weights at each node (the first component contains working times
and the second one corresponds to waiting times). Moreover, upper and lower
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bounds W t
L = µt(n/k) − 2σt and W t

U = µt(n/k) + 2σt, for all t ∈ {1, 2} are
specified. In latter formulas, µt and σt are the average and standard deviation
of weights of all nodes associated to attribute t, for t ∈ {1, 2}. For each pair
(n, k) ∈ {(20, 3), (30, 4), (40, 5), (50, 6), (55, 6)}, five instances are generated
according to the method described before.

The IPs were solved using the integer programming solver Gurobi 8.10
[9] and the C++ programming language interface. All the experiments were
performed on an Intel Core i7 3.60 GHz with 8 GB RAM running Ubuntu
14.01. The computation time is limited to 2000 seconds for every instance.

The first experiments consist in verifying the efficiency of the variable re-
duction procedure explained in the preprocessing phase (Section 3.2). Both IP
formulations are solved using Gurobi (cuts are disabled) with and without the
aforementioned process.

Table 1 summarizes the results for F1 and Table 2 reports the results ob-
tained for FR2. The organization of these tables is as follows: first column
displays the pair (n, k) which describes the number of nodes and the number
of subsets to be constructed in the instance; columns 2 to 5 report the ob-
jective function value, the optimality gap, the CUP time and the number of
B&B nodes evaluated in the optimization process for the original formulation,
respectively. The remaining columns show the objective function value, the op-
timality gap, the CPU time and the number of B&B nodes for the formulation
including the preprocessing phase.

For the first formulation, instances of size n = 20 are solved up to the opti-
mality in an average time of 1.94 seconds and for instances of size n = 30 the
optimality is obtained in an average CPU time of 440.64 seconds. However, if
the preprocessing phase is included, the CPU time for instances of size n = 20
are reduced to 0.51 seconds and for instances of size n = 30 the average CPU
time is 30.06 seconds. In the remaining instances, the preprocessing routine
reduces the optimality gap in 27, 58% in average. Moreover, one can see that in
all instances the number of evaluated nodes in the B&B process is drastically
reduced. These results are supported with experiments on the reduced formu-
lation FR2 which are shown in Table 2. Instances of size n = 20 are solved up
to the optimality in an average time of 3.67 seconds and 1.40 seconds when
preprocessing routine is included. In this formulation, the third instance of
size n = 30 is not solved optimally, but if the preprocessing phase is included
in the optimization process, all of them are solved up to the optimality in an
average CPU time of 74.82 seconds. As in the first formulation, the number of
B & B nodes and the optimality gap are reduced.

The second experiment consists on working with valid inequalities pre-
sented in Section 4. The performance of the IP formulations including different
combinations of separation routines is compared. Each family of valid inequal-
ities is enumerated exhaustively, and at most 100 valid inequalities are added
at each node of the branching procedure when those are violated by a factor
of 0.1. In the overall Branch & Cut process at most 5000 valid inequalities are
included.
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F1 F1 + preprocessing
Instance Obj Gap Time Nodes Obj Gap Time Nodes

(20,3)

1934.69 0.00 1.99 8042 1934.69 0.00 0.63 596
1756.26 0.00 3.34 18579 1756.26 0.00 0.71 1123
1364.55 0.00 1.66 4338 1364.55 0.00 0.44 181
2051.81 0.00 1.56 6283 2051.81 0.00 0.41 794
1019.87 0.00 1.13 3021 1019.87 0.00 0.36 206

(30,4)

3324.67 0.00 158.80 332336 3324.67 0.00 18.94 19619
2242.02 0.00 265.41 592512 2242.02 0.00 38.52 48053
3081.71 0.00 1043.76 2256521 3081.71 0.00 80.23 105183
2440.49 0.00 166.08 258705 2440.49 0.00 13.52 9693
1909.96 0.00 569.17 1266582 1909.96 0.00 19.11 25457

