

General Anesthesia

Arthur Jones, EdD, RRT

This Presentation is Approved for
1 CRCE Credit Hour

Learning Objectives

- Explain the actions, effects, & precautions associated with agents used in general anesthesia
- Describe anesthesia procedures & delivery systems

Introduction to Anesthesia

Goal of Surgical Anesthesia

- Achieve lack of sensation with
 - ❖ Safety
 - ❖ Comfort
 - ❖ Economy
 - ❖ Convenience

Pre-Anesthesia Procedure

- Preoperative assessment
- Initial cleansing
- Pre-anesthetic medications

Pre-Operative Assessment

- History
 - ❖ Cardiopulmonary disease
 - ❖ Malignant hyperthermia
- Current conditions
 - ❖ Sleep apnea: post-operative risk
 - ❖ Coagulopathy
 - ❖ Cardiopulmonary disease
 - ❖ Infections
 - ❖ Renal, hepatic disease
 - ❖ Diabetes

Pre-Operative Assessment

- Current medications
 - ❖ Cardiac medications
 - ❖ Anticoagulants
 - ❖ Herbals & nutritional supplements
- Social history: alcohol, tobacco
- Physical exam
 - ❖ Cardiopulmonary assessment
 - ❖ Evaluate for difficult intubation

FYI see links below for article on difficult airway evaluation

Pre-Operative Assessment

- Laboratory tests - as indicated
- Electrocardiogram (> 40 YO)
- Cardiac testing, e.g. stress test
- Pulmonary function tests?
- Radiographs

FYI see links below for anesthesia risk assessment

Anesthesia Procedure

- Induction: initial entry to surgical anesthesia
- Maintenance: continuous monitoring & medication
- Emergence: resumption of normal CNS function

Desired Effects of General Anesthesia

- Rapid induction
- Hypnosis - sleep
- Analgesia - lack of pain
- Secretion control
- Muscle relaxation
- Rapid reversal

Anesthesia Stages

- I. Amnesia
 - ❖ Induction to loss of consciousness
 - ❖ Pain sensation intact
- II. Excitement
 - ❖ Uninhibited response to stimuli
 - ❖ Desirable to shorten, bypass this stage

Anesthesia Stages

- III. Surgical anesthesia- planes 1-4
 - ❖ Gaze central, pupils constricted
 - ❖ Absent somatic & physiologic responses
- IV. Medullary paralysis (overdose)
 - ❖ Pupils dilated
 - ❖ Hypotension, circulatory failure

Monitoring During Anesthesia

- Vital signs documented every five minutes
- Physical monitoring
 - ❖ Pulse
 - ❖ Color
 - ❖ Chest excursion, breath sounds
 - ❖ Reflexes
 - ❖ Neuromuscular blockade

See links below for neuromuscular blockade monitoring

Monitoring During Anesthesia

- Electronic monitoring
 - ❖ Exhaled tidal volume
 - ❖ FiO_2
 - ❖ SPO_2
 - ❖ ETCO_2
 - ❖ ECG
 - ❖ Temperature

See links below anesthesia monitoring (click 'Play')

Monitoring During Anesthesia

- Electronic monitoring
 - ❖ Bispectral index (BIS) monitoring: EEG-based monitor for level of consciousness
 - Reduce operative awareness
 - Titrate anesthetic agents

FYI see links below for info on BIS monitoring

General Anesthetic Agents

Types of Agents for Anesthesia

- Pre-anesthetic agents
- Intravenous anesthetics
- Anesthetic gases
- Neuromuscular blockers
- Anticholinesterase agents

Premedications for Anesthesia

- Anticholinergics: atropine, rubinol
 - ❖ Reduce vagal response
 - ❖ Reduce pulmonary secretions
 - ❖ Reduce gastric motility
- Analgesics: reduce pain, anxiety
- Tranquillizer (benzodiazepines): to reduce anxiety
- H2 antihistamine: to avert emesis

Barbiturate IV Anesthetics

- Rapid-acting
- Short duration
- Agents
 - ❖ Thiopental (pentothol): previously almost universally used
 - ❖ Surital Na
 - ❖ Brevital Na

Non-Barbiturate IV Anesthetics

- Etomidate: intubation
 - ❖ Rapid-acting
 - ❖ Short duration
- Ketamine: intubation
 - ❖ Strong analgesia
 - ❖ Bronchodilator

Non-Barbiturate IV Anesthetics

- Midazolam (Versed)
 - ❖ Benzodiazepine
 - ❖ Rapid-acting sedative
 - ❖ Reversible with flumazenil (Romazicon)

Non-Barbiturate IV Anesthetics

- Propofol (Diprivan): largely replaced thiopental
 - ❖ Hypnotic
 - ❖ Antiemetic
 - ❖ No analgesia
 - ❖ Cardiovascular depression: hypotension
 - ❖ Painful to inject

