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Abstract. We consider the exact penalization of the incompressibility condition div(u) =
0 for the velocity field of a Bingham fluid in terms of the L1–norm. This penalization
procedure results in a nonsmooth optimization problem for which we propose an al-
gorithm using generalized second–order information. Our method solves the resulting
nonsmooth problem by considering the steepest descent direction and extra generalized
second–order information associated to the nonsmooth term. This method has the ad-
vantage that the divergence-free property is enforced by the descent direction proposed
by the method without the need of build-in divergence-free approximation schemes. The
inexact penalization approach, given by the L2–norm, is also considered in our discussion
and comparison.
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1. Introduction

Within the vast and interesting literature related to the numerical solution of vis-
coplastic fluids, there are mainly two general strategies: purely nonsmooth algorithms
and regularization based procedures. The first approach deals with the purely nonsmooth
variational problem by considering classical algorithms in the framework of Augmented
Lagrangian methods (see for example [13, 2, 16]). The second procedure copes with
the nondifferentiability involved in the viscoplastic fluid models by regularizing the non-
differentiable term imposed on the strain rate tensor by, for instance, using a local C1

regularization (see [8, 9, 10, 17, 18, 20]). Then, well known first-order or second-order
methods can be applied to solve the regularized problems. In this context, the study of
superlinear methods have been addressed in [8, 9, 10]. There, a Huber local regularization
of the problem is formulated in order to use an efficient semismooth Newton method.

Recently, several first-order methods from nonsmooth optimization have been success-
fully applied to solve these models, without the need of regularizing the original problem,
see [32]. However, higher order methods require the consideration of second–order in-
formation or acceleration techniques based on the utilization of surrogate differentiable
problems.

If the finite–element–method is used for the numerical approximation of viscoplastic
fluids, several important stability issues arise that need to be addressed. Particularly,
the well–known Ladyzhenskaya–Babuška–Brezzi condition [14, Ch.2 Sec.1.4] must hold in
order to guarantee a stable approximation. This conditions is satisfied, for instance, by
Taylor–Hood finite elements [14, Ch.2 Sec.4.2]. In addition, the divergence–free constraint
is another important condition which can be incorporated in the finite element approxi-
mation. However, the implementation of divergence–free finite–element spaces is not an
easy task and usually the incompressibility condition is kept as constraint.
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In this paper, we investigate the exact penalization of the incompressibility condition by
using the L1–norm, combined with a Huber regularization of the characteristic nondiffer-
entiable term of the cost functional associated to the Bingham model. This consideration
allows us to incorporate generalized second–order information associated to both non-
smooth terms: the regularization associated to the nondifferentiable term of the velocity
gradient and the L1–norm of the divergence of the velocity field. The sparsity promoting
effect of the L1–norm is a well known feature exploited in data analysis and optimal con-
trol problems [30]. In the fluid context, we seek for the sparsification of the divergence of
the velocity field of the fluid. The novelty of our contribution consists on the design of a
an exact penalization based algorithm, using second–order information, for the numerical
solution of viscoplastic fluids. As mentioned before, the exact penalization is proposed by
using the sparsity promoting feature of the L1–norm that enforces the incompressibility
condition, which is equivalent to the original formulation for higher values of the penaliza-
tion parameter. The benefits of imposing sparsity on the divergence of the solution can be
compared with sparse solutions on optimal control problems where their approximations
have exact null entries. In this context, null divergence is better computed using the L1–
norm. Also, we study the quadratic L2–norm penalization, which is recognizably distinct
from the sparsity penalizer in that its equivalence with the original problem is reached at
the limit to the infinity of the penalizing parameter.

The usage of L1–norm entails both theoretical and numerical challenges in view of its
nonsmoothness. Indeed, we emphasise that the contribution of this work consists in the
analysis of exact penalization approach and the numerical algorithm that we propose in
order to solve efficiently this formulation. We analyze the exact penalization problem
in the context of nonsmooth optimization. Further, we show the existence of a lower
bound for the penalizing parameter that guarantees the equivalence of the divergence
penalized optimization problem with the original regularized formulation. Therefore, an
exact penalization formulation is obtained. In addition, we show that the fluid’s pressure
can be recovered from the associated multiplier of the exact penalization by using an
analogous approach to the de Rham’s theory.

On the other hand, the algorithm that we propose computes a descent direction which
is generated by a minimum norm subgradient problem, and subsequently modified by
generalized second–order information, in the spirit of [28]. The minimum norm subgradient
problem implies the numerical solution of an optimization subproblem. However, this
associated subproblem is a quadratic constrained type problem that can be efficiently
solved in a smaller subspace by well known methods. Therefore, its computational cost is
a good price to pay in order to obtain the descend direction. The second–order information
is obtained by enriching the Hessian matrix associated with the differentiable part of the
cost function. This enrichment procedure consists of adding a matrix resulting of the
generalized differentiation of a Huber regularization of the L1–norm penalizing term of
the divergence-free condition. We prove that our algorithm converges to the solution of
the exact–penalization formulation of our problem and, a fortiori, to the solution of the
regularized optimization problem of the fluid.

We organize this article as follows: first we present known results and the classical opti-
mization formulation of the steady-state Bingham flow and its local Huber regularization.
Next, we present the exact penalization formulation and address several theoretical ques-
tions regarding its equivalence with the constrained problem and existence of multipliers.
Also, the quadratic penalization and its equivalence at the limit is discussed. In section
4, the recovery of the fluid’s pressure is presented. There, the multiplier associated to
the exact penalization is related with the pressure. Section 5 is devoted to the numerical
algorithm using generalized second–order information associated to the nondifferentiable
term of the cost. A convergence analysis is carried out for the proposed algorithm using a
nonsmooth theory framework in functional spaces. Finally, a set of numerical experiments
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is presented and a discussion of the advantages of the exact penalization approach are
illustrated in different simulations of 2D and 3D flows.

1.1. Preliminaries. The following notation will be used thorough the rest of the paper.
The Euclidean norm in Rn is denoted by | · |. The duality pairing between a Banach space
Y and its dual Y ∗ is given by 〈·, ·〉Y,Y ∗ , while any real inner product defined on Y will

be noted by (·, ·)Y . Ω is an open and bounded subset of Rn, for n = 2, 3, with Lipschitz
boundary. The Frobenius scalar product in Rn×n and its associated norm are defined by

A : B = tr(AB>) and |A| =
√

(A : A), for A, B ∈ Rn×n,
respectively. We use the bold notation for the vector spaces, such as H1

0(Ω) = (H1
0 (Ω))n.

Further, we introduce the space of symmetric matrices of Lp-functions as

Lp(Ω) :=
{
τ = (τij)

n
i,j=1 : τij = τji ∈ Lp(Ω)

}
,

and the divergence–free space by V = {u ∈ H1
0(Ω) : div u = 0}.

Finally, we use the notation E = (∇+∇>) for the symmetric gradient operator. Consid-

ering that E : H1
0(Ω)→ L2(Ω), we obtain that Eu = (Eij(u)), with Eij(u) := 1

2( ∂ui∂xj
+
∂uj
∂xi

) ∈

L2(Ω) for 1 ≤ i, j ≤ n. By [5, pp. 404], we have that

∫
Ω
Eu : Eu dx = ‖Eu‖2L2 .

2. Constrained optimization problem for viscoplastic fluids and its
regularization

It is well known ( [17, 18, 21, 22]) that the solution of the following minimization problem
corresponds to the velocity field ū of the steady-state Bingham flow.

(1) min
u∈V

J̃(u) := µ

∫
Ω
Eu : Eu dx+ g

∫
Ω
|Eu| dx−

∫
Ω

f · u dx.

The Huber regularization of the previous problem (1) was introduced in [8], and it reads
as follows:

(2) min
u∈V

J(u) := µ

∫
Ω
Eu : Eu dx+

∫
Ω

Ψ(Eu) dx−
∫

Ω
f · u dx,

where Ψ : Rd×d → R is a local C1–regularization of the Frobenius norm, defined by

(3) Ψ(A) =

{
g|A| − g2

2β if |A| ≥ g
β ,

β
2 |A|

2 if |A| < g
β .

Here β > 0 is a given approximation parameter. Clearly, we have that β → ∞ implies
that Ψ(A)→ |A|, see [8].

The objective funcional J is proper, strictly convex, continuous and coercive (see [27,
17]). Therefore, [12, Prop. 1.2] implies the existence of a unique solution ũ ∈ V of (2).

The unconstrained optimization problem is posed in the divergence–free space V . Thus,
we can reformulate this problem (2) as the following constrained optimization problem in
H1

0(Ω)

(B)

 min
u∈H1

0(Ω)
J(u) := µ

∫
Ω
Eu : Eu dx+

∫
Ω

Ψ(Eu) dx−
∫

Ω
f · u dx

subject to: div u = 0,

where div : H1
0(Ω) → L2

0(Ω). This is a convex differentiable optimization problem with
differentiable equality constraints.

A regularity condition is needed in order to guarantee the existence of a Lagrange
multiplier, that allows to derive a Karush-Kuhn-Tucker (KKT) system for the constrained
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problem (B). Thus, following [35, Sec. 1. eq. (1.4)], we need to prove that the following
regularity condition holds

(4) Z = L2
0,

where Z :=
{
α div v : α ≥ 0,v ∈ H1

0(Ω)
}

is the cone generated by the image of the di-
vergence operator. An immediate observation is that the condition (4) is satisfied, since
the continuous linear operator div : H1

0(Ω) → L2
0(Ω) is surjective (see [5, Th. 6.14-1]).

Therefore, by [35, Th. 3.1], we infer the existence of a Lagrange multiplier λ ∈ L2
0(Ω)

associated to the constraint div u = 0, such that the following system at the solution ũ,
is satisfied:

(5a) div ũ = 0,

(5b)
〈J ′(ũ) + grad λ,u− ũ〉H−1,H1

0
= 〈J ′(ũ),u− ũ〉H−1,H1

0

− (λ,div(u− ũ))L2 = 0, ∀u ∈ H1
0(Ω).

Here, grad : L2
0(Ω) → H−1(Ω) is the dual operator of −div : H1(Ω) → L2

0(Ω) and
J ′(u) : H1

0(Ω)→ R is the Fréchet derivative of J at u, given by

(6) 〈J ′(u),v〉H−1,H1
0

= 2µ

∫
Ω
Eu : Ev + g

∫
Ω
β

Eu : Ev
max(g, β|Eu|)

dx−
∫

Ω
f · v dx.

Notice that the last derivative has a nondifferentiable term involving the max function.
The following technical result regarding this nondifferentiable term will be useful in the

forthcoming analysis.

Lemma 1. Let g > 0 be given. For fixed β > 0, we introduce the following notation
θβ(u) := max(g, β|Eu|). Then, for all u and v in H1

0(Ω), the following inequality holds

(7) θβ(u)− θβ(v) < β|Eu− Ev|, a.e. in Ω.

Proof. Let u ∈ H1
0(Ω). We introduce the following sets

(8) Eu
β := {x ∈ Ω : β|Eu| < g} and Iuβ := {x ∈ Ω : β|Eu| ≥ g}.

We analyse pointwise bounds of θβ(u)− θβ(v) on the four disjoint sets: Eu
β ∩Ev

β , Eu
β ∩ Ivβ ,

Ev
β ∩ Iuβ and Iuβ ∩ Ivβ .

Consider Eu
β ∩ Ev

β . In this set, (7) is directly satisfied since θβ(u) = θβ(v) = g. Hence

θβ(u)−θβ(v) = 0. On Eu
β ∩Ivβ , we have that θβ(u) = g and θβ(v) = β|Ev| with β|Ev| ≥ g,

a.e. in Ω. Therefore, we have the relation:

(9) θβ(u)− θβ(v) = g − β|Ev| ≤ g − g = 0 ≤ β|Eu− Ev|.

Next, in Ev
β ∩ Iuβ it follows that θβ(v) = g and θβ(u) = β|Eu| with β|Eu| ≥ g, a.e. in

Ω. Therefore, (7) is fulfilled, since

θβ(u)− θβ(v) = β|Eu| − g < β|Eu| − β|Ev| ≤ β|Eu− Ev|.