(40,5)

3827.56 58.96 2000.00 1249639 3788.55 36.53 2000.10 901763
3017.60 64.64 2000.00 1467655 3043.55 32.87 2000.08 843209
3343.26 60.92 2000.00 1587761 3342.41 24.40 2000.38 1038970
4311.32 66.35 2000.00 1315401 4374.85 27.75 2000.29 909239
2661.67 58.76 2000.00 1104112 2661.67 9.38 2000.01 980402

(50,6)

4322.05 80.17 2000.00 558163 4260.06 53.31 2000.55 281223
4932.87 78.82 2000.00 462737 5022.38 69.53 2000.62 316469
3837.74 74.60 2000.00 568476 3790.46 51.01 2000.56 355945
5312.07 85.19 2000.00 459290 5287.28 56.74 2001.23 368407
4046.14 82.79 2000.00 550554 4168.18 61.44 2001.14 272481

(55,6)

5183.67 90.49 2000.00 382912 5474.30 75.25 2000.72 205723
3944.51 86.93 2000.00 441375 4007.84 66.93 2001.48 194903
5080.74 92.12 2000.00 447422 5280.94 76.42 2000.13 184141
5036.59 91.93 2000.00 366850 5429.90 76.70 2000.82 158751
5196.04 83.76 2000.00 276016 4918.74 62.94 2000.72 226953

Table 1 Solving F1 using only Gurobi.

The separation routines for formulation F1 are performed on each node
depending on the current fractional solution denoted by (y∗, x∗). The sepa-
ration of 2-partxy inequalities is inspired by the procedure described by [8],
where the following procedure is repeated for each c ∈ [k]: first, compute
W := {i ∈ V : 0 < (yci )

∗ < 1}. If |W | ≥ 5, then an arbitrary node w ∈ W is
picked and the set S := {w} is defined. For the remaining nodes i ∈ W \ {w},
the set S is updated by S = S ∪ {i} if x∗

ij = 0 for all j ∈ S. Then, for S
and R = {c}, check if the Corollary 2 is violated and, in that case, add the
corresponding inequality as a cut to the current LP. Using the equivalence of
variables yci with xi,n+c, the routines can be extended for FR2.

Regarding cycle, subgraph and upper bound inequalities, these inequalities
are included as exhaustively enumerated sets of them, each one corresponding
to sets of 4 and 5 nodes, as these are frequently violated and enumerating
them is not a time consuming process. The following separation routines are
used in both formulations. Thus, for each ℓ ∈ {4, 5}:

– Cycle: For every subset C composed by ℓ nodes in V , the τ -dimensional
vector (w1(C), . . . , wτ (C)) is computed. If wt(C) > W ct

U for all c ∈ [k],
t ∈ [τ ], then for every cycle comformed by all nodes in C, check if the
inequality associated to Theorem (5) is violated. If that is the case, then
the corresponding cycle cut is added in the LP.
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FR2 FR2 + preprocessing
Instance Obj Gap Time Nodes Obj Gap Time Nodes

(20,3)

1934.69 0.00 3.35 5073 1934.69 0.00 1.92 3948
1756.26 0.00 4.37 7839 1756.26 0.00 3.23 8736
1364.55 0.00 2.58 3403 1364.55 0.00 0.64 906
2051.81 0.00 3.28 4630 2051.81 0.00 0.69 676
1019.87 0.00 4.78 5706 1019.87 0.00 0.52 871

(30,4)

3324.67 0.00 628.31 475931 3324.67 0.00 43.55 18773
2242.02 0.00 777.96 508718 2242.02 0.00 86.50 39981
3081.71 21.42 2000.00 1273517 3081.71 0.00 160.33 95873
2440.49 0.00 770.70 424767 2440.49 0.00 36.39 13259
1909.96 0.00 863.91 558107 1909.96 0.00 47.36 30171