Anesthetic Gas Kinetics

- Action: probably modify the electrical activity of neurons at a molecular level by modifying functions of ion channels
- Magnitude of effects are proportional to
 - ❖ Lipid solubility of drug
 - ❖ Partial pressure in the brain

Anesthetic Gas Kinetics

- Factors affecting partial pressure
 - ❖ Inspired concentration
 - ❖ Flow rate of anesthetic
 - ❖ Minute volume
 - Increased VE with anesthetic turned on increases uptake
 - Increased VE with anesthetic turned off increases excretion

Anesthetic Gas Kinetics

- Factors affecting partial pressure
 - ❖ Blood gas partition coefficient: rate of exchange of gases between compartments
 - Alveoli
 - Blood
 - Brain
 - ❖ Tissue perfusion

Inhaled Anesthetics

- Nitrous oxide (N₂O)
 - ❖ Weak: used with other medications, gases
 - ❖ Safe: does not cause hypotension
 - ❖ Adverse effects
 - Pulmonary hypertension
 - Inhibits hypoxic vasoconstriction
 - Diffuses into ETT cuffs

FYI see links below for history of anesthesia

Inhaled Anesthetics

- Halogenated volatile liquids
 - ❖ Halogen (F, Br) included in molecule
 - ❖ Nonflammable
 - ❖ Potent: low concentrations as 2nd gas

Inhaled Anesthetics

- Halogenated volatile liquids
 - ❖ Adverse effects
 - Hepatotoxicity
 - Nephrotoxicity
 - CO poisoning: degradation product
 - Congenital anomalies & spontaneous abortions in OR personnel
 - Malignant hyperthermia

Malignant Hyperthermia

- A rare life-threatening condition that is triggered by exposure to certain drugs used for general anesthesia
- It also is associated with succinylcholine
- It is genetically predisposed - there is a hyperthermia susceptibility trait

Malignant Hyperthermia

- Manifestations
 - ❖ Temperature elevation
 - ❖ Hypercapnia
 - ❖ Tachycardia
 - ❖ Tachypnea
 - ❖ Hypertension
 - ❖ Cardiac dysrhythmias

Malignant Hyperthermia

- Manifestations (cont'd)
 - ❖ Acidosis
 - ❖ Hypoxemia
 - ❖ Hyperkalemia
 - ❖ Skeletal muscle rigidity
 - ❖ Myoglobinuria

Malignant Hyperthermia

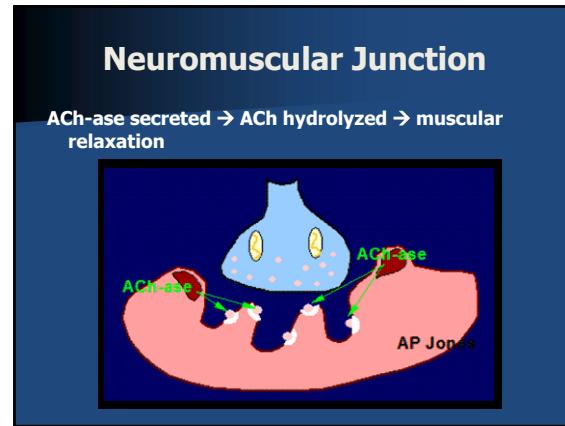
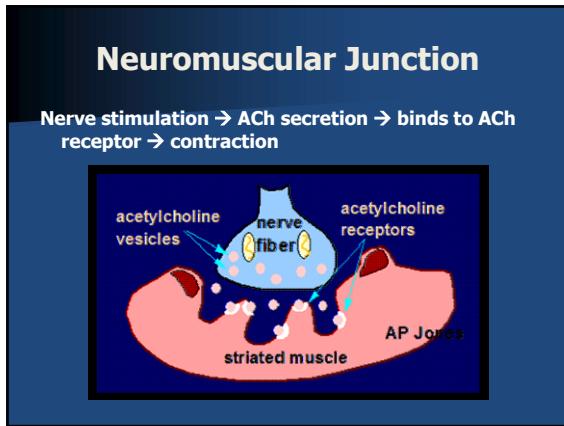
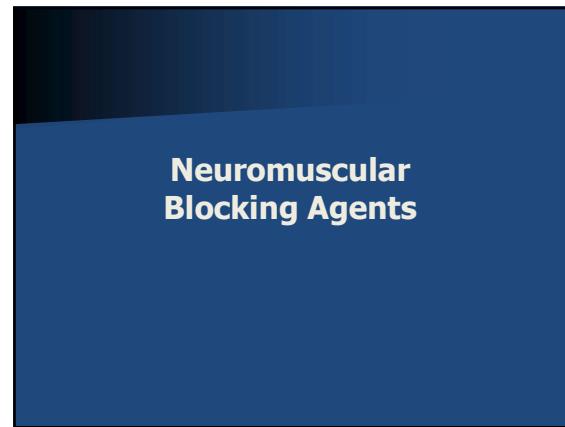
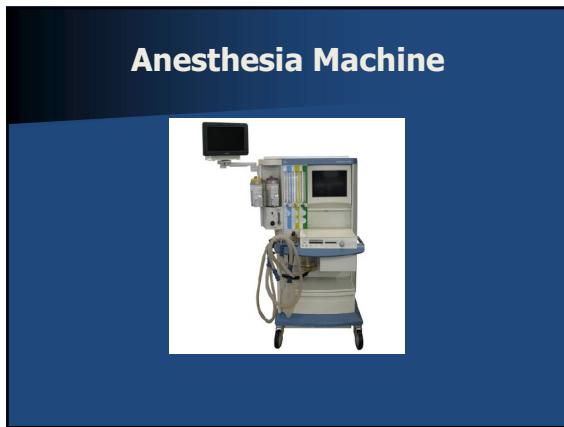
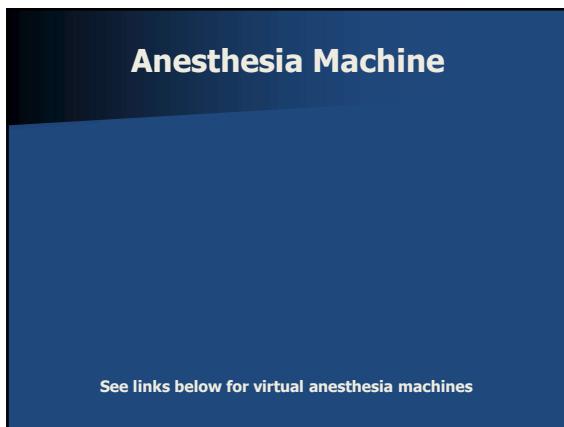
- Management: operating rooms have malignant hyperthermia boxes
 - ❖ Stop administration of triggering agent
 - ❖ Dantrolene: muscle relaxant
 - ❖ Cooling blanket
 - ❖ Fluids