Finally, in Iuβ ∩ Ivβ , we have that θβ(u) = β|Eu| and θβ(v) = β|Ev| . Therefore, we have
that

θβ(u)− θβ(v) = β|Eu| − β|Ev| ≤ β|Eu− Ev|.
Thus, since the four given sets provide a disjoint partitioning of Ω, inequality (7) is satisfied
almost everywhere in Ω. �

Remark 1. Let u ∈ H1
0(Ω) be given. Then, we have that

(10)
|Eu|
θβ(Eu)

≤ 1

β
, a.e. in Ω.
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Indeed, since θβ > 0 and by recalling the sets Eu
β and Iuβ from Lemma 1, we analogously

observe that the following pointwise estimates hold. On Eu
β , we have that θβ(Eu) = g and

that |Eu| < g
β . Then, we obtain that

|Eu|
θβ(Eu)

=
|Eu|
g

<
1

β
, a.e. in Ω.

On Iuβ , we have that θβ(Eu) = β|Eu|. Then, we obtain that

|Eu|
θβ(Eu)

=
|Eu|
β|Eu|

≤ 1

β
, a.e. in Ω.

3. Exact Penalization Formulation

We rewrite the Huber regularized Bingham problem as the constrained optimization
problem (B) to characterize its solutions via a KKT system. Now, the idea behind the
penalty approach is to consider the constraint as a penalization of the objective functional.
This approach leads us again to an unconstrained problem to be analyzed. In the case of
the steady-state Huber regularized Bingham flow, taking into account the sparsification
property of the L1–norm we propose an exact penalization as follows.

(11) Jσ(u) := J(u) + σ‖div(u)‖L1 ,

where σ > 0 and J(u) is given in (B). The functional given in (11) is continuous and
strictly convex, which satisfies that

lim
‖u‖

H1
0
→∞

Jσ(u) = +∞.

Thus, we can conclude that the minimization problem

(EP) min
u∈H1

0(Ω)
Jσ(u)

has a unique solution ū ∈ H1
0(Ω) (see [18]). Also, since Jσ is a nondifferentiable proper

convex functional, by Fermat’s Rule [7, Th. 16.2], the optimality condition reads as follows

(12) 0 ∈ ∂Jσ(ū) = J ′(ū) + ∂h(ū),

where h(ū) = σ‖ div(ū)‖L1 and ∂h(ū) is the convex subdifferential of h at ū. Moreover,
taking into account that h = σ‖·‖L1 ◦div, and by using the rules of subdifferential calculus
for the composition of functions (see [6, Th. 4.13]), we have that for η ∈ ∂h(u), there
exists ζ ∈ σ∂‖ · ‖L1(div u), such that

(13) 〈η,v〉H−1,H1
0

= 〈− grad ζ,v〉H−1,H1
0

= (ζ,div v)L2 , ∀v ∈ H1
0(Ω).

Therefore, the optimality condition (12) turns into

(14)
〈
−J ′(ū),v

〉
H−1,H1

0
= (ζ,div v)L2 , ∀v ∈ H1(Ω).

Note that ζ ∈ σ∂‖ · ‖L1(div u) yields that ζ ∈ L2
0(Ω), and |ζ| ≤ σ a.e. in Ω.

Let us now discuss about the equivalence of the constrained problem (B) and the pe-
nalized problem (EP).

Theorem 1. Let ũ be the solution of problem (B). Then ũ is also the solution of (EP).
Furthermore, let ū be the solution of problem (EP), associated to a given σ. Then, there
exists σ0 > 0 such that for all σ ≥ σ0 the divergence free condition

‖ div ū‖L1 = 0,

holds. This fact implies that ū is solution of the constrained problem (B), i.e., ū = ũ, for
σ > σ0.
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Proof. Since div ũ = 0 and J(ũ) ≤ J(u), it follows that

J(ũ) + σ‖ div ũ‖L1 = J(ũ) ≤ J(u) ≤ J(u) + σ‖div u‖L1 , ∀u ∈ H1
0(Ω).

Thus, the solution ũ of the constrained problem (B) is also the minimizer of the functional
in (EP).

We prove the second claim by contradiction. Therefore let us assume that for all σ0 > 0,
there exists σ ≥ σ0 such that ‖div ū‖L1 > 0. Since ũ is the solution of problem (B), we
have that div ũ = 0. Next, we know that ū minimizes Jσ, which yields that

(15)
0 ≤ Jσ(ũ)− Jσ(ū)

= J(ũ) + σ‖ div ũ‖L1 − J(ū)− σ‖ div ū‖L1

= J(ũ)− J(ū)− σ‖ div ū‖L1 .

Using the fact that J is convex and differentiable, (15) implies that

σ‖ div ū‖L1 ≤ J(ũ)− J(ū) ≤ −
〈
J ′(ũ), ū− ũ

〉
H−1,H1

0
.

Then, from the optimality condition (5b) for ũ, we obtain that

(16)

σ‖ div ū‖L1 ≤ −〈J ′(ũ), ū− ũ〉H−1,H1
0

= −(λ,div(ū− ũ))L2

≤ |(λ,div ū)L2 |
≤ ‖λ‖L2‖ div ū‖L2 .

Let us assume λ 6= 0, otherwise the result follows. By choosing σ > σ0 + 2‖λ‖L2
‖ div ū‖L2

‖ div ū‖L1
,

we have the relation

σ0 + 2‖λ‖L2

‖ div ū‖L2

‖ div ū‖L1

< σ ≤ ‖λ‖L2

‖ div ū‖L2

‖ div ū‖L1

.

Which is a contradiction since 2‖λ‖L2
‖div ū‖L2

‖div ū‖L1
≥ ‖λ‖L2

‖ div ū‖L2

‖ div ū‖L1
> ‖λ‖L2

‖div ū‖L2

‖div ū‖L1
− σ0.

Thus, there exists σ0 > 0 such that, for all σ ≥ σ0, ‖ div ū‖L1 = 0.
The last condition imply that if σ is larger than σ0 then ū is feasible for the constrained

problem (B). Further, since ‖div ū‖L1 = 0, it follows that

J(ū) = J(ū) + σ‖ div ū‖L1 = Jσ(u) ≤ Jσ(ũ) = J(ũ).(17)

Therefore, by the definition of ũ we have J(ũ) = J(ū), where ū is a global minimum for
problem (B). �

In view of the previous result, the minimization of Jσ is called exact penalization for-
mulation of (B).

Remark 2. For numerical computation purposes it is important to derive a sharp esti-
mation for σ0, which can be used a priory in order to guarantee exact penalization. We
discuss this estimation for σ0 by using Theorem 1. From the embedding L2(Ω) ↪→ L1(Ω)

we have that ‖ div ū‖L1 ≤ |Ω|
1
2 ‖ div ū‖L2. Multiplying this inequality by ‖λ‖L2, we have

that

(18) ‖λ‖L2 |Ω|−
1
2 ‖div ū‖L1 ≤ ‖λ‖L2‖ div ū‖L2 .

From the proof of Theorem 1 it is clear that, if ū is the solution of the unconstrained
problem (EP), then any σ ≤ σ0 satisfies inequality (16) in a nontrivial manner, i.e., in
particular

σ0‖ div ū‖L1 ≤ ‖λ‖L2‖div ū‖L2 .

Therefore, from (18) we might consider either σ0 ≥ ‖λ‖L2 |Ω|−
1
2 or σ0 ≤ ‖λ‖L2 |Ω|−

1
2 .

If the later holds, we have found a σ̄ = ‖λ‖L2 |Ω|−
1
2 ≥ σ0. Then thanks to Theorem 1

we have that div ū = 0 and equation (16) is satisfied trivially. On the other hand, if
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σ0 ≥ ‖λ‖L2 |Ω|−
1
2 , we arrive to a lower bound for σ0. Then, with both results we can

establish the estimation

(19) σ0 ≈ ‖λ‖L2 |Ω|−
1
2 .

In practice, by solving the system 〈J ′(ū),u〉H−1,H1
0

= (λ,div(u))L2 , for all u ∈ H1
0(Ω) we

can obtain λ in order to estimate σ0.

3.1. Quadratic Penalization. We finish this section with a discussion of a quadratic
penalty approach using the L2–norm. Our aim with this section is to show the differences
and similarities with the exact penalization approach for the Bingham viscoplastic flow
problem. The quadratic penalty function, involving the L2–norm looks as follows

(QP) Jν(u) := J(u) +
ν

2

∫
Ω
| div u|2 dx,

where ν > 0 and J(u) is given in (B). Similarly, as we show in Section 3, we can state
that Jν(u) is a strictly convex and, furthermore, differentiable functional, which satisfies

lim
‖u‖

H1
0
→∞

Jν(u) = +∞.

Thus, we can conclude that the following minimization problem has a unique solution, for
each ν > 0.

(20) min
u∈H1

0(Ω)
Jν(u).

Let us note by uν the solution of (20). Further, let us recall that this function must be
the solution of the following PDE, which corresponds to the Euler equation associated to
the optimization problem. Therefore, uν satisfies

(21)

2µ

∫
Ω
Euν : Ev dx+ gβ

∫
Ω

Euν : Ev
max(g, β|Euν |)

dx+ ν

∫
Ω

(div uν)(div v) dx

=

∫
Ω

f · v dx, ∀v ∈ H1
0(Ω).

On the other hand, let us recall that the solution of the Huber regularized Bingham
problem (B) is also a solution for the following PDE

(22)

2µ

∫
Ω
Eu : Ev dx+ gβ

∫
Ω

Eu : Ev
max(g, β|Eu|)

dx−
∫

Ω
pdiv v dx

=

∫
Ω

f · v dx, ∀v ∈ H1
0(Ω).

Here, p ∈ L2
0(Ω) stands for the pressure and its existence is guaranteed by the de Rahm’s

Theorem. This fact is deeply analyzed in [8], and it will be discussed in the context of the
presented exact penalty methods in the next section.

From the mechanical point of view, (22) represents the flow of an incompressible Hu-
ber regularized Bingham flow, while (21) represents the flow of a slightly incompressible
Bingham flow. This means that div uν 6= 0, but nearly to zero. In fact, we expect that
div uν → 0, as ν →∞ (see [31]). This last convergence property is recognizable different
from the expected behavior of the exact penalization presented in Section 3, where the
incompressibility of the fluid is expected to hold for a (possibly large) finite value of the
penalization parameter σ.

Theorem 2. Let {uν} ⊂ H1
0(Ω) be the sequence formed by the solutions of (21) associated

to the parameter ν > 0. Moreover, let u ∈ H1
0(Ω) be the solution of the variational problem

(22). Then,

(23) uν → u, in H1
0(Ω), as ν →∞.
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Proof. By subtracting the equation (22) from equation (21), we have that the variational
problem holds

(24)

2µ

∫
Ω
E(uν − u) : Ev dx+ gβ

∫
Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: Ev dx

+ν

∫
Ω

(div uν)(div v) dx = −
∫

Ω
p div v dx, ∀v ∈ H1

0(Ω),

where θβ(u) was introduced in Lemma 1. Next, we take v = uν−u in the above equation,
where u fulfills the divergence–free condition div u = 0. Then, it follows that

(25)

2µ

∫
Ω
|E(uν − u)|2 dx+ gβ

∫
Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: E(uν − u) dx

+ν

∫
Ω
|div uν |2 dx = −

∫
Ω
p div uν dx.

Let us focus on the second term on the left hand side of (25). Here, Lemma 1 and the
Cauchy-Schwarz inequality imply that∫

Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: E(uν − u) dx

=

∫
Ω

[
Eu
(

1

θβ(uν)
− 1

θβ(u)

)
+
Euν − Eu
θβ(uν )

]
: E(uν − u) dx

=

∫
Ω

[
|E(uν − u)|2

θβ(uν)
+

(
θβ(u)− θβ(uν)

θβ(uν)θβ(u)

)
Eu : E(uν − u)

]
dx

=

∫
Ω

1

θβ(uν)

[
|E(uν − u)|2 −

θβ(uν)− θβ(u)

θβ(u)
Eu : E(uν − u)

]
dx

≥
∫

Ω

1

θβ(uν)

[
|E(uν − u)|2 − β |Euν − Eu|

θβ(u)
|Eu||E(uν − u)|

]
dx.

Thus, by taking into account (10), it holds that∫
Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: E(uν − u)dx

≥
∫

Ω

1

θβ(uν)

[
|E(uν − u)|2 − β|E(uν − u)|2 |Eu|

θβ(u)

]
dx ≥ 0.

Next, inserting the last relation in (25), and using Korn’s inequality, we conclude the
existence of a constant C > 0 such that

(26)

C‖uν − u‖2H1
0

+ ν

∫
Ω
| div uν |2 dx ≤ 2µ

∫
Ω
|E(uν − u)|2 dx

+gβ

∫
Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: E(uν − u) dx+ ν

∫
Ω
|div uν |2 dx

= −
∫

Ω
p div uν dx ≤ ‖p‖L2‖div uν‖L2 .