(40,5)

3858.43 64.95 2000.00 348056 3956.12 47.32 2000.02 384035
3094.83 69.45 2000.08 436075 3017.60 37.84 2000.23 367297
3342.41 71.04 2000.00 362934 3342.41 35.09 2000.57 394486
4355.61 72.98 2000.00 401591 4311.32 31.97 2000.07 382282
2661.67 66.01 2000.00 345684 2661.67 20.24 2000.26 325669

(50,6)

4831.33 84.25 2000.00 143530 4216.45 56.69 2001.57 116306
5306.78 92.26 2000.00 85963 4903.67 73.61 2000.86 92877
4320.77 83.96 2000.01 125828 3910.31 55.83 2000.52 119317
5630.18 90.86 2000.00 124239 5818.08 66.56 2000.59 147153
4469.82 91.49 2000.00 174929 4645.66 71.70 2000.43 116693

(55,6)

5600.83 95.72 2000.00 66639 5511.26 80.43 2001.99 69729
4113.25 94.03 2000.00 83412 4965.11 79.60 2001.48 69248
4613.29 95.06 2000.00 79806 5300.93 82.86 2000.25 70413
5828.06 95.87 2000.01 99842 4684.62 78.26 2002.11 52771
5528.97 88.64 2000.00 68025 5112.37 70.88 2000.16 70361

Table 2 Solving FR2 using only Gurobi.

– Subgraph: Using the similar idea of the previous item , for every subset S in
V with |S| = ℓ, the τ -dimensional vector (w1(S), . . . , wτ (S)) is computed.
If wt(S) > W ct

U for all c ∈ [k] and t ∈ [τ ] and the inequality associated
to Theorem (8) is not hold, then the subgraph inequality is added in the
current LP.

– Upper bound: For every set S composed by ℓ nodes in V , the τ -dimensional
vector (w1(C), . . . , wτ (C)) is computed. If wt(S) ≤ minc∈[k]{W

ct
U }, for all

t ∈ [τ ], then a τ -dimensional vector r is computed, where rt = minc∈[k]{W
ct
U }−

wt(C). Now, each node j ∈ V \S satisfying that wt
j > rt is included in the

subset X . If |X | > 0, for every node i ∈ S, if the associated inequality in
Theorem (10) is violated, then such (S, i) inequality is included as a cut at
the LP.

The effectiveness of the valid inequalities is measured in terms of the re-
duction of the number of B&B nodes and the optimality gap. Observe that for
instances (30, 4), (40, 5), (50, 6) and (55, 6) the optimal solution was not always
found as the time limit was reached. Tables 3 and 4 display some parameters
for F1 and FR2 and experiments for each family of inequalities in an indepen-
dent manner, as well as a combination of all of them. In fact, for 2−partxy,
cycle, upper bound and the combination of all families of valid inequalities:
the best objective function value, the optimality gap, the number of Branch &
Cut nodes and the total number of added cuts, are presented. The subgraph
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separation routine produced a reduced number of violated inequalities, then
this family of inequalities is not reported in the tables. Observing the results
of Tables 3 and 4, one can conclude that the 2-partition inequalities provide
the best reduction in the optimality gap, in comparison with the results shown
when cycle and upper bound are included independently, and also in the case
when all cuts are combined together. The latter is true despite of the fact
that in the experiments, with the inclusion of all cuts, the number of nodes of
the B&C approach is reduced significantly. This reduction in the number of
nodes turns out even more evident if it is compared with the first set of exper-
iments (Tables 1 and 2) when the Gurobi solver is used without the separation
routines.

6 Conclusions

In this paper, a multi-weight graph partitioning problem is defined. The prob-
lem consists in partitioning a general graph in a fixed number of subsets of
nodes such that multiple node weight constraints over each partition must be
satisfied. The objective aims to minimize the total cost of edges with end-nodes
in the same subset. The problem, because it generalizes other partitioning
problems, has a theoretical interest for its study.