FYI see links below for article on malignant hyperthermia

Adverse Effects of General Anesthesia

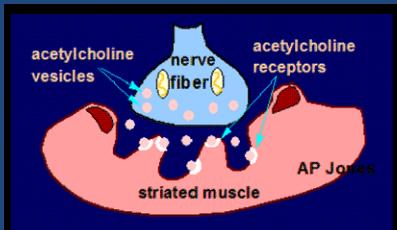
- Depress all components of CNS
- Respiratory depression
- Negative inotropic effects
- Decreased threshold for premature ventricular contractions (PVCs)

Adverse Effects of General Anesthesia

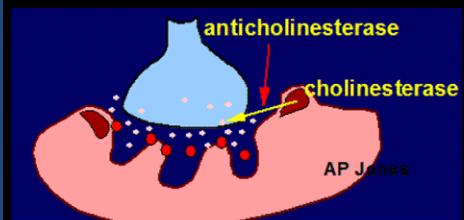





- Depress all components of CNS
- Respiratory depression
- Negative inotropic effects
- Decreased threshold for premature ventricular contractions (PVCs)
- Peripheral vasodilation (except nitrous oxide)
- Decreased uterine contractions
- Depressed fetal activity → hypotonic newborn

Inhaled Anesthetics

- Halogenated volatile liquids
 - ❖ Halothane (Fluothane)
 - ❖ Enflurane (Ethrane)
 - ❖ Isoflurane (Forane)
 - ❖ Desflurane (Suprane)
 - ❖ Sevoflurane (Ultane)
 - ❖ Methoxyflurane (Penthrane)


Anesthesia Machine

- Ventilator, anesthesia bag
- Gas cylinders: O₂, N₂O
- Precision flowmeters
- Calibrated vaporizer: for liquid anesthetics
- CO₂ absorber
- Rebreathing bag
- Tubing
- Gas scavenging system


Action of Non-Depolarizing Agents (Curariform)

Occupy ACh receptor sites → prevent depolarization

Reversal of Non-Depolarizing Agents

Anticholinesterase hydrolyzes cholinesterase → increases acetylcholine → depolarization

Indications for Neuromuscular Blockers

- Muscular relaxation for
 - ❖ Intubation
 - ❖ Surgical procedures
- Controlled ventilation, e.g.
 - ❖ Oscillators
 - ❖ Inverse ratio ventilation
 - ❖ Independent lung ventilation
 - ❖ Increased intracranial pressure

Neuromuscular Blockers - History

- Amazon natives
 - ❖ Curare, Tubocurarine
 - ❖ Poison for blowgun darts
 - ❖ Potency - trees monkeys could climb

