Acute Respiratory Distress Syndrome Acute Lung Injury

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

Explain the etiologies, manifestations, diagnostic techniques, & current management strategies for acute respiratory distress syndrome & acute lung injury

Definitions & Etiologies

Acute Lung Injury/ARDS

- ALI/ARDS is a syndrome that is a response to injury & not a disease
- > There is much variability in pathology & pathophysiology
- Acute Lung Injury (ALI)
 Hypoxemic respiratory failure
 Severe version: Acute Respiratory Distress Syndrome
 (ARDS)

Characteristics

- Bilateral pulmonary infiltrates on chest x-ray
- > Pulmonary Capillary Wedge Pressure < 18 mm Hg</p>
- > PaO₂ / FiO₂ < 300 = ALI
- > PaO_2 / FiO_2 < 200 = ARDS

Characteristics

- Surfactant deficiency
- > Decreased lung compliance
- > Decreased lung volume

Symptoms (History)

- > Da Nang lung Viet Nam
- > Shock lung
- > Non-cardiogenic pulmonary edema
- > Leaky capillary syndrome
- > Acute lung injury
- > Diffuse alveolar damage

Etiologic Mechanisms

- Direct lung injury (pulmonary)
 - Inhalation injuryPneumonia
 - * Aspiration
 - -
- Indirect lung injury (extrapulmonary)
 Shock
 - * Sepsis
 - * Transfusion related injury
 - * Pancreatitis

Predisposing Conditions

- > Trauma, shock
- > Aspiration
- > Oxygen toxicity
- > Toxic fumes
- > Sepsis

Predisposing Conditions

- Narcotic overdose
- > Pancreatitis
- > Fat embolism
- > Near drowning
- > Transfusion-associated lung injury (TRALI)
- > Eclampsia/pre-eclampsia
- > Amniotic embolism

Pathophysiology

ARDS Pathophysiology

Initial insult
 Directly to lung

- * Indirectly, via system
- Pathology stages
 Exudative (4 7D after onset)
 Proliferative (1 3 wks)
 - * Recuperative or fibrotic (3 4 wks)

	Exudative Stage
> Injury to	
 Vascular endothelium or Alveolar epithelium 	
	alveolar epithelium RBC- neutrophil alveolar capillary

- Cytokines attract neutrophils, that release
 Tumor necrosis factor (TNF-a)
 Free oxygen radicals
- > Inflammation
- > Cell death: type I pneumocytes

Resolution or Fibrosis

- Phagocytosis of debris or
- > Collagen deposition: fibrosis with lung like a liver

See links below for gross pathology of fibrosis following ALI/ARDS

Manifestations & Complications

Manifestations

- There is variability in ARDS
 - * Pulmonary vs. extrapulmonary etiology
 - * Consolidation vs. edema
 - * Post-traumatic vs. non-traumatic

Manifestations

> There is variability in ARDS

- * Pulmonary vs. extrapulmonary dx: consolidation vs.
- edema * Post-traumatic vs. non-traumatic
- * Variability will affect
 - Duration of illness

 - Response to ventilation strategies, e.g. PEEP, recruitment maneuvers (RM), pronation
 - Prognosis

Manifestations

- Onset: hours to days after initial insult
- > Physical signs

 - * Tachypnea * Retractions, e.g. supraclavicular
 - * Abdominal paradox: diaphragmatic fatigue
 - * Crackles, rhonchi, bronchial sounds
- > Progressive, refractory hypoxemia
- > Decreased lung compliance (C_L)

Manifestations

> CXR

Decreased lung volumes
Fluffy alveolar infiltrates
Air bronchograms
Hyaline membrane

Manifestations

> CXR: ALI/ARDS

See links below for images of ARDS following pulmonary contusion, transfusion-associated lung injury, & acute lung injury with air bronchograms

Complications

Ventilator-induced lung injury

- ALI/ARDS is non-uniform
 Posterior lungs edematous, collapsed
- Normal lung units are subject to

Overdistension

• Loss of perfusion

Complications

- > Ventilator-induced lung injury
- > Ventilator-associated pneumonia: prolonged intubation
- > Multiple organ system failure: release of mediators from lung
- > Hemodynamic compromise (shock)
- > Sepsis
- > Pulmonary fibrosis

Prognosis

- Mortality: about 40%
- Prognosis better for trauma victims
 Younger
 Less comorbidity
- Severity correlates with duration of precipitating injury, not type of injury

Prognosis

- > 66% of survivors have lung dysfunction
- > Psychiatric illness: depression
- > Cognitive impairment

Differential Diagnosis

- Cardiogenic pulmonary edema
- > Inhalation injury
- > Aspiration
- > Pneumonia (many types)
- > Hypersensitivity pneumonitis