In order to solve the problem, two integer programs are proposed and
several families of valid inequalities are proved. Three of them have proven
to be effective for reducing significantly the number of B&B nodes and the
optimality gap, when those are used as cuts. This effectiveness is confirmed
with computational experiments on several instances of a real-world problem
which arises in the context of a vehicle and pollster routing problem tackled
by the authors in other work.
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17. Diego Recalde, Daniel Seveŕın, Ramiro Torres, and Polo Vaca. An exact approach for
the balanced k-way partitioning problem with weight constraints and its application
to sports team realignment. Journal of Combinatorial Optimization, 36(3):916–936,
February 2018.



M
u
lti-w

eig
h
t
g
ra
p
h
p
a
rtitio

n
in
g
p
ro
b
lem

.
1
7

2-partxy cycle upper bound All cuts together
Obj Gap Cuts Nodes Obj Gap Cuts Nodes Obj Gap Cuts Nodes Obj Gap 2-partxy Cycles UB Nodes

(30,4)

3324.67 0.00 1228 3097 3324.67 0.00 0 19619 3324.67 16.13 4 13809 3324.67 0.00 1326 0 4 3774
2242.02 0.00 1917 11328 2242.02 0.00 5002 45578 2263.19 41.34 26 9545 2242.02 0.00 2209 5001 58 11496
3081.71 0.00 3693 16494 3096.42 23.29 0 41790 3096.42 46.78 10 10426 3096.42 7.29 3518 0 11 11768
2533.44 0.00 1775 3082 2440.49 0.00 0 9693 2440.49 0.00 0 9693 2533.44 0.00 1775 0 0 3082
1909.96 0.00 1510 5909 1909.96 0.00 5001 23724 1915.09 20.54 91 12363 1909.96 0.00 1482 5002 22 6001

(40,5)

3887.53 50.74 5003 11087 4059.84 83.12 0 5998 4791.22 89.79 0 1732 4015.44 64.39 5003 0 0 2914
3020.84 27.05 4921 10109 3811.78 82.26 0 6170 4785.39 90.87 12 1780 3020.84 44.32 3716 0 6 3182
3342.41 27.57 5001 11040 3342.41 28.63 5003 775289 4411.25 92.74 63 1525 3482.18 41.20 4385 5001 20 3856
4311.32 22.09 5002 12216 4311.32 27.79 5002 739929 4934.65 90.80 0 1722 4381.35 28.28 5001 5002 159 7323
2666.49 28.66 5001 9602 3018.39 70.56 0 6133 3365.36 85.11 2 1802 2666.49 38.80 4837 2 0 3591

(50,6)

4711.79 57.67 5003 8279 5683.00 91.25 0 2049 5690.88 91.93 108 575 5128.35 75.56 5003 0 17 1549
4733.61 64.68 5004 10518 6250.06 90.40 0 1986 7850.24 93.33 0 370 6430.51 82.23 5004 0 0 1692
4176.53 46.26 5002 12633 5930.39 86.74 0 1968 6246.73 92.95 0 513 4460.44 60.37 5002 0 32 1658
5332.54 57.75 5001 8289 5537.26 61.78 5001 220097 10101.30 96.42 0 504 5967.49 69.60 5003 5001 405 2999
4101.24 50.02 5001 9937 5775.03 89.44 0 2076 6207.62 90.17 0 580 4147.20 60.59 5003 0 4 1783

(55,6)

4913.86 63.64 5002 6697 6229.89 91.78 0 1353 8426.52 94.47 0 284 5930.16 80.48 5002 0 0 1525
3883.90 61.72 5004 5233 4581.18 75.44 5002 102753 6316.71 96.21 1 393 5066.65 76.31 5004 1911 0 1536
5372.43 68.51 5004 7950 6150.16 82.47 5003 107386 11073.80 97.17 0 281 6517.47 83.48 5004 5002 38 1656
4878.72 58.22 5001 7013 4914.08 75.48 5002 98541 10140.60 97.06 0 295 4878.72 74.67 5001 3202 7 1459
4670.29 62.04 5003 9764 7373.84 91.93 0 1024 7835.11 91.01 2 275 7181.84 80.79 5003 0 167 1527

Table 3 Solving F1 using valid inequalities.

