Bioterrorist Threats: Sources, Recognition, & Safety

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

- Describe the etiology, manifestations, management, & safety precautions related to likely bioterrorist threats

Anthrax

History

- Book of Exodus: 5th & 6th plagues of Egypt (boils)
- 1600s: "Black Bane" kills cattle in Europe
- 1880: Immunization of cattle
- 1915: First used as a bioweapon - against cattle
- 1950s-60s: U.S. develops bioweapons

- 1969: U.S. ends bioweapons program
- 1970: Anthrax vaccine is FDA approved
- 1972: International convention outlaws biological weapons
- 1995: Iraq admits to producing 8,500 L of anthrax weapon
- 2001: Letter containing anthrax is mailed to NBC

Etiology

- Causative organism: bacillus anthracis
 - Gram-positive, spore-forming rod
 - Spore-forming ➔ very tough organism
 - Occurs globally, esp. in developing countries
 - Primarily infects herbivores
 - Produces lethal toxin
Etiology

- Bacillus anthracis

Routes for Transmission

- Cutaneous: most common
 - Cutaneous: ingestion of poorly cooked meat from infected animals
 - Inhalation of dust that contains spores - woolsorter’s disease

Cutaneous Anthrax

- Etiology & pathogenesis
 - Introduced via skin or mucus membrane through cut or abrasion
 - Spores germinate & multiply
- Manifestations: skin lesion
 - Develops 12 - 36 H after infection
 - Resembles bug or spider bite
 - Black eschar develops

Gastrointestinal Anthrax

- Manifestations: inflammation of GI tract
 - Nausea
 - Hematemesis
 - Fever
 - Acute abdomen - abdominal pain
 - Severe diarrhea
 - Sepsis
- High mortality rate

See links below to view more cutaneous anthrax
Inhalational (Pulmonary) Anthrax

- Etiology: inhalation of spores
 - Special processing for deposition
 - 1 - 5 micron
 - Too large: upper airway deposition
 - Too small: exhaled

- Incubation period: generally 3-5 D, depends on germination rate

- Manifestations - early
 - Fever, chills
 - Dyspnea
 - Cough
 - Headache
 - Nausea & vomiting
 - Chest pain

- Manifestations: fulmination
 - Fever
 - Dyspnea
 - Stridor: mediastinal enlargement
 - Diaphoresis
 - Shock
 - Hemorrhagic meningitis: delirium
 - Hypoxemia

- Chest x-ray: mediastinal widening

Inhalational (Pulmonary) Anthrax

- Diagnosis
 - Index of suspicion: exposure risk
 - Occupation
 - Location
 - Pathognomonic
 - Previously healthy adult
 - Overwhelming flu-like signs
 - Widened mediastinum

Anthrax
Anthrax

- **Diagnosis**
 - Sputum exams are **NOT** useful
 - Standard blood culture: growth in 6 - 24 H
- **Pathology:** hemorrhagic, necrotizing pneumonic lesion

- **Management**
 - Antibiotics: susceptible to
 - Ciprofloxin
 - Doxycycline
 - Penicillin
 - Amoxicillin
 - Chloramphenicol
 - Rifampin
 - **NOT** susceptible to cephalosporins

- **Supplemental oxygen**
- **Mechanical ventilation**
- **Vasopressors for shock**
- **Other supportive measures**

- **Prevention**
 - Direct, person-to-person spread is unlikely
 - Universal precautions for patient care: no special barriers
 - Antibiotics for suspected exposure (60 D)

- **Prevention: vaccination**
 - Human live attenuated vaccine
 - Three injections, two weeks apart
 - Three injections at 6, 12, 18 mo.

- **Adverse reactions**
 - Soreness, edema at injection site
 - Fever, nausea, headaches (5 - 35%)
 - Serious events 1:50,000 doses
Anthrax

- Decontamination
 - Bleach
 - Sandia foam: new, safe
 - Formaldehyde
 - Nanoemulsion

- Why anthrax?
 - It is tough
 - Sunshine kills spores
 - Heat does not kill
 - Explosion does not kill → can be dispersed by explosive shells

Smallpox

History

10,000 BC: Believed to have appeared in Africa
1350 BC: First recorded epidemic in Egypt
180 AD: Major epidemic coincides with fall of Roman empire
1500-1800 AD: Introduction of smallpox to New World decimates native population

1763: Biological warfare by placing smallpox scabs in blankets given to Native Americans
1600: Chinese introduced variolation, an early vaccination
1796: Jenner uses cowpox extract to vaccinate against smallpox