Non-Depolarizing Agents

- Adverse effects
 - ❖ Histamine release →
 - Flushing
 - Bronchospasm
 - Anaphylaxis

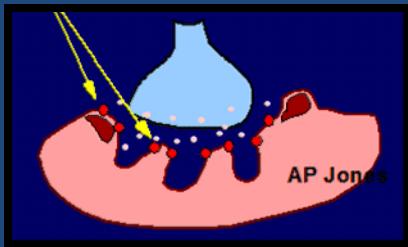
FYI see links below for video of flushing

Non-Depolarizing Agents

- Adverse effects
 - ❖ Histamine release →
 - Flushing
 - Bronchospasm
 - Anaphylaxis
 - ❖ Vagolysis → tachycardia, hypertension
 - ❖ Hypoventilation, apnea
 - ❖ Aspiration

Non-Depolarizing Agents

- Contraindications
 - ❖ Myasthenia gravis
 - ❖ Asthma
 - ❖ Electrolyte disturbance
- Interaction: potentiated by
 - ❖ Aminoglycosides, e.g. gentamycin
 - ❖ Tetracyclines


Specific NDP Agents

- Tubocurarine Cl: prototype agent
- Pancuronium Br (Pavulon): long acting
- Atracurium besylate (Tracrium)
- Vecuronium Br (Norcuron)
- Doxacurium (Nuromax)
- Cisatracurium (Nimbex)
- Rocuronium (Zemuron)

FYI see links below for properties of specific NDP agents

Depolarizing Agents (Succinylcholine)

Drug attaches to ACh receptor → depolarizes muscle → inhibits repolarization

Succinylcholine

- Very short-acting
- Not reversible with drugs
- Pseudocholinesterase deficiency → slow hydrolysis of agent
→ prolonged action

Succinylcholine

- Side effects
 - ❖ Fasciculation → muscle soreness
 - ❖ Hyperkalemia
 - ❖ Increased ocular pressure
 - ❖ Increased intracranial pressure
 - ❖ Malignant hyperthermia

Succinylcholine (Anectine, Sucostrin)

- Onset 1 min
- Duration 4 - 6 min
- Perfect for intubations

Anticholinesterase Agents

Anticholinesterase Agents

- Action: inhibit ACh-ase → increase ACh at NM junction → permit depolarization
- Indications
 - ❖ Reverse curariform paralysis
 - ❖ Diagnose & treat myasthenia gravis

Reversal of Non-Depolarizing Agents

Anticholinesterase hydrolyzes cholinesterase → increases acetylcholine → depolarization

Anticholinesterase Agents

- Side effects: increase acetylcholine at muscarinic receptors
 - cholinergic crisis
 - ❖ Bradycardia
 - ❖ Secretion
 - ❖ Bronchospasm
- Cholinergic crisis treated with atropine

Anticholinesterase Agents

- Edrophonium Cl (Tensilon)
- Onset < 1 min
- Duration 2 - 10 min
- Routes IV, IM
- Indications
 - ❖ Reverse NDPs
 - ❖ Diagnose MG (Tensilon test)

See links below for video of positive Tensilon test

Anticholinesterase Agents

- Agents for myasthenia gravis
 - ❖ Pyridostigmine (Mestinon)
 - ❖ Ambenonium Cl (Mytelase)
 - ❖ Neostigmine (Prostigmin)

Summary & Review

- Preoperative evaluation
- Balanced anesthesia: for safety, comfort, & convenience
- Four stages of anesthesia
- Intraoperative monitoring

Summary & Review

- Pre-anesthetic medications
- Intravenous general anesthetics
- Inhaled general anesthetics
- Anesthesia machine
- Neuromuscular blockers: NDP & DP
- Anticholinesterase agents

References

- King MS. Preoperative evaluation. AAFP 2000: July 15: <http://www.aafp.org/afp/20000715/387.html>.
- Møller A, Villebro N, Pedersen T. Interventions for preoperative smoking cessation (Cochrane Review). In: The Cochrane Library, Issue 3, 2003. Oxford: Update Software.
- Cottrell GP, Surkin HB. Pharmacology for respiratory care practitioners 1995 Chaps 7, 27. FA Davis, Phila.
- Wenker O: Review of currently used inhalation anesthetics; Part I. The Internet Journal of Anesthesiology 1999; Vol3N2: <http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm>

References

- Dosch MP. The anesthesia gas machine, vaporizers, compressed gases, safety: Avoiding the pitfalls <http://ourworld-top.cs.com/doschm/agmpart1.htm>
- Moore EW, Hunter JM. The New Neuromuscular blocking agents : do they offer any advantages ? Br J Anaesth 2001; 87: 912-25
- Bowman WC. Neuromuscular block. Br J Pharm. (2006) 147, S277-S286.