Further, the Young’s inequality implies that

‖p‖L2‖ div uν‖L2 ≤
ν

2
‖ div uν‖2L2 +

1

2ν
‖p‖2L2 ,

for ν > 0. By using this inequality in (26), we obtain that

C‖uν − u‖2H1
0

+ ν

∫
Ω
| div uν |2 dx ≤

ν

2

∫
Ω
| div uν |2 dx+

1

2ν
‖p‖L2 ,
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which yields that

C‖uν − u‖2H1
0

+
ν

2

∫
Ω
| div uν |2 dx ≤

1

2ν
‖p‖L2 .

Consequently,

C‖uν − u‖2H1
0
≤ 1

2ν
‖p‖L2 .

Taking the limit ν →∞, we get that uν → u ∈ H1
0(Ω). �

4. Recovering the fluid’s pressure

It is well known that the existence of a function p ∈ L2
0(Ω) solving the PDE given in

(22) is guaranteed by the de Rham’s theorem, see [31, p.14]. This function can be seen as a
Lagrange multiplier associated to the restriction div u = 0. Similarly, we will argue that in
the case of the penalty methods presented in this paper, there exists a function p playing
the role for the pressure of the fluid. This existence result is reached trough a convergence
argument in the divergence of the vector field uν that we analyze for quadratic and exact
penalizations. Naturally, in the case of exact penalization, the associated analysis is more
challenging due to the nondiferentaility of the L1–norm and the presence of its associated
subgradients.

4.1. Pressure in the Quadratic Penalization. In order to start this analysis, we
rewrite the equation (24) as follows

2µ

∫
Ω
E(uν − u) : Ev dx+ gβ

∫
Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: Ev dx

+

∫
Ω

(ν div uν + p)(div v) dx = 0, ∀v ∈ H1
0(Ω),

which, by following [5, Th. 6.14-1], yields that

(27)
2µ

∫
Ω
E(uν − u) : Ev dx+ gβ

∫
Ω

(
Euν
θβ(uν)

− Eu
θβ(u)

)
: Ev dx

−〈∇(ν div uν + p) , v〉H−1,H1
0

= 0, ∀v ∈ H1
0(Ω).

Next, by taking limit ν →∞ in (27), and by considering the continuity of θβ and Theorem
2, we obtain that

(28)
∂

∂xi
(ν div uν)→ − ∂p

∂xi
, in H−1(Ω) and for all i = 1, . . . , n.

On the other hand, since p ∈ L2
0(Ω), uν = 0 on ∂Ω, and thanks to the divergence theorem,

we have that ∫
Ω(p+ ν div uν) dx =

∫
Ω p dx+ ν

∫
Ω div uν dx

=
∫
∂Ω uν · ~n dx = 0.

Therefore, [31, Lem. 6.1, pp. 100] yields that

‖p+ ν div uν‖L2 ≤
n∑
i=1

∥∥∥∥ ∂

∂xi
(p+ ν div uν)

∥∥∥∥
H−1(Ω)

,

which, thanks to (28), implies that

−ν div uν → p, as ν →∞.
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4.2. Pressure in the Exact Penalization. Now, we turn our discussion to the pressure
recovery in the context of exact penalization. We start by recalling that the optimal-
ity condition (14) implies that the solution uσ of the exact penalized problem (EP), is
characterized by the existence of a function ζ ∈ L2

0(Ω), such that |ζ| ≤ σ a.e. in Ω,
satisfying: 〈

−J ′(uσ),v
〉
H−1,H1

0
= (ζ,div v)L2 , ∀v ∈ H1

0(Ω).

By using the Fréchet derivative of J given in (6), we can observe that this equation is
equivalent to the following PDE:

(29)

2µ

∫
Ω
Euσ : Ev dx+ gβ

∫
Ω

Euσ : Ev
θβ(uσ)

dx−
∫

Ω
f · v dx

= −
∫

Ω
ζ div v dx, ∀v ∈ H1

0(Ω).

By subtracting equation (22) from (29) we have that

(30)

2µ

∫
Ω
E(uσ − u) : Ev dx+ gβ

∫
Ω

(
Euσ
θβ(uσ)

− Eu
θβ(u)

)
: Ev dx

= −
∫

Ω
(ζ + p) div v dx, ∀v ∈ H1

0(Ω).

Taking v = uσ − u in (30), we obtain that

2µ

∫
Ω
|E(uσ − u)|2 dx+ gβ

∫
Ω

(
Euσ
θβ(uσ)

− Eu
θβ(u)

)
: E(uσ − u) dx

= −
∫

Ω
(ζ + p) div(uσ − u) dx.

Next, we already proved that the second term in the left hand side is non negative.
Therefore, this last equation, together with Korn’s inequality and the incompressibility of
u imply the existence of a constant C > 0, such that

(31) C‖uσ − u‖2H1
0
≤ −

∫
Ω

(p+ ζ) div uσ dx.

On the other hand, Theorem 1 states that there exists σ0 > 0 such that div uσ = 0, for
all σ ≥ σ0. Therefore, (31) implies that

(32) uσ = u, in H1
0(Ω), for all σ ≥ σ0.

Also, equation (31) and the Korn’s inequality imply that∫
Ω
|Euσ − Eu|2 dx = 0, for all σ > σ0,

which, thanks to [15, Prop. 2.10], yields that |Euσ − Eu|2 = 0, a.e. in Ω. Consequently,
we can infer that

(33) Euσ = Eu, a.e. in Ω and for all σ > σ0

Next, we establish pointwise bounds for θβ(uσ) − θβ(u) on the next four disjoint sets:
Euσ
β ∩E

u
β , Euσ

β ∩ I
u
β , Eu

β ∩ I
uσ
β and Iuσβ ∩ I

u
β . Note that these sets were defined in Lemma

1.
In Euσ

β ∩ E
u
β , we directly have that θβ(uσ) − θβ(u) = 0. In Euσ

β ∩ I
u
β , we have that

θβ(uσ) − θβ(u) = g − β|Eu| ≤ 0. On the other hand, thanks to (33), we have that
g − β|Eu| = g − β|Euσ| ≥ 0. Thus, we have that

θβ(uσ)− θβ(u) = 0, a.e. in Euσ
β ∩ I

u
β and for all σ > σ0.
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In Eu
β ∩ I

uσ
β , we have that θβ(uσ)− θβ(u) = β|Euσ| − g ≥ 0. Finally, in Iuσβ ∩ I

u
β , we have

that θβ(uσ)− θβ(u) = β|Euσ| − β|Eu|. This expression, together with (33), implies that

θβ(uσ)− θβ(u) = 0, a.e. in Iuσβ ∩ I
u
β and for all σ > σ0.

Summarizing, since the four given sets provide a disjoint partitioning of Ω, we can conclude
that θβ(uσ) − θβ(u) ≥ 0, a.e. in Ω and for all σ > σ0. Now, Lemma 1 implies that
θβ(uσ) − θβ(u) < |Euσ − Eu| = 0, a.e. in Ω and for all σ > σ0. Therefore, we can state
that

(34) θβ(uσ)− θβ(u) = 0, a.e. in Ω and for all σ > σ0.

We now turn our attention to the recovery of pressure for the flow. First, note that [5,
Th. 6.14-1] allows us to rewrite the equation (30) as follows

2µ

∫
Ω
E(uσ − u) : Ev dx+ gβ

∫
Ω

(
Euσ
θβ(uσ)

− Eu
θβ(u)

)
: Ev dx

= 〈∇(ζ + p) , v〉H−1,H1
0
, ∀v ∈ H1

0(Ω).

From this equation, (31) and (34), we conclude, for all σ ≥ σ0, that

(35) − ∂

∂xi
ζ =

∂

∂xi
p, in H−1(Ω), for all i = 1, . . . , n.

Finally, since p, ζ ∈ L2
0(Ω), we have that∫

Ω
(ζ + p) dx = 0,

which implies, together with [31, Lem. 6.1, pp. 100] and (35), that

‖p+ ζ‖L2 ≤
n∑
i=1

∥∥∥∥ ∂

∂xi
(ζ + p)

∥∥∥∥
H−1

= 0, for σ ≥ σ0.

Consequently, −ζ = p, for all σ ≥ σ0.

5. Exact Penalization Second Order Method

We are in place to describe a descent algorithm using second–order information for
solving the nonsmooth problem generated by the exact penalization formulation.

This algorithm follows ideas from the nonsmooth method designed for finite dimen-
sions in [28]. In particular, the generalized differentiation is used to enrich second–order
information of the smooth part of the cost in a functional space setting. Naturally, the
extension of this method to the numerical solution of viscoplastic fluids entails several
analytical and numerical challenges. One crucial step of the algorithm consist of the
utilization of approximated second–order information for the computation of the descent
direction. We will see that this procedure allows us to compute descent directions directly
in the space V . With this novel feature, the algorithm solves the non-constrained problem
(EP) ensuring that, at each iteration k, the descent direction wk satisfies div wk ≈ 0, with
prescribed precision.

5.1. First order information. Recall that the regular term J(u) of problem (EP) in-
volves a Huber regularization function of the Frobenius norm Ψ(Eu). Moreover, let us
introduce the active set:

Eβ :=

{
x ∈ Ω : |Eu(x)| < g

β

}
.
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In turn, the inactive set corresponds to Ω\Eβ. Hence, the Fréchet derivative (6) can be
rewriten as follows:

(36)

〈J ′(u),v〉H−1,H1
0

= 2µ

∫
Ω
Eu : Ev dx+ g

∫
Ω\Eβ

Eu : Ev
|Eu|

dx

+β

∫
Eβ

Eu : Ev dx−
∫

Ω
f · u dx.

In view of the nondifferentiability of the objective functional Jσ because of the term
h(u) := σ‖ div u‖L1 , let us introduce the following notion of steepest descent direction for
convex functions based on the projection of the zero element on the subdifferential of the
function.

Proposition 1. Let H be a real Hilbert space and f : H →] − ∞,+∞] be proper and
convex, and suppose that x ∈ cont f\ argmin f . Where cont f is the domain of continuity
of f and argmin f is the set of global minimizers of f. Set u as the projection of 0 on the
subdifferential ∂f(x) denoted by u = P∂f(x)0, and set z = − u

‖u‖ . Then, z is the unique

minimizer of f ′(x, ·) over the open unit ball B(0, 1) in H.

Proof. See [7, Prop. 17.22] �

By taking into account the last proposition, we introduce the steepest descent direction
as the solution of the problem d̄ = P∂Jσ(u)0, which is equivalent to:

(37) d̄ = argmin
d∈∂Jσ(u)

‖d‖H−1 ,

where ∂Jσ(u) = J ′(u) +∂h(u). We observe that d ∈ ∂Jσ(u) implies that d = J ′(u) + η
with η ∈ ∂h(u). Then, from (13) we can rewrite problem (37) in the form

(38) d̄ = argmin
ζ∈σ∂‖·‖(div u)

‖J ′(u)− grad(ζ)‖H−1 .

Let us notice that finding the solution d̄ of problem (37) constitutes a box-constrained
optimization problem. Therefore, in the next section we develop an efficient strategy for
computing d̄.

5.2. Second Order information: Generalized Differentiability and Semismooth-
ness for Superposition Operators. We emphazise that the function h(u) = σ

∫
Ω | div u| dx

is nondifferentiable on the kernel of the div operator. Hence, in order to calculate first
and second order information we will use the Huber regularization analogous to the
one presented in Section 2. Therefore, in this section we study the second order in-
formation available in the weak sense. This information is associated to the functional
Jσ(u) = J(u) + h(u), by using the notion of semismoothness for superposition opera-
tors. The second order information for functional J(u), in the finite dimensional case, was
presented in [20].

Let us introduce the smoothing function | · |γ : R→ R with γ >> 0 such that

|z|γ =

{
σ|z| − σ2

2γ if |z| ≥ σ
γ

γ
2 |z|

2 if |z| < σ
γ .

This function is known as the Huber (local) regularization of the absolute value (see [19,
Sec. 2.2]). In this case, we define the div-active set as follows:

(39) Aγ :=

{
x ∈ Ω : | div u(x)| < σ

γ

}
,
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and the div-inactive set as Ω\Aγ . Let us define the regularized mapping hγ(u) = σ
∫

Ω |div u|γ dx.
Analogously as in the case of J , its first Fréchet-derivative h′γ(u) is given by:〈

h′γ(u),v
〉
H−1,H1

0
= σ

∫
Ω\Aγ

(div u, div v)

| div u|
dx+

∫
Aγ

γ(div u,div v) dx

= σ

∫
Ω

γ(div u,div v)

max(σ, γ|div u|)
dx, ∀v ∈ H1

0(Ω).