2-partx cycle upper bound All cuts together
Obj Gap Cuts Nodes Obj Gap Cuts Nodes Obj Gap Cuts Nodes Obj Gap 2−partx Cycles UB Nodes

(30,4)

3324.67 0.00 1193 2481 3324.67 0.00 0 18773 3324.67 20.05 1 13509 3324.67 0.00 1193 0 0 2481
2242.02 0.00 1921 11195 2242.02 0.00 5003 36967 2271.98 39.06 36 9698 2242.02 0.00 1883 5002 13 8572
3081.71 0.00 2911 17373 3096.42 21.36 0 43453 3081.71 38.78 89 10438 3081.71 13.50 2721 0 0 9727
2566.72 0.00 1770 3450 2440.49 0.00 0 13259 2440.49 0.00 0 13259 2566.72 0.00 1770 0 0 3450
1909.96 0.00 1689 9286 1909.96 0.00 5001 28364 1909.96 24.56 6 12051 1909.96 0.00 1706 5001 5 8973

(40,5)

3752.90 52.44 5001 5120 4554.03 84.00 0 8709 4751.16 91.15 0 1996 3752.90 58.61 4318 0 0 3079
3020.84 33.22 4484 7000 3757.13 79.57 0 8163 4311.81 89.38 0 2155 3020.84 43.11 3736 0 0 3335
3342.41 27.21 4068 8589 3451.75 37.67 5001 372252 3668.84 88.05 16 2230 3342.41 37.22 2929 5002 22 3183
4392.06 29.97 4849 7737 4311.32 33.54 5003 287378 5731.82 90.90 4 1866 4381.32 37.84 3773 5003 1 3671
2661.67 32.79 5001 6978 2988.85 68.47 0 6034 2988.85 79.25 1 2068 2666.49 39.16 4535 0 0 3713

(50,6)

4631.28 68.56 4437 1757 5127.11 90.30 0 1939 6823.78 94.21 102 536 4641.85 67.56 4135 0 1 1521
5794.39 78.54 5001 2037 5914.10 89.48 0 1923 6288.01 90.45 0 502 5794.39 78.54 4896 0 0 1660
4926.45 63.16 4632 1771 5492.48 85.28 0 1910 6857.41 93.58 2 517 5696.60 69.01 3876 0 0 1364
5850.26 70.79 4562 1935 5257.26 65.60 5002 108094 8373.99 95.68 0 372 6169.55 72.30 4100 1835 0 1596
4132.87 59.53 4743 1842 5869.67 88.74 0 2021 6102.18 90.76 0 583 4132.87 59.61 4229 0 0 1518

(55,6)

6308.75 79.86 4286 1374 7259.43 93.89 0 1167 10057.10 94.87 0 269 6308.75 79.86 3916 0 0 1256
4489.25 71.28 4013 1190 3976.48 75.99 5002 49412 6044.77 93.63 0 255 4489.25 71.28 3970 432 0 1167
4484.42 75.95 4260 1444 4822.35 79.75 5002 50750 8901.15 96.73 0 237 4552.32 76.31 4013 466 2 1348
5898.74 71.20 4386 1352 5273.38 83.00 5003 34518 8417.85 96.46 0 274 5898.74 71.20 4171 311 0 1278
5410.17 73.34 4807 1540 6916.64 91.40 0 1197 7750.09 91.55 0 259 5445.44 73.51 4679 0 0 1480

Table 4 Solving FR2 using valid inequalities.
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