History

1967: World Health Organization campaign to eradicate smallpox
1972: Routine vaccination ceased
1980: WHO recommends cessation of vaccination
1980: Soviet government initiates program to produce large quantities of smallpox
WHO Poster: 1980

Etiology
- Causative organism: variola virus
 - DNA virus
 - Very infectious
 - Related to
 - Cowpox
 - Monkeypox
 - Vaccinia virus
 - Variola major: more virulent form
 - Variola minor: less virulent

Pathogenesis
- Transmission mode: person-to-person via droplet nuclei
- Virus implants on oropharyngeal or respiratory mucosa
- Only few varions are required to produce disease
- Viruses migrate & multiply in regional lymph nodes, spleen, & bone marrow
- Incubation: about 12 D

Manifestations: Variola Major
- Smallpox rash

Manifestations: Variola Major
- Fever
 - Malaise
 - Headache, backache
 - Maculopapular rash
 - Oropharyngeal mucosa
 - Face
 - Forearms
 - Trunk
 - Legs
Manifestations: Variola Major

- Rash becomes pustular
- Large amount of virus in saliva: most infectious phase
- Scabs develop
- Toxemia
- Encephalitis
- Mortality (30%): 5th or 6th day after onset of rash

Variola: Alternate Forms

Malignant
- Abrupt onset
- Frequently fatal

Hemorrhagic
- Rash hemorrhages
- Frequently fatal

Variola: Alternate Forms

Variola minor
- Fewer constitutional symptoms
- Sparser rash
- Partially immune victims: similar to variola minor

Diagnosis

One suspected case → international health emergency

- Characteristic rash
 - Centrifugal distribution
 - Same stage of development at each location
 - Palmar & plantar location
 - Confirmed by laboratory analysis

Diagnosis

Management
- Strict isolation
- Supportive care
- Antibiotics for secondary bacterial infection
- Antiviral agents
 - Currently, none are approved
 - Agents for HIV have potential

Prevention

Post-exposure control
- All face-to-face contacts with victim
 - Vaccinated
 - Surveillance for fever, rash
- Home care recommended for victims
- Vaccination of healthcare workers, police, transit workers, etc.
Hospital Infection Control

- Smallpox spreads easily by droplets
- Rooms: negative pressure with HEPA
- Vaccination of employees, patients
- Laundry & waste- biohazards

Botulism

History

- First identified as poison from sausage (botulus = sausage)
- 1735: First case described
- 1897: Botulism toxin identified
- 1930s: Japanese used as weapon
- 1991: Iraq admits to producing 19,000 L of botulism toxin

Etiology

- Causative organism: Clostridium botulinum bacterium
 - Widespread, soilborne
 - Obligate anaerobe
 - Spore-forming
 - Produces botulinum neurotoxin
 - Colorless
 - Odorless, tasteless
 - Inactivated by heat

Forms

- Food-borne: ingestion of toxin in foods that have not been canned or preserved properly

Forms

- Wound botulism, systemic spread of toxin produced by organisms inhabiting wounds, associated with
 - Trauma
 - Surgery
 - Subcutaneous heroin injection
 - Sinusitis from intranasal cocaine abuse
Forms

- Infant botulism
 - Intestinal colonization of organisms in infants younger than 1 year
 - Associated with ingestion of honey by infants

Modes of Toxin Transmission

- Food: almost all types
 - Aerosol: bioterrorism
 - Water supply: unlikely because water treatment deactivates toxin

Manifestations

- Incubation: 2 H to 8 D after exposure, ingestion
 - Diplopia
 - Blurred vision
 - Dysphonia
 - Dysphagia
 - Dysarthria
 - Loss of gag reflex

- Paralysis
 - Loss of head control
 - Generalized weakness
 - Diaphragm & accessory ventilatory muscles
 - Recovery in weeks to months

Diagnosis

- Differential diagnosis - rule out
 - Guillain-Barre syndrome
 - Myasthenia gravis
 - Poliomyelitis

- Laboratory tests: available only at CDC
 - Blood
 - Gastric aspirates
 - Stool

Pathognomonic

- Symmetric, descending paralysis
- Afebrile patient
- Normal sensorium
Management

- Botulism is **NOT** an infection
- Evaluate airway & breathing
 - Loss of gag reflex → intubation
 - Loss of ventilatory muscles → ventilation

Management

- Botulism antitoxin: **STAT**
 - Minimizes severity
 - Does not reverse existing paralysis

Prevention

- Botulism toxoid: immunization
- Botulism antitoxin
 - Post-exposure prevention
 - Scarce

Prevention

- Decontamination: usual procedures
- Infection control
 - No isolation necessary
 - Universal precautions