However, neither J(u) nor hγ(u) are twice Fréchet differentiable because of the presence
of the non-differentiable max function. Therefore, we consider the notion of semismooth-
ness for superposition operators and the generalized differential developed in [33, Ch. 3].
Using these concepts of generalized differentiation, we can compute second–order infor-
mation associated to the nondiferentiabilities in J ′(u) and h′γ(u).

5.2.1. Some results for Semismooth Superposition Operators. Following the work and no-
tation introduced in [33], we consider Nemytskii (or superposition) operators Φ : Y →
Lr(Ω), defined by

(40) Φ(u)(x) = φ(F (u)(x))

for almost all x on Ω. Here, Y is a real Banach space. The mappings φ : Rm → R and
F : Y →

∏m
i=1 L

ri(Ω), with 1 ≤ r ≤ ri <∞, satisfy the following conditions [33][Assump.
3.32]:
There are 1 ≤ r ≤ ri < qi ≤ ∞, for 1 ≤ i ≤ m, such that:

a) The mapping F : Y →
∏m
i=1 L

ri(Ω) is continuously Fréchet differentiable.
b) The mapping Y 3 u 7→ F (u) ∈

∏m
i=1 L

qi(Ω) is locally Lipschitz continuous, i.e., for all
u ∈ Y there exists an open neighborhood V (u) and a constant LF (V ) such that:∑

i

‖Fi(u1)− Fi(u2)‖Lqi ≤ LF ‖u1 − u2‖ ∀u1, u2 ∈ U.

c) The function φ : Rm → R is Lipschitz continuos, i.e.,

|φ(x1)− φ(x2)| ≤ Lφ‖x1 − x2‖, ∀x1, x2 ∈ Rm.

d) φ is semismooth.

In addition, we use the following definition of semismoothness [33][Def. 3.48].

Definition 1. The operator Φ is called semismooth at y ∈ Y if it satisfies

(41) sup
G∈∂◦Φ(u+h)

‖Φ(u+ h)− Φ(u)−Gh‖Lr = o(‖h‖Y ), as h→ 0 in Y,

where ∂◦Φ corresponds to the generalized differential:

(42)

∂◦Φ(u) =

{
G ∈ L(Y,Lr) such that G : v 7→

∑
iMi(u)(F ′i (u)v),

where M(u) is a measurable selection of Clarke’s generalized Jacobian ∂φ(F (u))

}
Let us point out that, by abuse of notation, we use the same symbol for Clarke’s

generalized Jacobian and the subdifferential of convex functions in equation (12).
Following this definition, we analyze the Nemytskii operators in the lemmas below.

Lemma 2. Let Φ : H1
0(Ω)→ L1(Ω) be a Nemytskii operator given by Φ(u)(x) = φ(F (u)(x) =

σγ
div u(x)

max(σ, γ|div u(x)|)
. Then, Φ is semismooth and, G(u)w ∈ ∂◦Φ(u)w is given by:
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(43)

G(u)w(x) =

σ
div w(x)

|div u(x)|
− σ (div u(x) , div w(x)) div u(x)

|div u(x)|3
if γ|div u(x)| ≥ σ

γ(div w(x)) if γ|div u(x)| < σ.

for all x ∈ Ω.

Proof. Thanks to [33, Th. 3.49] and conditions a) - d) above, Φ is semismooth on H1
0(Ω)

in the sense of Definition 1. In our context, we have that F : H1
0(Ω) → L1(Ω) is defined

by F (u) = div u and φ : R→ R is given by φ(a) = a
max(σ,γ|a|) .

This proof is based on showing that conditions a) - d) are satisfied, i.e., we have to prove
that: div : H1

0(Ω) → L1(Ω) is continuously Fréchet differentiable and locally Lipschitz
continuous and that φ : R → R is Lipschitz continuous and semismooth. Since div is
a continuous linear operator in L2

0(Ω) then, it is Fréchet differentiable and its derivative
is the same operator div (see [5, Th. 6.14-1]). Additionally, the continuous embedding
L2

0(Ω) ⊂ L1(Ω) implies that the operator div is also continuously Fréchet differentiable on
L1(Ω). It is clear that div is Lipschitz continuous, hence conditions a) - b) are verified.

The Lipschitz continuity and semismoothness proof of φ is deferred to the Appendix.
Then, conditions c) - d) are satisfied.

Next, we obtain a measurable selection M(u) of Clarke’s generalized Jacobian ∂φ(div u)
as follows:

(44) M(u(x)) =


σ

1

|div u(x)|
− σ (div u(x),div u(x))

|div u(x)|3
, if γ|div u(x)| ≥ σ

γ, if γ|div u(x)| < σ.

We refer the reader to the Appendix for the proof. Then, Definition 1 - equation (42) and
F ′(u)w = div w yields that G(u)w = M(u)(F ′(u)w) = M(u) div w. Finally, from (44)
we obtain that G(u)w ∈ ∂◦Φ(u)(w) is given by (43). �

To prove that J ′(u) is semismooth we introduce the Lemma below, the arguments of
the proof are analogous to Lemma 2.

Lemma 3. Let Θ : H1
0(Ω)→ L1(Ω) be an operator given by Θu(x) = gβ

Eu(x)

max(g, β|Eu(x)|)
,

where Θ maps u ∈ H1
0(Ω) to a matrix of Lebesgue functions. Then, Θ is semismooth and

K(u)w ∈ ∂◦Θ(u)w is given by:

(45) K(u)w(x) =

g
Ew(x)

|Eu(x)|
− g (Eu(x) : Ew(x))Eu(x)

|Eu(x)|3
, if β|Eu(x)| ≥ g,

β Ew(x), if β|Eu(x)| < g.

for all x ∈ Ω.

Proof. Let Θ : H1
0 → L1(Ω) be the matrix operator given by Θu = (Θklu) for 1 ≤ k, l ≤ n.

Further, since Eu = (Eklu) ∈ L2(Ω) ⊂ L1(Ω), let us reshape this matrix as the vector
(Eju)mj=1 = (E1u, · · · , Emu) where m = n2. Then, we have that (Eju)mj=1 ∈

∏m
j=1 L

1(Ω). In

what follows we shall construct a Nemytskii operator, Θj : H1
0(Ω) → L1(Ω), of the form

presented in (40) associated to each element Ej as follows:

Θj = ϕj(H(u)) = gβ
Eju(x)

max(g, β|Eu(x)|)
, for 1 ≤ j ≤ m.

Here, H : H1
0(Ω)→

∏m
j=1 L

1(Ω) maps u ∈ H1
0(Ω) to a vector of Lebesgue functions and it

is defined by H(u) = (Eju)mj=1. Additionally, ϕj : Rm → R is given by ϕj(y) =
yj

max(σ,γ|y|) .
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Next, we will prove that each element Θj is semismooth by means of [33, Th. 3.49].
Further, this argument will also prove that the operator Θ is semismooth. Analogous to
the proof of Lemma 2, we need to verify that conditions (a) - (d) are satisfied in order
to prove semismoothness of Θj(u) for 1 ≤ j ≤ m. The operator H(u) = (Ej(u))mj=1 is

continuously Fréchet differentiable in
∏m
j=1 L

2(Ω). The embedding L2(Ω) ⊂ L1(Ω) implies

that H(u) is also differentiable in
∏m
j=1 L

1(Ω). Moreover, linearity and boundedness of the
E implies Lipschitz continuity of the mapping H. The proof of Lipschitz continuity and
semismoothness of ϕ are deferred to the Appendix. Then, conditions a) - d) are verified.
Thus, Θj for 1 ≤ j ≤ m is semismooth in the sense of Definition 1. Now, it remains to
prove that the operator Θ : H1

0 → L1(Ω) is also semismooth. Following [33, Prop. 3.6] let
us define the set value mapping:

(∂◦Θ1 × · · · × ∂◦Θm) : V ⇒ L(H1
0,

m∏
j=1

L1),

where (∂◦Θ1 × · · · × ∂Θm)(u) is the set of all operators K ∈ L(H1
0,
∏m
j=1 L

1) of the form

K : w 7→ (K1w, · · · ,Kmw) = (Kjw)j=1 with Kj ∈ ∂◦Θj(u), 1 ≤ j ≤ m.

Moreover, let us consider the nonempty set value mapping ∂◦Θ : V ⇒ L(H1
0,
∏m
j=1 L

1)

such that ∂◦Θ(u) ⊂ (∂◦Θ1 × · · · × ∂◦Θm)(u) for all u ∈ H1
0. Hence, K ∈ ∂◦Θ(u + h)

implies that K ∈ (∂◦Θ1 × · · · × ∂◦Θm)(u + h), i.e., we obtain Kw = (Kjw)mj=1. Next,

the space
∏m
j=1 L

1 is equipped with the norm ‖y‖∏
j L

1 =
∑m

j=1 ‖yj‖L1 . Therefore, by the

semismoothness of each Θj for 1 ≤ j ≤ m we have that

sup
K∈∂◦Θ(u+h)

‖Θ(u + h)−Θ(u)−Kh‖L1 ≤
m∑
j=1

sup
Kj∈∂◦Θj(u+h)

‖Θj(u + h)−Θj(u)−Kjh‖L1

= o(‖h‖H1
0
) as ‖h‖H1

0
→ 0.

Thus, we conclude that Θ is semismooth in the sense of Definition 1.
The second part of the proof consists of finding the operator K = (Kj)

m
j=1 ∈ ∂◦Θ(u).

Following Definition 1 - equation (42) we have that Kj(u)w = Nj(u)>H ′(u)(w), where
Nj(u(x)) (a measurable selection of Clarke’s generalized Jacobian ∂ϕj(Eu(x))) is given
by:

N>j (u(x)) =

g
e>j

|Eu(x)|
− g

e>j Eu(x)Eu(x)>

|Eu(x)|3
, if β|Eu(x)| ≥ g,

βe>j , if β|Eu(x)| < g,

here ej stands for the canonical unit vector (see Appendix: Lemma 9 and Remark 5). In
addition, since H ′(u)(w) = Ew, we obtain that

Kj(u)w =

g
Ejw(x)

|Eu(x)|
− gEju(x)(Eu(x)>Ew(x))

|Eu(x)|3
, if β|Eu(x)| ≥ g,

β Ej(w)(x), if β|Eu(x)| < g.

Finally, since K = (Kj)
m
j=1 and the inner product of the vectorized matrices coincides

with the Frobenius product of the matrices we obtain the desired result:

K(u)w =


g
Ew(x)

|Eu(x)|
− g (Eu(x) : Ew(x))Eu(x)

|Eu(x)|3
, if β|Eu(x)| ≥ g,

β Ew(x), if β|Eu(x)| < g,

for all x ∈ Ω. �
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Corollary 1. The mapping Θ(u)(x) = gβ
E(u)(x)

max(g, β|Eu(x)|)
is Lipschitz continuous with

Lipschitz constant L, i.e.,

(46) ‖Θ(u1)−Θ(u2)‖L2 ≤ L‖u1 − u2‖H1 .

Proof. The Lipschitz continuity of Θj for 1 ≤ j ≤ m follows immediately from its semis-
moothness and applying [33, Prop. 3.36], i.e., we have that:

‖Θj(u1)−Θj(u2)‖L2 ≤ Lj ‖u1 − u2‖H1
0
.

Further, since by definition of Θ we have that ‖Θ(u)‖L2 =

 m∑
j=1

‖Θj(u)‖2L2

1/2

then, it

follows that:

‖Θ(u1)−Θ(u2)‖L2 ≤ L‖u1 − u2‖H1
0
,

where L =

 m∑
j=1

L2
j

1/2

. �

5.2.2. Generalized Second Order Derivatives. We proceed to compute generalized second–
order derivatives for h′γ(u) and J ′(u). In fact, from the semismoothness of Φ and Θ we
utilize G(u)w ∈ ∂◦Φ(u)w and K(u)w ∈ ∂◦Θ(u)w to construct the generalized derivatives
of h′γ(u) and J ′(u). We will denote them by H(u) and J (u) respectively. For h′γ(u) we
have that 〈

h′γ(u),v
〉
H−1,H1

0
=

∫
Ω

div v Φ(u) dx.