Differential Diagnosis

- Cardiogenic pulmonary edema
- > Inhalation injury
- > Aspiration
- > Pneumonia (many types)
- > Hypersensitivity pneumonitis
- > Drug toxicity, e.g. amiodarone
- > Alveolar hemorrhage
- > Severe acute respiratory distress syndrome (SARS): coronavirus

ARDS vs. Cardiogenic Pulmonary Edema

- > ARDS: PAOP (PCWP) < 18 mm Hg</p>
- > ARDS: alveolar exudate (proteins)
- > Cardiogenic: cardiomegaly
- > Brain natriuretic peptide (BNP) does not accurately differentiate

FYI see links below for study on BNP for differentiation of ARDS from cardiogenic pulmonary edema

Diagnostic Studies

CT scan

* Determine anteroposterior distribution of consolidation * May predict effectiveness of pronation

Diagnostic Studies

Bronchoalveolar lavage

- * Distinguish between transudate & exudate
- * Identify or R/O infection
- * Identify inflammatory cells
- * Identify inflammatory mediators

Diagnostic Studies

Open lung biopsy
 * Identify pathologic process
 * Identify etiology

Management

FYI see links below for article on open lung biopsy in ARDS

General Strategies

- > Treat underlying cause, if possible
- > Conservative fluid management improves outcomes
- Pulmonary artery catheter monitoring
 No improvement in outcomes
 More complications

FYI see links below for FACTT study synopsis (requires free Medscape registration)

Ventilation Strategies

Lung protective strategies

- Open lung technique
- Pressure control with volume guarantee (my recommendation)
- Optimal PEEP
- TV < 7mL/kg IBW
- Recruitment maneuvers (RM)

FYI see links below for predicted body weight chart

Ventilation Strategies

Effectiveness of PEEP & RMs

- * Contingent upon potentially recruitable alveoli
- * Fluid-filled alveoli are not recruitable

Ventilation Strategies

Pressure-controlled inverse ratio ventilation

- * Effective
- Pressure control with volume guarantee & inverse ratio ventilation may be effective

Ventilation Strategies

> Airway pressure release ventilation * Effective in selected patients * Less likely to impair hemodynamics

Ventilation Strategies

Permissive hypercapnea

- * Allows non-advancement of settings
- May reduce inflammation
- May reduce mortality
 Acidemia can be managed with Tromethamine (THAM)

FYI see links below for article on APRV & cardiac performance

Ventilation Strategies

Pronation

- * Transient improvements in oxygenation
- * Many studies found no changes in mortality
- * Mancebo et al: reduced mortality, if applied for 17H/d
- ***** CT may determine those who will benefit

FYI see links below for study of prolonged pronation (2013)

Ventilation Strategies

High frequency oscillatory ventilation * As good as conventional ventilation * No improvement in mortality

Non-Ventilatory Therapeutics

Surfactant instillation (children) * Decreased mortality

* Decreased duration of ventilation

Non-Ventilatory Therapeutics

Surfactant instillation (adults)

- * No effects on mortality
- * Quantity of surfactant for adults: expensive
- > Surfactant aerosol: Aerosurf[™] under study

Non-Ventilatory Therapeutics

> Nitric oxide

- Dilates vessels in ventilated alveoli
 Short-term improvement in oxygenation
 No effects on mortality
 Very expensive
- * Off-label use: no payment
- Aerosolized prostacyclin (Flolan)
 Same effects as NO
 Less costly than NO

FYI see links below for abstract on NO & ARDS

Partial Liquid Ventilation

- Lungs filled to FRC with perflubron (LiquiVent), with these properties
 - High density flows to dependent areas of lung
- * Low surface tension increases compliance
- High solubility for O₂ and CO₂ transports gases
- * High volatility quickly excreted

Up next: Video of mouse swimming in perflubron (Caution: video includes strong language)

Partial Liquid Ventilation

Physiologic effects

- * Increased lung compliance due to
 - Decreased surface tension
 - Alveolar recruitment
- * Decreased VILI due to increased compliance
- * Decreased shunt due to alveolar recruitment & diffusion across perflubron

Partial Liquid Ventilation

Potential applications

- RDS neonates
- * Meconium aspiration not effective for adults
- * Alveolar proteinosis (1 case)
- * ALI/ARDS

Partial Liquid Ventilation

> Procedure

* Perflubron instilled to FRC

* Re-instillation required, due to evaporation

Partial Liquid Ventilation

Research findings

- Neonates non-responders to surfactant survived (n= 10)
- * Adults most recent trial (2006) found negative for PLV * Earlier trials did not compare PLV with lung protective ventilation

FYI see links below for articles on PLV for neonates with RDS & PLV for adults with ARDS

Partial Liquid Ventilation

Barriers to adoption

- * Expense Perflubron
 - Time dosing, re-dosing
- * Lack of positive research findings
- > Opinion PLV will not become a widely-used technique, at least for adults