Plague

- Naturally occurring plague: ancient
- 425 BC: first recorded epidemic in Athens
- 540 AD: first recorded pandemic
- 1340 AD: pandemic from China to Europe, killing 1/3 of Europeans
- 1400s AD: used as biological weapon by Tatars
- 1665 AD: great plague of London
History

- 1894: causative organism identified by Yersin, *yersinia pestis*
- Present day
 - Natural epidemics recur
 - Organism present in rodents, worldwide, including Western U.S.
- WWII: used by Japan as biological weapon
- Soviet Union developed large quantities of weapon-grade plague

Etiology

- Causative organism: *yersinia pestis*
- Insect vector: *x. cheopis* flea
- Animal reservoir: rodents
 - Rats
 - Mice
 - Prairie dogs
 - Ground squirrels

Forms

- Bubonic: buboes are infected lymph glands
- Pneumonic: pulmonary infection
- Septicemic: disseminated to blood

Transmission Modes

- Bites of infected fleas: bubonic form
- Aerosol
 - Pneumonic
 - Biological weapon

Manifestations: Bubonic

- Incubation: bubonic 2-10 D
 - Malaise
 - High fever
 - Lymph glands
 - Swollen & tender
 - May progress to buboes
 - Leukocytosis
 - Mortality 50%, if untreated

- Gram-negative bacillus

- Natural epidemics recur
- Organism present in rodents, worldwide, including Western U.S.
- WWII: used by Japan as biological weapon
- Soviet Union developed large quantities of weapon-grade plague
Manifestations: Bubonic
- Incubation 2-3 D
- Malaise
- High fever, chills
- Headache
- Hemoptysis
- Leukocytemia

Manifestations: Pneumonic
- Rapidly progressive bronchopneumonia
- Dyspnea
- Stridor
- Hypoxemia
- Mortality: 100% if untreated

Diagnosis
- Index of suspicion: sudden outbreak of severe pneumonia & sepsis
- Gram stain: sputum or blood, gram negative bipolar rod

Management
- Antibiotics: initiate STAT
 - Streptomycin: drug of choice
 - Gentamicin
 - Doxycycline
 - Tetracycline
 - Chloramphenicol
 - Trimethoprim-sulfamethoxazole
 - NOT cephalosporins

Management
- Supportive measures
 - Oxygen
 - Mechanical ventilation
Prevention

- Post-exposure antibiotics: seven days post-exposure
 - Tetracycline
 - Doxycycline
 - TMP-SMT
 - Chloramphenicol

Prevention

- Isolation
 - Respiratory isolation of patient for first 48 hours
 - Close contacts who refuse chemoprophylaxis
- Vaccine: limited availability
- Decontamination: usual measures

Additional Bioterrorist Threats

- Tularemia: extremely infectious bacterium
- Ebola: rapidly fatal virus
- Aflatoxin: carcinogen
- Clostridium perfringens: gangrene
- Ricin: slow poison

Summary & Review

- Anthrax
 - Antracis bacillus
 - Cutaneous, gastrointestinal, pulmonary
 - Pulmonary manifestations
 - Management
 - Prevention: immunization, chemoprophylaxis
 - Universal precautions

Summary & Review

- Smallpox
 - Variola major
 - Communication: droplet nuclei
 - Primary manifestation: centrifugally distributed rash
 - Management
 - Supportive
 - Isolation
 - Home care

Summary & Review

- Smallpox
 - Prevention: vaccination
 - Precautions
 - Strict isolation
 - Biohazardous waste
Summary & Review

Botulism

- *Clostridium botulinum:* produces neurotoxin
- **Sources**
- **Manifestation:** descending paralysis
- **Management**
 - May require intubation, ventilation
 - Antitoxin
- **Prevention:** immunization (botulinum toxoid)
- **Universal precautions**

Plague

- *Yersinia pestis:* gram negative rod
- **Insect vector (flea)**
- **Infected rodents**
- **Types:** bubonic, pneumonic, septicemic
- **Manifestations:** buboes, pneumonia
- **Management:** antibiotics, etc.
- **Prevention:** immunization, chemoprophylaxis
- **Precautions:** isolation first 48 hours

References

- http://www.newadvent.org/cathen/12143a.htm
- http://www.bact.wisc.edu/Bact330/lectureanthrax
- http://www.cdc.gov/ncidod/dhdx/diseaseinfo/anthrax_g.htm
- http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5041a2.htm
- http://www.sandia.gov/media/cbwfoam.htm
- http://38.232.17.254/journals/annals/15oct97/smallpox.htm

- http://www.acponline.org/journals/annals/01oct96/botuedit.htm