Thus, since G(u)w is an element of the generalized differential ∂◦Φ(u)w, the generalized
second–order derivative for h′γ(u), is given by

(47)

〈H(u)v,w〉H−1,H1
0

=

∫
Ω

div v G(u)w dx

= σ

∫
Ω\Aγ

div v div w

| div u|
dx

−σ
∫

Ω\Aγ

(div u div w)(div u div v)

|div u|3
dx+

∫
Aγ

γ div v div w dx,

with Aγ defined in (39).
Regarding to J ′(u), given by (6), we note that it can be written as the sum of two

differentiable terms and one nonsmooth given by

g

∫
Ω
β

Eu : Ev
max(g, β|Eu|)

dx =

∫
Ω
Ev : Θ(u) dx.

Next, since K(u)w ∈ ∂◦Θ(u)w, we get

(48)

〈J (u)v,w〉H−1,H1
0

= 2µ

∫
Ω
Ev : Ew dx+

∫
Ω
K(u)w : Ev dx

= 2µ

∫
Ω
Ev : Ew dx+ g

∫
Ω\Eβ

Ev : Ew
|Eu|

dx

−g
∫

Ω\Eβ

(Eu : Ew)(Eu : Ev)

|Eu|3
dx+ β

∫
Eβ

Ev : Ew dx.
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Taking advantage of the semismoothness properties of J ′(u)+h′γ(u), we devise a descent
direction preconditioned by the second order information G = J +H. Hereafter, without
risk of confusion, we omit the dependence of u in G. In addition, since G is a symmetric
bilinear form, the descent direction, denoted in the same manner by w ∈ H1

0(Ω), is
obtained by solving the following system:

〈Gw,v〉H−1,H1
0

= −
〈
d̄,v

〉
H−1,H1

0
, ∀v ∈ H1

0(Ω),

or equivalently:

(49) 〈(J +H)w,v〉H−1,H1
0

= −
〈
d̄,v

〉
H−1,H1

0
∀v ∈ H1

0.

Let us recall that d̄ is given by (37).

Lemma 4. System (49) has a unique solution w ∈ H1
0(Ω), which depends continuously

on the descent direction d̄ ∈ H−1(Ω), i.e., there is a positive constant C such that

(50) ‖w‖H1
0
≤ 1

C
‖d̄‖H−1 .

Proof. Since G ∈ L(H1
0(Ω),H−1(Ω)) the bilinear form a(·, ·) : H1

0(Ω) × H1
0(Ω) → R,

defined by a(w,v) = 〈Gw,v〉H−1,H1
0
, satisfies the hypothesis of the Babušca-Lax-Milgram

Theorem [3, Th. 2.1]. Indeed, we will prove that there exist positive constants C and C̃
such that, for all v,w ∈ H1

0(Ω), the following relations are satisfied:

(i) a(w,w)H1
0
≥ C‖w‖2

H1
0

(ii) |a(w,v)H1
0
| ≤ C̃‖w‖H1

0
‖v‖H1

0

For the first part (i), let us recall that Eβ :=
{
x ∈ Ω : |Eu(x)| < g

β

}
. Coercivity of a

follows from taking w = v in (48), i.e.,

〈Jw,w〉H−1,H1
0

= 2µ

∫
Ω
|Ew|2 + g

∫
Ω\Eβ

|Ew|2

|Eu|
dx

−g
∫

Ω\Eβ

(Eu : Ew)2

|Eu|3
dx+

∫
Eβ

β |Ew|2 dx.

By applying Cauchy-Schwarz to the Frobenius product in the third term of the right hand
side, we have that

(51)

〈Jw,w〉H−1,H1
0
≥ 2µ‖Ew‖2L2 + g

∫
Ω\Eβ

|Ew|2

|Eu|
dx

−g
∫

Ω\Eβ

|Eu|2|Ew|2

|Eu|3
dx+ β‖Ewk‖2L2(Eβ)

= 2µ‖Ew‖2L2(Ω) + β‖Ew‖2L2(Eβ).

Further, Korn’s inequality (see [24] and [34, pp. 82]) applied to ‖Ew‖2L2(Ω) implies that

(52) 〈Jw,w〉H−1,H1
0
≥ C‖w‖2H1

0
, ∀w ∈ H1

0.

Similarly, taking v = w in (47) yields that

〈Hw,w〉H−1,H1
0

= σ

∫
Ω\Aγ

div w2

|div u|
dx− σ

∫
Ω\Aγ

(div u div w)2

|div u|3
dx+

∫
Aγ

γ(div w)2.
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Where we apply Cauchy-Schwarz inequality to the inner product in the second term of
the right hand side, obtaining that

(53)

〈Hw,w)〉H−1,H1
0
≥ σ

∫
Ω\Aγ

div w2

| div u|
dx− σ

∫
Ω\Aγ

| div u|2 |div w|2

| div u|3
dx

+

∫
Aγ

γ(div w)2

= γ‖div w‖2L2(Aγ).

This inequality, together with (52) imply the coercivity of the bilinear form a. In fact, we
have that

(54) a(w,w)H1
0

= 〈(J +H)w,w〉H−1,H1
0
≥ C‖w‖2H1

0
, ∀w ∈ H1

0.

Continuity of a follows from (48). Analogous to the previous arguments, we use Cauchy-
Schwarz inequality resulting in

(55)

〈J v,w〉H−1,H1
0
≤ 2µ‖E(v)‖L2(Ω)‖E(w)‖L2(Ω) + g

∫
Ω\Eβ

|Ev||Ew|
|Eu|

dx

+g

∫
Ω\Eβ

|Eu|2|Ev||Ew|
|Eu|3

+ β

∫
Eβ

|Ev||Ew| dx

= 2µ‖E(v)‖L2(Ω)‖E(w)‖L2(Ω) + 2g

∫
Ω\Eβ

|Ev||Ew|
|Eu|

dx

+ β

∫
Eβ

|Ev||Ew| dx

Observe that in the set Ω \ Eβ we have that 1
|Eu(x)| ≤

β
g . Thus, in view of inequality (55),

it follows that

(56)

〈J v,w〉H−1,H1
0
≤ 2µ‖E(v)‖L2(Ω)‖E(w)‖L2(Ω)

+2

∫
Ω\Eβ

β|Ev||Ew| dx+

∫
Eβ

β |Ev||Ew| dx.

≤ 2µ‖Ev‖L2(Ω)‖Ew‖L2(Ω) + 3

∫
Ω
β|Ev||Ew| dx.

Here, we apply Hölder inequality, which results in

(57)

〈J v,w〉H−1,H1
0
≤ 2µ‖Ev‖L2(Ω)‖Ew‖L2(Ω)

+ 3β
(∫

Ω
|Ev|2

)1/2(∫
Ω
|Ew|2

)1/2
dx

= (2µ+ 3β)‖Ev‖L2(Ω)‖Ew‖L2(Ω),

≤ C1‖v‖H1
0
‖w‖H1

0(Ω),

where C1 depends on µ, β and the positive constant of the continuity property of the
linear operator E . We follow a similar procedure for the term 〈Hv,w〉. By applying
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Cauchy-Schwarz inequality to the inner products we estimate:

〈Hv,w〉H−1,H1
0

= σ

∫
Ω\Aγ

| div v||div w|
|div u|

dx+ σ

∫
Ω\Aγ

|div u|2 |div v||div w|
|div u|3

dx

+γ

∫
Aγ

| div v||div w|

≤ 2σ

∫
Ω\Aγ

|div v||div w|
|div u|

dx+ γ

∫
Aγ

|div v||div w|dx

≤ 3γ

∫
Ω
| div v||div w| dx

Once again, we apply Hölder inequality to get:

(58)
〈Hv,w〉H−1,H1

0
≤ 3γ‖ div v‖L2‖ div w‖L2

≤ C2‖v‖H1
0
‖w‖H1

0

Here, C2 also depends on γ and the continuity property of the divergence operator.
Finally, from the symmetry of a, equations (57), (58) and taking C̃ = max{C1, C2} we

have that

(59) a(w,v)H1
0

= 〈Gw,v〉H−1,H1
0
≤ C̃‖w‖H1

0
‖v‖H1

0
, ∀w,v ∈ H1

0.

Then, by the Babǔska-Lax-Milgram Theorem there exist a unique solution w ∈ H1
0(Ω) of

the system (49). Moreover, w depends continuously on the descent direction. �

From the previous Lemma, we can establish the following useful property of the second
order term G.

Corollary 2. G satisfy the following pair of bounds:

(60) C‖w‖2H1
0
≤ 〈Gw,w〉H−1,H1

0
≤ C̃‖w‖2H1

0
.

Proof. The result follows from (54) and taking v = w in (59). �

6. Exact Penalization Algorithm

Having discussed the main properties of the generalized derivatives of the objective
functional, we introduce the following second–order algorithm for solving the exact penal-
ization formulation (EP) numerically.

Algorithm 1 Exact Penalization Algorithm - Preliminar version

1: Initialize u0 such that div u0 = 0 and set k = 0.
2: Until stopping criteria is true :
3: Compute d by solving problem (38).
4: Compute descent direction wk by solving system (49).
5: Execute line–search to get αk.
6: Update uk+1 := uk + αkwk, and set k = k + 1.

From Algorithm 1 we can infer some useful properties of the approximated solution of
problem (EP).

Theorem 3. Let uk and wk be the approximated solution and descent direction at the
k-th iteration of Algorithm 1. If uk satisfies div uk = 0, then

(61) ‖div wk‖2L2(Ω) ≤
1

γ

‖d̄k‖2H−1

C
.
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Proof. In this proof we shall use portions of the proof of Lemma 4. Let us take w =
wk in (53). Since, by hypothesis, div uk = 0 at the k-th iteration, it follows Akγ ={
x ∈ Ω : |div uk(x)| < σ

γ

}
= Ω. Hence, (53) yields that

(62) 〈Hwk,wk〉H−1,H1
0
≥ γ‖ div wk‖2L2(Aγ) = γ‖ div wk‖2L2(Ω).

By collecting (62) and (52), and using (49) with w = wk, we obtain that:

γ‖ div wk‖2L2(Ω) ≤ 〈Hwk,wk〉H−1,H1
0

= −
〈
d̄k,wk

〉
H−1,H1

0
− 〈Jwk,wk〉H−1,H1

0

≤ ‖d̄k‖H−1‖wk‖H1
0
− C‖wk‖2H1

0
.

In addition, from (50) we deduce that:

γ‖ div wk‖2L2(Ω) ≤
1

C
‖d̄k‖2H−1 − C‖wk‖2H1

0

≤ 1

C
‖d̄k‖2H−1 .

Dividing by γ both sides we get the desired result:

0 ≤ ‖div wk‖2L2(Ω) ≤
1

γ

‖d̄k‖2H−1

C
.

�

Corollary 3. If γ →∞ then, div wk = 0. In addition, by the updating step-6 of Algorithm
1, it follows that the next iterate, uk+1, fulfills the divergence condition, i.e., div uk+1 =
div uk + αk div wk = 0.

In practice, by choosig γ large enough we have that at each k-th iteration, div wk ≤
ε ≈ 0. Inequality (61) suggest taking γ > 1

C ‖d̄k‖
2
H−1

Remark 3. Theorem 3 allows us to simplify the computation of the steepest descent di-
rection. Indeed, there is no need to solve problem (37). Instead of using the steepest
descent direction d̄ in Algorithm 1-step 3, Corollary 3 justifies a simpler computation of
the descent direction: using the regular part J(u) only. In fact, at each iteration k we are
minimizing our functional in the divergence free space V , i.e., the approximated solution
uk remains in V thanks to the direction wk satisfy div wk ≈ 0. Henceforth, system (49)
becomes:

(63) 〈Gwk,vk〉H−1,H1
0

=
〈
−J ′(uk),vk

〉
H−1,H1

0
, ∀vk ∈ H1

0(Ω).

Thanks to Corollary 3 and the last Remark we propose the following modification to
the previous version of the exact penalization Algorithm:

Algorithm 2 Exact Penalization Algorithm

1: Initialize u0 such that div u0 = 0 and set k = 0.
2: Until stopping criteria is true:
3: Compute the derivative of the regular part −J ′(uk) given by (6).
4: Compute descent direction wk by solving the system: 〈Gwk,vk〉H−1,H1

0
=

〈−J ′(uk),vk〉H−1,H1
0
, ∀vk ∈ H1

0(Ω).

5: Execute line-search to get αk.
6: Update uk+1 := uk + αkwk, and set k = k + 1.
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6.1. Line–search routine. The algorithm stops when the absolute value of the dual pair
of the regular part’s gradient and the descent direction drops below a given tolerance, i.e.,
|〈J ′(uk),wk〉| serves as a descent indicator and stopping criteria when it is approximately
zero.