Non-Ventilatory Therapeutics

- Corticosteroids
- * Many investigations (since 1970s) * No benefits
- * If started late, may increase mortality

Non-Ventilatory Therapeutics

- N-acetylcysteine (Mucomyst)
 - * Intravenous infusion
 - * Antioxidant properties * More research needed

Non-Ventilatory Therapeutics

- Enteral EPA + GLA + antioxidants * Increased lung compliance
- * Decreased duration of ventilation
- * No effects on mortality

Non-Ventilatory Therapeutics

Albuterol aerosol

- * Increases $\mathrm{C}_{\mathrm{DYN}}$ -> decreased ventilation pressure
- * Decreases lung edema
- $\ensuremath{\diamond}$ Anti-inflammatory action: decrease TNF-a * Randomized trial (2011) found no benefit
- * Multi-center trial (2012) found that IV albuterol
- increased mortality

Summary & Review

> Definitions: ALI/ARDS

> Etiologies

- > Characteristics
 - Infiltrates
 - * Stiff lungs
 - * Refractory hypoxemia ♦ PCWP < 18 mm Hg</p>

Summary & Review

Pathophysiology

- Insult
 Capillary permeability: edema
- * Inflammation
- * Alveolar injury
- * Surfactant depletion
- * Fibrosis/resolution

Summary & Review

Manifestations

- * Refractory hypoxemia
- * Increased WOB
- $\boldsymbol{\ast}$ CXR: consolidation, air bronchograms

> Complications

- * Sepsis
- * Ventilator-induced lung injury
- * Ventilator-associated pneumonia

> Prognosis

Summary & Review

Diagnosis

- * Differential diagnosis: many conditions
- * Chest radiograph
- * Bronchoscopy
- Open lung biopsy

Summary & Review

Management

- * Treat underlying cause
- * Supportive measures
- * Lung protective strategies
- * Non-ventilatory measures

References

- Duffett M, Choong K, Ng V, Randolph A, Cook DJ. Surfactant therapy for acute respiratory failure in children: a systematic review and meta-analysis.Crit Care. 2007;11(3):R66.
- > Davidson WJ, Dorscheid D, Spragg R, Schulzer M, Mak E, Ayas NT. Exogenous pulmonary surfactant for the treatment of adult patients with acute respiratory distress syndrome: results of a meta-analysis. Crit Care. 2006;10(2):R41.
- > Tsangaris I, Galiatsou E, Kostanti E, Nakos G. The effect of exogenous surfactant in patients with lung contusions and acute lung injury. Intensive Care Med. 2007 May;33(5):851-5.

References

- Markart P, Ruppert C, Wygrecka M, Colaris T, Dahal B, Walmrath D, Harbach H, Wilhelm J, Seeger W, Schmidt R, Guenther A. Patients with ARDS show improvement but not normalisation of alveolar surface activity with surfactant treatment: putative role of neutral lipids. Thorax. 2007 Jul;62(7):588-94.
- Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006 Jun 15;354(24):2564-75.

References

- Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodríguez F, Garro P, Ricart P, Vallverdú I, Gich I, Castaño J, Saura P, Domínguez G, Bonet A, Albert RK. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Jun 1;173(11):1233-9. Epub 2006 Mar 23.
- Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006 May 25;354(21):2213-24. Epub 2006 May 21.

References

- Matthay MA,et al. Randomized, placebo-controlled clinical trial of an aerosolized B2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011 Sep 1;184(5):561-8.
- > Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006 Apr;34(4):1033-8.
- Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006 Jan;34(1):1-7.

References

- Bollen CW, van Well GT, Sherry T, Beale RJ, Shah S, Findlay G, Monchi M, Chiche JD, Weiler N, Uiterwaal CS, van Vught AJ. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial. Crit Care. 2005 Aug;9(4):R430-9.
- Heyland DK, Groll D, Caeser M. Survivors of acute respiratory distress syndrome: relationship between pulmonary dysfunction and long-term health-related quality of life. Crit Care Med. 2005 Jul;33(7):1549-56.

References

- Spragg RG, Lewis JF, Walmrath HD, Johannigman J, Bellingan G, Laterre PF, Witte MC, Richards GA, Rippin G, Rathgeb F, Häfner D, Taut FJ, Seeger W. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med. 2004 Aug 26;351(9):884-92.
- Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettilä VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004 Jul;48(6):722-31.

References

- Gadek JE ; DeMichele SJ ; Karlstad MD ; Pacht ER ; Donahoe M ; Albertson TE ; Van Hoozen C ; Wennberg AK ; Nelson JL ; Noursalehi M. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Crit Care Med. 1999; 27(8):1409-20 (ISSN: 0090-3493)
- > Smith FG, et al. Effect of intravenous B-2 agonist on clinical outcomes in acute respiratory distress syndrome: a multicenter randominzed trial Lancet 2012;379:229-35.