Additionally, the election of the step length α is key to guarantee the sufficient decrease.
In the Exact Penalization Algorithm 2- step 5 we use a line search technique which exploits
polynomial models of the objective function for backtracking. This stepsize reduction
approach was proposed in [11, Sec. 6.3.2]. If a stepsize does not satisfy the sufficient
decrease condition, the next candidate will be constrained in an interval that depends on
the previous stepsize. Hence, we have:

αk ∈ [clαprev, cuαprev], for k = 0, · · ·
where cl and cu are positive constants and αprev stands for the previous step length value.
In general, it is mandatory to construct stepsizes that are bounded away from zero [23,
Sec. 3.2].

To finish this section, we state the following result with some convergence related quan-
tities. This is a direct consequence of the argumentation in Remark 3 and Corollary
2.

Corollary 4. Let wk satisfy (63). Then the following inequalities hold:

(i) C‖wk‖2H1
0
≤ −〈J ′(uk),wk〉H−1,H1

0
≤ C̃‖wk‖2H1

0
,

(ii) 〈J ′(uk),wk〉H−1,H1
0
< 0,

(iii) C‖wk‖H1
0
≤ ‖J ′(uk)‖H−1 .

Proof. This follows simply by taking vk = wk in (63) and from Corollary 2. �

7. Convergence Analysis

In this section we focus in the convergence analysis of the exact penalization algorithm
introduced in the previous section. Our analysis is based on the descent properties of the
solution of the second–order system (49) and the sparse divergence induced by means of
the second–order information. We show convergence to the solution of the exact penalized
problem, henceforth the solution of the original constrained problem.

A crucial argument in our discussion below is the Lipschitz continuity of the first order
derivative, which led us to a general sufficient decrease condition. Further, the computation
of the stepsizes by backtracking assures the decreasing in the cost functional Jσ. Finally,
we prove strong convergence of the sequence {uk}k∈N generated by the exact penalization-
Algorithm 2.

With the help of the previous results, we infer the following lemmas relative to the
regularity of functional J .

Lemma 5. The first order derivative J ′(u) : H1
0 → R is Lipschitz continuous, i.e.,

(64) 〈J ′(u1)− J ′(u2),h〉H−1,H1
0
≤ L‖u1 − u2‖H1

0
‖h‖H1

0
.

Proof. Recall the definition of Θ in Lemma 3, taking into accoun that

∫
Ω
Eu : Eu dx =

‖Eu‖2L2 , we get

gβ

∫
Ω

Eu : Eh
max(g, β|Eu|)

dx ≤ ‖Θ(u)‖L2‖Eh‖L2 .

Further, from the computation of J ′ given by (6) we infer that:

〈J ′(u1)− J ′(u2),h〉H−1,H1
0
≤ ‖E(u1 − u1)‖L2‖E(h)‖L2

+‖Θ(u1)−Θ(u2)‖L2‖E(h)‖L2 .
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Due to the Lipschitz continuity of Θ, see Corollary 1, we obtain that:

〈J ′(u1)− J ′(u2),h〉H−1,H1
0
≤ L‖u1 − u2‖H1

0
‖h‖H1

0
.

Here, L = c̃L and c̃ depends on the constant associated to the continuos operator E . �

Lemma 6. For each k-th iterate and α > 0, J satisfies the following inequality

J(uk + αwk) ≤ J(uk) + α
〈
J ′(uk),wk

〉
H−1,H1

0
+ α2L

2
‖wk‖2H1

0
.

Proof. Since the functional J is Fréchet differentiable, the Mean Value Theorem implies
that

J(u2)− J(u1) =

∫ 1

0

〈
J ′(u1),h

〉
H−1,H1

0
dt

+

∫ 1

0

〈
J ′(u1 + th)− J ′(u1),h

〉
H−1,H1

0
dt.

With h = u2 − u1. Next, by applying Lemma 5, we get the following relation

(65)
J(u2)− J(u1) ≤

〈
J ′(u1),h

〉
H−1,H1

0
+

∫ 1

0
Lt‖h‖2H1

0
dt

=
〈
J ′(u1),h

〉
H−1,H1

0
+
L

2
‖h‖2H1

0
.

By taking u1 = uk and u2 = uk + αwk in (65) we obtain the desired inequality.
�

Lemma 7. Let α > 0 be sufficiently small. Then, the general sufficient decrease condition
is satisfied. i.e.,

(66) J(uk + αwk)− J(uk) < −c1α‖∇J(uk)‖2H1
0
, for c1 > 0.

Proof. From the Riesz representation theorem [7, Remark 2.44], we have that there exists a
unique vector ∇J(uk) ∈ H1

0 such that 〈J ′(uk),v〉H−1,H1
0

= (∇J(uk),v)H1
0
, for all v ∈ H1

0.

Thus, by taking v = ∇J(uk) in (63), we obtain that:

‖∇J(uk)‖2H1
0

= 〈G∇J(uk),wk〉H−1,H1
0
.

Recalling that 〈G∇J(uk),wk〉H−1,H1
0

is a symmetric bilinear form, from (59) we get that

a(∇J(uk),wk)H1
0

= 〈G∇J(uk),wk〉H−1,H1
0
. Thus, we have that:

‖∇J(uk)‖2H1
0

= a(∇J(uk),wk)H1
0

≤ C̃‖wk‖H1
0
‖∇J(uk)‖H1

0
.

Clearly, if ‖∇J(uk)‖H1
0
6= 0, then Corollary 4-(i) implies that

(67)
‖∇J(uk)‖2H1

0
≤ C̃2‖wk‖2H1

0

≤ − C̃
2

C

〈
J ′(uk),wk

〉
H−1,H1

0
.

In addition, by Lemma 6 and (67), the following inequality holds:

J(uk + αwk) ≤ J(uk)− α
C

C̃2
‖∇J(uk)‖2H1

0
+ α2L

2
‖wk‖2H1

0
.

Next, from Corollary 4-(iii) we have that

J(uk + αwk) ≤ J(uk)− α
C

C̃2
‖∇J(uk)‖2H1

0
+ α2 L

2C
‖∇J(uk)‖2H1

0

= J(uk)− α
(
C

C̃2
− αL

2C

)
‖∇J(uk)‖2H1

0
.
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Thus, by choosing

(68) 0 < α ≤ 2C2

LC̃2
,

we get
(
C
C̃2
− αL

2C

)
> 0. Then, the result follows by taking c1 ≤

(
C
C̃2
− αL

2C

)
. �

Corollary 5. The Exact Penalization Algorithm 2, with stepsize αk satisfying (66), gen-
erates a sequence {∇J(uk)}k∈N, such that lim

k→∞
∇J(uk) = 0.

Proof. In view of subsection 6.1 and (68) we have that αprev >
2C2

LC̃2
. Then, the stepsizes

αk generated by the Exact Penalization Algorithm 2 satisfy

(69) αk > ᾱ =
l2C2

LC̃2
, for k = 0, · · ·

Next, (66) implies that J(uk) is a decreasing sequence and, as pointed out in the definition
of J , it is bounded from below, then

(70) lim
k→∞

J(uk) = J∗.

Collecting (69), (70) and by taking the limit k → ∞ on both sides of inequality (66), we
infer that:

lim
k→∞

c1ᾱ‖∇J(uk)‖2H1
0
≤ lim

k→∞
[J(uk)− J(uk+1)] = 0.

Thus, lim
k→∞

‖∇J(uk)‖H1
0

= 0. �

Theorem 4. The sequence {uk}k∈N generated by Algorithm 2 converges to the minimizer
ū of Jσ.

Proof. Let {uk}k∈N be the sequence generated by Algorithm (2). By Corollary 3 it fulfills
div uk = 0 for all k ∈ N. Therefore, Jσ(uk) = J(uk).

Moreover, let us recall that J is coercive and lower semicontinuous. Then, coercivity
implies the uniformly boundedness of the sequence {uk}k∈N in H1

0(Ω). Thus, by reflexivity
of H1

0(Ω) there exists a convergent subsequence
{
ukj
}
j∈N such that ukj ⇀ u∗. Following

[29, Prop. 6.15] and thanks to the convexity of J , we obtain that

(71) J(v) ≥ J(ukj ) + (∇J(ukj ),v − ukj )H1
0
, ∀v ∈ H1

0(Ω).

However, from the weak lower semicontinuity of J we have that lim inf
j→∞

J(ukj ) ≥ J(u∗).

Thus, from Corollary 5 and (71) we deduce that J(u∗) ≤ J(v) for all v ∈ H1
0, i.e., every

weak limit point of the subsequence
{
ukj
}
j∈N minimizes J . Further, since ukj ∈ V and V

is weakly closed, then div u∗ = 0. From the uniqueness of the minimizer of J pointed out
in Section 3, we conclude that u∗ = ū.

Strong convergence of the sequence {ukj}j∈N in H1
0(Ω) can be proved using the prop-

erties of the cost functional. Let us rewrite J(ukj ) = J̃(ukj ) + G̃(ukj ), where

J̃(ukj ) = µ

∫
Ω
Eukj : Eukj dx−

∫
Ω

f · ukj dx and G̃(ukj ) =

∫
Ω

Ψ(Eukj ) dx

stand for the quadratic part and the regularized term, respectively. Since J̃(ukj ) is qua-
dratic we obtain that

(72) J̃(ukj ) = J̃(ū) +
〈
J̃ ′(ū), (uk − ū)

〉
H−1,H1

0

+
1

2

〈
J̃ ′′(ū)(ukj − ū), (ukj − ū)

〉
H−1,H1

0

,

where the second derivative J̃ ′′(ū) is given by〈
J̃ ′′(ū)(uk − ū), (ukj − ū)

〉
H−1,H1

0

=

∫
Ω
|E(ukj − ū)|2 dx = ‖E(ukj − ū)‖2L2 .
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By applying Korn’s inequality to ‖E(uk − ū)‖2L2 , we obtain that there exists a constant

C > 0, such that
〈
J̃ ′′(ū)(ukj − ū), (ukj − ū)

〉
H−1,H1

0

≥ C‖ukj − ū‖2
H1

0
. Then, from (72)

we have that

(73)

C
2 ‖ukj − ū‖2

H1
0
≤ J̃(ukj )− J̃(ū)−

〈
J̃ ′(ū), (ukj − ū)

〉
H−1,H1

0

= J̃(ukj ) + G̃(ukj )− J̃(ū)− G̃(ukj )

−
〈
J̃ ′(ū), (ukj − ū)

〉
H−1,H1

0

.

Taking the lim sup on both sides of inequality (73), we get that

(74)

lim sup
j→∞

C

2
‖ukj − ū‖2H1

0
≤ lim sup

j→∞
(J̃(ukj ) + G̃(ukj ))

+ lim sup
j→∞

(−J̃(ū)− G̃(ukj ))

+ lim sup
j→∞

(
−
〈
J̃ ′(ū), (ukj − ū)

〉
H−1,H1

0

)
.

Then from (70) and (74) we have:

(75)

lim sup
j→∞

C

2
‖ukj − ū‖2H1

0
≤ J∗ − J̃(ū) + lim sup

j→∞
(−G̃(ukj )

+ lim sup
j→∞

−
〈
J̃ ′(ū), (ukj − ū)

〉
H−1,H1

0

.

= J∗ − J̃(ū)− lim inf
j→∞

G̃(ukj )

+ lim sup
j→∞

(
−
〈
J̃ ′(ū), (ukj − ū)

〉
H−1,H1

0

)
.

Next, since uk ⇀ ū, we conclude that
〈
J̃ ′(ū), (ukj − ū)

〉
H−1,H1

0

→ 0 . Also, from the

weakly lower semicontinuity of G̃ we have that − lim inf
j→∞

G̃(ukj ) ≤ −G̃(ū). Collecting

these arguments, from (75) we obtain

(76) lim sup
j→∞

C

2
‖ukj − ū‖2H1

0
≤ J∗ − J̃(ū)− G̃(ū) = 0.

The last equality follows since J∗ = inf J(ukj ) = J(ū). Thus, we conclude that uk → ū

strongly in H1
0(Ω). �

8. Numerical Experiments

Our final section is devoted to the numerical experimentation of Algorithm 2. In the
first subsection, we conduct a set of experiments linked to the algorithm’s performance,
including an exhaustive testing of the parameters governing the associated regularizations
and, in particular, to the exact penalization parameter σ. The second set of experiments,
in Section 8.2, aims to compare our algorithm with the Semismooth Newton method,
which is well known by its superlinear convergence properties. A third set of experiments
in three dimensions are also presented to further illustrate the applicability and scalability
of the exact penalization method which will be referred as EP algorithm.
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Implementation details. We consider Ω ∈ Rn, n = 2, 3 be a polygonal/polyhedral domain
and Th a regular discretization (by triangles or tetrahedrons) on Ω. The Galerkin Finite
Element Method was used to approximate the desired velocity ū ∈ H1

0 - of the Bingham
problem - by continuous piecewise quadratic vector-valued Lagrange trial functions over
each element. Therefore, we consider the finite-element space Vh = {uh ∈ C(Ω̄)2| uh|Γ =
0 and uh|T ∈ P 2, ∀T ∈ Th}. Our experiments were implemented in the open-source
software FEniCS (https://fenicsproject.org/).

8.1. Algorithm’s performance. In order to measure the performance of the EP algo-
rithm, we consider the benchmark of a rotational Bingham flow in a square reservoir. In
this case, problem (EP) is solved with a driven force f(x1, x2) = 300(x2 − 0.5, 0.5 − x1)
over the domain Ω = [0, 1]2 with g = 10

√
2. In the following experiments the mesh size is

h = 1/50. Figure 1 shows the computed rotational flow expected from applying the force
f , whereas in Figure 1b we can visualize the yielded (dark blue) and unyielded regions
(red tones). This configuration presents a central solid region.

(a) Velocity field u (b) Plug zones given by |E(u)|L2

Figure 1. Bingham flow in the square reservoir.

Recall that Algorithm 2 has three important parameters, namely:

• σ: exact penalization parameter, satisfying σ ≥ σ0, see Theorem 1
• γ: enriching second–order information parameter
• β : Huber regularization parameter

In the next experiments, we will discuss the influence of these parameters on the numerical
realization of the method.

8.1.1. Experiment 1: exact penalization test varying σ. In previous sections, we have dis-
cussed that the equivalence between the constrained problem (B) and the penalized prob-

lem (EP) is given for all σ ≥ σ0, with σ0 ≈ ‖λ‖L2 |Ω|
1
2 . In our first experiment, we look

for the numerical behavior of the divergence term ‖ div u‖L1 of the approximated solution
in each iterate of the EP Algorithm, by choosing different values of σ.

Despite the computation of ‖λ‖L2 can not be a–priorily done, i.e. without an approx-
imate solution at hand, we can confirm numerically that our estimation of σ0 in Remark
2 is sharp. Indeed, we have estimated the upper bound: σ0 ≈ ‖λ‖L2 |Ω|−1/2 ≤ 896.5. This
can be observed in Figure 2a, where the divergence is depicted with colored - solid lines
for values of σ ≥ 900. We can observe that the history of the divergence values remain
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between 1.0e−7 and 1.0e−8, recognisably lower than those for smaller values of σ0 < 900,
in dashed lines. This, also illustrates the equivalence of the exact penalization with the
constrained formulation of the problem.

Table 1 summarises numerical results. For variation of σ ≥ σ0, we can observe that
slightly better results are obtained when it is close to σ0 rather than when σ is too big.
Roughly speaking, once σ is suitably chosen, its variation does not have a hard influence
in the numerical performance of the EP-algorithm.

Numerical performance for the EP-Algorithm

γ β σ k |〈J ′(uk),wk〉| ‖ divuk‖L1 J(uk) t

900 100 -0.626 7.55e-05 0.06 91.29
2000 100 -0.626 7.55e-05 0.14 91.29

500 4000 100 -0.626 7.55e-05 0.29 91.18
8000 100 -0.626 7.55e-05 0.59 91.22
10000 100 -0.626 7.55e-05 0.74 91.20

0 900 100 -0.313 3.78e-05 0.03 91.46
2000 100 -0.313 3.78e-05 0.07 91.22

1000 4000 100 -0.313 3.78e-05 0.14 91.28
8000 100 -0.313 3.78e-05 0.29 91.27
10000 100 -0.313 3.78e-05 0.37 91.02

900 12 5.04e-04 7.58e-07 -8.41 10.28
2000 12 4.16e-04 5.65e-07 -8.41 10.30

500 4000 12 4.21e-04 5.64e-07 -8.40 10.18
8000 12 2.64e-03 5.22e-07 -8.39 10.52
10000 11 2.8e-03 5.11e-07 -8.39 9.57

1e+8 900 28 7.53e-04 7.75e-07 -8.33 24.02
2000 28 3.56e-04 5.90e-07 -8.32 24.04

1000 4000 37 6.43e-04 5.54e-07 -8.32 31.69
8000 38 1.34e-03 5.40e-07 -8.31 32.39
10000 27 2.06e-03 5.19e-07 -8.30 23.33

900 14 2.31e-04 1.05e-07 -8.42 12.19
2000 15 3.60e-05 7.03e-08 -8.42 12.65

500 4000 15 1.13e-04 6.60e-08 -8.42 12.77
8000 14 2.07e-04 6.33e-08 -8.42 11.98
10000 14 2.05e-04 6.33e-08 -8.42 11.86

1e+9 900 25 1.1e-04 9.74e-08 -8.33 21.09
2000 26 6.40e-05 6.18e-08 -8.33 21.89

1000 4000 25 9.16e-05 5.89e-08 -8.33 21.17
8000 27 7.77e-05 6.01e-08 -8.33 22.65
10000 25 1.32e-4 5.90e-08 -8.33 21.02

Table 1. Performance of the EP- Algorithm for different values of γ, β and σ
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(a) Divergence history, γ = 1e+ 9. Solid lines for σ ≥ 900

Figure 2. Experiment 1 - Velocity’s divergence in L1-norm

8.1.2. Experiment 2: enriched second–order information test. In this experiment, we solve
the same problem formulated in Experiment 1 by focussing on the parameter γ, which
is associated to the generalized second–order information obtained from term ‖ div uk‖L1 .
From our theory, we know that in order to get a good approximation for the second–
order information γ must be sufficiently large, see Corolary 3. As shown in Table 1, this
parameter is crucial for our algorithm; in fact, if we neglect the additional second–order
information (γ = 0) the algorithm fails to converge. In contrast, by setting increasing
values of γ = 1e + 8 and 1e + 9 we see that ‖ div uk‖L1 gets smaller. In fact, γ = 1e + 9
achieves a divergence norm of order 5e− 8 and the algorithm seems to have a more stable
cost-functional J(uk). Figure 3a depicts this behavior. Also, we observe in the fifth column
that the stopping criteria |〈J ′(uk),wk〉| (subsection 6.1) gets closer to zero (1e − 05) for
γ = 1e+ 9 (see Figure 3b). From these numerical results, we conclude that the additional
second–order information, enriching the descent direction system (49), is essential for the
exact penalization method.
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Figure 3. Experiment 2 - EP performance with γ = 1e+ 9 and β = 1e+ 03

8.2. Comparison with Newton Semismooth method. We compare the exact pe-
nalization method with the Newton semismooth method (SSN), which is also build on
second-order information basis, and it is very well known by its superlinear rate of con-
vergence properties ([33, Ch.3]). Notice that SSN solves the same regularized problem in
a context of a nonlinear system ([9]). Therefore, the effect of the parameter β is not an
issue. Since the stopping criteria for each strategy differs, we compare a fix number of
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iterations of each algorithm. In the following set of experiments we illustrate that the ex-
act penalization method can deliver several numerical benefits and drawbacks comparing
with SSN. For further comparison, we also consider the quadratic penalization (QP).

8.2.1. Experiment 3: convergence to a Bingham’s analytical solution. The original prob-
lem was regularized using the Huber–smoothing, depending on the parameter β. In the
following experiment, the analytical solution of problem (1) of a fluid flow between two
parallel plates is known, which allow us to compute the error= ‖uexact − uk‖H1

0
at each

k-th iteration for EP and SSN algorithms. Here, the velocity field u = (u1(y),0,0) is a
scalar field that depends only on y in the x-direction. The corresponding minimization
functional is simplified since the strain-rate tensor is given by the gradient ∇, i.e., we have

to minimize J(u) :=
µ

2

∫
Ω

(∇u,∇u) dx+g

∫
Ω
|∇u| dx−

∫
Ω

f ·u dx. The analytical solution

is given by uexact = (u1(y), 0, 0) (see [1, Sec. 6.1.1.1]), where:

u1(y) =


1
8 [(1− 2g)2 − (1− 2g − 2y)2], if 0 ≤ y < 1

2 − g,
1
8(1− 2g)2, if 1

2 − g ≤ y ≤
1
2 + g

1
8 [(1− 2g)2 − (2y − 2g − 1)2], if 1

2 + g < y ≤ 1,

and the pressure drop p, is given by p = −x. Here, we set g = 0.3.
Following Remark 2, we chose σ0 ≈ ‖λ‖L2 |Ω|1/2 ≤ 17 to guarantee the equivalence with

the exact penalization formulation. For fixed γ = 1e+ 09, we solve the problem varying β
as shown in Table 2. As expected, as β increases, the Huber regularization approximates
better the original functional; therefore, the error decays accordingly.

At first sight we observe, in Figure 4a, that SSN is faster in the first iterations. However,
we realize that the exact penalization second-order method continues to decrease the error
with a pronounced fall in the last iterations, achieving a considerably lower error and cost
(see Table 2 - seventh column) compared with SSN. Furthermore, the exact penalization
algorithm computes approximate solutions with a more precise sparse divergence. Taking
into account the relation ‖ div uk‖L1 ≤ |Ω|1/2‖ div uk‖L2 , we chose the L2–norm of the
divergence as a reference for all methods. We observe that the L2–norm of the divergence
is effectively smaller for EP method.
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β
‖uexact − uk‖H1

0
‖ divuk‖L2 J(uk) time (s)

k EP SSN EP SSN EP SSN EP SSN

1 0.121 0.100 1.28e-13 2.46e-08 0.032 4.79e-03 1.19 1.46
10 0.015 0.002 9.59e-12 3.21e-08 -2.43e-03 -2.75e-03 14.88 15.62

100 20 1.34e-03 2.99e-03 9.92e-12 3.21e-08 -2.93e-03 -2.75e-03 26.80 31.34
30 1.34e-03 2.99e-03 9.92e-12 3.21e-08 -2.93e-03 -2.75e-03 39.60 46.35
40 1.34e-03 2.99e-03 9.92e-12 3.21e-08 -2.93e-03 -2.75e-03 52.91 64.63

1 0.121 0.100 2.05e-13 2.49e-08 0.033 0.005 1.16 1.33
10 0.013 2.82e-03 4.94e-11 6.35e-08 -2.40e-03 -2.42e-03 15.32 14.477

500 20 2.2e-03 2.82e-03 5.44e-11 6.35e-08 -2.70e-03 -2.42e-03 27.83 28.614
30 2.68e-04 2.82e-03 5.42e-11 6.35e-08 -2.70e-03 -2.42e-03 40.24 42.795
40 2.67e-04 2.82e-03 5.42e-11 6.35e-08 -2.70e-03 -2.42e-03 52.61 57.00

1 0.121 0.100 2.53e-13 2.49e-08 0.033 0.005 1.16 1.29
10 0.013 2.81e-03 3.44e-11 6.48e-08 -2.29e-03 -2.38e-03 14.94 14.45

1000 20 7.41e-03 2.81e-03 3.53e-11 6.48e-08 -2.65e-03 -2.38e-03 27.63 28.71
30 1.34e-04 2.81e-03 3.54e-11 6.48e-08 -2.69e-03 -2.38e-03 40.28 42.99
40 1.34e-04 2.81e-03 3.54e-11 6.48e-08 -2.69e-03 -2.38e-03 52.69 57.31

1 0.122 0.100 5.27e-13 2.49e-09 0.033 0.005 1.14 1.30
10 0.013 2.81e-03 4.32e-11 6.48e-08 -2.39e-02 -2.34e-03 15.19 14.89

5000 20 0.010 2.81e-03 4.57e-11 6.48e-08 -2.59e-03 -2.34e-03 28.29 29.43
30 7.79e-03 2.81e-03 4.67e-11 6.48e-08 -2.63e-03 -2.34e-03 42.35 43.77
40 3.16e-05 2.81e-03 5.36e-11 6.48e-08 -2.67e-03 -2.34e-03 56.34 58.110

Table 2. Experiment 3: first 40 iterations of EP vs SSN.
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Figure 4. Experiment 3 - flow between two plates

8.2.2. Experiment 4: Comparison with Second Order Methods. In this experiment we com-
pare three methods based on second other information: SSN, EP and Quadratic penaliza-
tion (QP) for the benchmark rotational flow test presented in section 8.1. We compare the
first 100 iterations of each algorithm in Table 3. The EP-algorithm is competitive with
SSN and the Quadratic penalization method since no major oscillations in the algoritms’s
performance are shown after the 25th iteration for the three strategies. However, the ad-
vantage of the exact penalization is evident when reaching the restriction ‖ div uk‖ close to
zero. Observe in Figure 5b that, for several σ values, the lowest magnitud for the velocity
divergence is achieved by the EP-algorithm. This is somehow expected by sparsification
properties of the L1–norm. For the same σ values the quadratic method hardly achieves
an order of 1e− 04. And, in the case of SSN, the velocity divergence norm is greater than
in the EP-Algorithm. This behavior is also depicted in Table 3 for the L2–norm of the
velocity divergence of the approximated solution.
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The decay of the objective function is plotted in Figure 5a. Here, EP-algorithm and
QP-algorithm attain smaller values than the SSN method.

k
‖ divuk‖L2 J(uk) time (s)

EP QP SSN EP QP SSN EP QP SSN
1 7.170e-09 0.00167 0.000413 -0.07532 -0.0855 2.520 0.59 0.652 0.7827
10 4.576e-08 0.00277 0.0140 -7.890 -8.324 7811.370 5.59 5.34 14.75
20 5.056e-08 0.00274 1.122e-04 -8.144 -8.3492 -6.994 11.96 11.35 22.65
25 7.485e-08 0.00273 7.836e-05 -8.241 -8.352 -7.708 15.08 14.25 26.42
30 7.486e-08 0.00273 7.808e-05 -8.241 -8.352 -7.708 18.54 17.18 30.14
50 7.487e-08 0.00273 7.808e-05 -8.241 -8.352 -7.708 32.53 28.89 45.22
80 7.490e-08 0.00273 7.808e-05 -8.241 -8.352 -7.708 53.72 46.59 67.88
100 7.491e-08 0.00273 7.808e-05 -8.241 -8.352 -7.708 67.93 58.76 83.15

Table 3. Experiment 4: comparison between EP, QP and SSN algorithms
with parameters: γ = 1e+ 9, β = 1e+ 3 and σ = 3e+ 3
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Figure 5. Experiment 4 - comparison between EP, QP and SSN algorithms

8.3. Numerical Experiments in 3D Geometries. In this section we examine the EP-
algorithm in 3D geometries. We take advantage of FEniCS versatility for testing the
EP-algorithm using three-dimensional finite elements described in the Implementation
Details, and the FEniCS parallelization capabilities for solving the associated variational
problems within the algorithm. We run these tests on a high performance computing
system HP ProLiant BL460c Gen8.

8.3.1. Experiment 5: Cube. In this experiment we consider a Bingham fluid in a cubic
geometry. We assume a laminar flow with constant drop pressure c along the z-axis. The
drop in pressure is considered in the periodic boundary conditions of the model (see [26,
Sec. 6.2]). Therefore, the associated minimization problem reads as:

J = µ

∫
Ω
Eu : Eu dx+

∫
Ω

Ψ(Eu) dx−
∫

Ω
fu dx−

∫
Γ
cn|z=0u|z=0 ds+ σ‖div u‖L1

here Γ = [0, 1] × [0, 1] × {0}, f = 0, c = 10, g = 0.5
√

2, β = 1e + 3, γ = 1e + 7 and
σ = 1e + 4. The unit cube is discretized with tetrahedrons with step size h = 1/20.
Figure 6 shows the velocity field. In the center of the cube the fluid acts like a rigid
material as well as the corners of the cube. In Figure 7 the Frobenius norm |Eu| and the
discretization are depicted in the geometry cut by a parallel plane to the y axis. Here,
the plug zones are colored in light blue. The algorithm performed 4 iterations with the
following values Jσ = −1.098, |〈J ′u,w〉| = 9.627e−05, and ‖ div u‖L1 = 1.57e−06. Taking
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advantage that FEniCS run in parallel using MPI and without modifying the algorithm,
in Table 4 we report on the comparison between parallel runtime in several CPUs for EP
and SSN algorithms. Despite the efficiency of the current implementation deteriorates, the
time reduction is significant when more CPUs are added. Also, its execution time escalates
better that the execution time in SSN. However, the percentage of time reduction is similar
for both methods as more CPUs are incorporated to the computation process. Because
of memory limitations, there was not possible to run the experiment with the mesh size
h = 1/20 in one core. Therefore, we calculate the speedup and the efficiency with the
execution time reference in 2 cores.

Figure 6. Velocity field Figure 7. Plug flow

No. cores
Time (s) % time reduction Speedup Efficiency

EP SSN EP SSN EP SSN EP SSN
2 1218.2 5359.87 100% 100% 1 1 1 1
6 709.8 2828.89 58.2% 52.7% 1.71 1.89 0.28 0.31
12 395.8 2123.41 32.4 % 39.6% 3.07 2.52 0.25 0.21
24 240.9 1619.87 19.7% 30.2% 5.05 3.30 0.21 0.13

Table 4. Experiment 5: EP vs. SSN algorithms scaling performance

8.3.2. Experiment 6: Lid-driven cavity. Now, we test a lid-driven viscoplactic flow inside
a unite cube. The geometry is discretized with tetrahedrons with step size h = 1/30. The
corresponding body forces are f(x) = 0, since the motion is given by a moving lid, i.e.,
we have uD(x) = (1, 0, 0)> if x3 = 1 and uD(x) = (0, 0, 0)>, otherwise. These boundary
conditions add a new constraint to our optimization problem, i.e. min

u∈H1(Ω)
J(u) subject to

u = uD on ∂Ω.
To cope with this new constraint, let us fix u0 ∈ U = {u ∈ H1(Ω)| div(u) = 0,u|∂Ω =

uD}. The solution ū is given by ū = u0 + û, where û is the minimizer of

µ

∫
Ω
E(u + u0) : E(u + u0) dx+

∫
Ω

Ψ(E(u + u0)) dx−
∫

Ω
f(u + u0) dx+ σ‖ div(u)‖L1 .

The parameters have the following setting: g = 2, β = 1e + 3, γ = 1e + 9, µ = 0.5 and
σ = 1e + 4. Figure 8 show the velocity field of the fluid in the cube cut by half in the y
axis. The fluid rotates in the interior of the geometry however, thanks to this rotation the
material moves without continuous deformation in the center of the cube. Figure 9 shows
the plug zones in light blue. The numerical performance of the algorithm is displayed in
Table 5. The divergence norm, the number of iterations and the stopping criteria behave
similar to the 2D case. For instance ‖ div uk‖L1 achieves an order of e−08 and the stopping
criteria |〈J ′(uk),wk〉| drops close to e− 04.
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Figure 8. Experiment 6: stream lines and velocity field of lid-driven flow

Figure 9. Experiment 6: plug zones

Exact Penalization

k ‖divuk‖L2 J(uk) |〈J ′(uk),uk〉|
1 2.58e-09 5.39 0.861
3 6.07e-09 5.17 0.674
5 9.50e-09 5.10 0.042
8 1.94e-08 5.08 0.018
10 2.22e-08 5.08 1.71e-03
13 2.41e-08 5.08 5.12e-04
15 2.52e-08 5.08 1.40e-04
18 2.52e-08 5.08 1.37e-04
20 2.52e-08 5.08 1.37e-04

Table 5. Experimemt 6: 3D Lid-driven cavity with g = 2, β = 1e+3, γ =
1e+ 9

9. Appendix

Lemma 8. Let γ and σ be two positive constants. The function φ : R → R defined by
φ(a) := γσ a

max(σ,γ|a|) is Lipschitz continuous.

Proof. Let us start by rewriting φ(a) as φ(a) = γσ a
φm(a) , with φm(a) := max(σ, γ|a|).

Next, we notice that the max function is globally Lipschitz continuous with constant
Lmax. This fact implies that

(77)
|φm(a1)− φm(a2)| = |max(σ, γ|a1|)−max(σ, γ|a2|)|

≤ γLmax||a1| − |a2|| ≤ γLmax|a1 − a2|, ∀a1, a2 ∈ R.
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We conclude that φm is Lipschitz continuous. Considering this result, we have that

|φ(a1)− φ(a2)| =
∣∣∣γσ a1

φm(a1) − γσ
a2

φm(a2)

∣∣∣
= γσ

∣∣∣ a1
φm(a1) −

a2
φm(a2) + a1

φm(a2) −
a1

φm(a2)

∣∣∣
= γσ

∣∣∣a1

(
φm(a2)−φm(a1)
φm(a1)φm(a2)

)∣∣∣+ γσ
∣∣∣ 1
φm(a2)(a1 − a2)

∣∣∣ .
Now, it is clear that 0 < σ ≤ φm(a2), which implies that 1

φm(a2) ≤
1
σ . By plugging this

inequality in the expression above, we have that

|φ(a1)− φ(a2)| ≤ γσ
∣∣∣ a1
φm(a1)

(
φm(a2)−φm(a1)

σ

)∣∣∣+ γ|a1 − a2|

= γ
∣∣∣ a1
φm(a1)

∣∣∣ |φm(a2)− φm(a1)|+ γ|a1 − a2|.

Finally, sice
∣∣∣ a1
φm(a1)

∣∣∣ ≤ 1
γ , we conclude, thanks to (77), that

|φ(a1)− φ(a2)| ≤ γ(Lmax + 1)|a1 − a2|.
Regarding the semismoothness of φ, note that the absolute value | · | : R → R and the

function max(0, ·) : R → R are both semismooth (see [33, Sec. 2.5] and [25, Lemma 3.1]
respectively). Then, since the composition of semismooth functions in Rn is a semismooth
function [33, Prop. 2.9], it follows that φ(a) is semismooth. �

Remark 4. The function φj : Rm → R defined by φj(a) := γσ
aj

max(σ,γ|a|) is also Lipschitz

continuous and semismooth. The proof of this assertion is analogous to the one given in
Lemma 8.

Lemma 9. Let φ(div u(x)) = σγ
div u(x)

max(σ, γ|div u(x)|)
with γ and σ positive constants. A

measurable selection Mφ(u) of Clarke’s generalized Jacobian ∂φ(div u) is :

(78) Mφ(u) =


σ

1

| div u|
− σ (div u div u)

|div u|3
, if γ|div u(x)| ≥ σ

γ, if γ|div u(x)| < σ.

Proof. Let φ3 = φ1 ◦ φ2, where φ1(z) = max(0, z) + σ and φ2(y) = γ|y| − σ. Then the
following identity holds:

φ3(y) = max(σ, γ|y|) = max(0, γ|y| − σ) + σ.

From [25, pp. 869] we have that Mφ1 ∈ ∂φ1(γ|y| − σ) given by

Mφ1(γ|y| − σ) =

{
1, if γ|y| − σ > 0

0, if γ|y| − σ ≤ 0,

is a measurable selection of ∂φ1(γ|y|−σ). Next, since φ2 involves the function |·| evaluated
at y 6= 0. From [33, Exaple 2.5.1] we have that

Mφ2(y) ∈ ∂φ2(y) =

{
γy

|y|

}
for y 6= 0.

Moreover, the chain rule for Clarke’s generalized Jacobian [33, Prop. 2.3] yields that:

Mφ3(y)v ∈ ∂φ3(y)v ⊂ co{Mφ1Mφ2v : Mφ1 ∈ ∂φ1(φ2(y)),Mφ2 ∈ ∂φ2(y)}.
Thus, since y 6= 0,

(79) Mφ3(y) =

{
γy
|y| , if γ|y| − σ > 0

0, if γ|y| − σ ≤ 0,
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Clearly, φ(y) = σγ y
φ3(y) . Then, from the composition of functions we obtain that

Mφ(y) ∈ ∂φ(y) ⊆ σγφ3(y) · 1− y∂φ3(y)

φ3(y)2
.

Then, from (79) the following cases can occur:

• γ|y| > σ. Here we have that:

Mφ(y) = σ
1

|y|
− σ y2

|y|3
.

• γ|y| ≤ σ yields that:

Mφ(y) = γ.

Finally, by taking y = div u we have the desired result. �

Remark 5. The measurable selection Nj(u(x)) of Clarke’s generalized Jacobian ∂ϕj(Eu(x))
is obtained by an analogous procedure of Lemma 9.
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