

Learning Objectives:

- Explain the generation and conduction of the electrical impulse in cardiac tissue.
- > Analyze the components of a normal ECG.
- > Identify common dysrhythmias on an ECG monitor.

Introduction to Electrocardiography

Chemical Basis for Electrical Activity

Resting potential – cell interior negative, in relation to exterior

ECG Analysis Steps

- Lead usually II or III
- > Rate 5 large boxes = 1 sec. @ paper speed of 25mm/sec

Sma	ll box		small boxes :	= 1 large box	
			Δ		
-		<u> </u>		═╲╢┙	<u> </u>

CCG Analysis Steps > Pwae > Absent Beats are ectopic Atrial fibrillation > Tall or wide → atrial enlargement Atrial fibrillation = Tall or wide → atrial enlargement Durctional rhythm Dextrocardia Lead reversal

ECG Analysis Steps

> PR interval

> Prolonged (>0.2 sec) → AV block
 > Short (<0.12) → Wolff-Parkinson-White (WPW) syndrome

ECG Analysis Steps

PR relationship

- ≻ More P than QRS →
 AV block
 Atrial flutter with block
 > Absent P wave →
- Absent P wave ->
 Hidden by QRS complex
 Ectopic rhythm
 Fibrillation

ECG Analysis Steps

> QRS Complex

➢ Interval > 0.12 → Bundle branch block (notched QRS) Hyperkalemia Ventricular ectopic beat

See link below to view ECG associated with hyperkalemia

ECG Analysis Steps

➤ T wave - should be in the same direction as the QRS
 > Inversion → evolving infarction
 > Peaked → Hyperkalemia

ECG Analysis Steps

- > Interpret, with consideration to:
 - Medical history
 General clinical status
 - Electrolyte balance
 - > Medications
 - > Artifacts
 - > Equipment calibration, adjustment, and application to patient

See links below to view T wave inversion & peaked T waves

Sinus Dysrhythmias

Sinus bradycardia
 Beats originate in SA node
 Normal wave configurations
 Rate < 60/min

```
dr-dr-dr-dr
```


Atrial Dysrhythmias

Paroxysmal atrial tachycardia – ectopic atrial focus initiates beats

See link below to view PAT

- Sudden onset, rate > 150
 Spontaneous termination
 Type of PSVT

Atrial Dysrhythmias > Atrial tachycardia alalalalalalalala hhhh

Atrial Dysrhythmias

Atrial flutter

- Saw tooth atrial waves
- > Associated with pulmonary disease
- Promotes thrombus formation
 Atrial rate 180-300/min
- > Usually 4 atrial waves per QRS

Atrial Dysrhythmias

Atrial flutter

Saw tooth P waves

Junctional (Nodal) Dysrhythmias

- Premature junctional complexes
 Most common causes:
 Heart disease
 - Heart disease Digitalis toxicity
- > P waves absent, inverted, after QRS

Ventricular Dysrhythmias

- > Premature ventricular complexes (PVCs)
 - Ectoptic beats
 - > P wave is absent
 - > Wide QRS complex
 > Compensatory pause before next regular beat

PVCs

- > Unifocal similar configurations → one originating site
- > Multifocal variable configurations → more than one originating site

Unifocal PVCs

> Unifocal – similar configurations \rightarrow one originating site

PVC Categories

Frequency > Isolated

- > Every third trigemini
 > Every other bigeminy
 > Couplet = two, triplet = three
 > Every ventricular tachycardia

> Increased frequency \rightarrow increased risk for R on T \rightarrow V-Tach

Ventricular Tachycardia

- All beats originate in ventricle
- > Wide QRS complexes
- > P waves are absent
- Torsades des Pointes type of VT
 Caused by hypomagnesia
 Common in alcoholics

 - > No response to defibrillation must restore Mg^{++}

Ventricular Tachycardia

Ventricular Fibrillation • Rapid irregular rhythm • Course-to-fine complexes • Management • Management

- Failure of all upper pacemakers
- Rate 20-40/min
 Absent P waves
- > Widened QRS
- > Causes:
 - > Myocardial ischemia/infarction
 > Pacemaker failure

			1000	 	1000	1000	 			 	1000	 	 	1111		1111	 	 	 			 	
																	 	 					1111
																							100
	0																		~				1111
İİ	1							1					1						Π				
		5	1						\sim					~	5					>	\cap		i i i
																							1111

Accelerated Idioventricular Rhythm

Looks like VT, but slower and non-lethal
 Causes:
 Spinal anesthesia
 Heart disease, e.g. M.I.
 Reperfusion
 Drugs, e.g. digitalis

Heart Blocks

Causes:

- Enhanced vagal tone
 Congenital heart defects
 Myocardia ischemia/infarction
 Congestive heart failure

- Cardiomyopathy
 Cardiac surgery
 Medications, e.g. digitalis, antidysrhythmics

Second Degree Heart Block Type 1

> AKA Wenckebach, Mobitz Type I

> Progressive lengthening of PR, then dropped beat

		~		
	T.	I.		
		~		
	1	A		
		h		
		II		
		\sim		
	1	1		
		~		
		~		
		~		
	1r	ħ.		
		~		
		~		
	1		ų.	
		\sim		
		Δ		
	ľ		ĺ	1

Second Degree Heart Block Type 2

> AKA Mobitz Type II

- > Constant PR intervals
- > QRS dropped at fixed ratio

1111	1111																										::::
1277	1111		 	1111	1	11.1			1				1										1				1
	1.1.1	1.1.1			Ł				1				ł	TT									t				ł.
	-		 -	 Α	1	\sim	 -	-	-	\sim	 	-^	1	×	-	 ~	-		4			-^	4	\sim	-	-^	1
1111			 	 			 							1111											1110		100
																									1		

Third Degree (Complete) Heart Block Very slow ventricular rate > No consistent association between P wave and QRS complex

	L	~~~~	
~Y			

Heterotopic Heart Transplant

➤ Two hearts → Two ECG patterns

See links below to view ECG, images, and an article on the heterotopic procedure

Dextrocardia

- Heart located on right
- > Leads should be reversed for patients with dextrocardia

See link below to view ECG and CXR of dextrocardia

Artifacts

- Patient tremors
- > Caregiver activities
- > External devices
- Treacherous technician syndrome
 Reversal of leads by technician
 Most common cause of false positive diagnosis of dextrocardia

See link below to view tremor artifact

Review and Summary

- ECG is result of electrical conduction through the heart
- > ECG comprised of waves and intervals > ECG leads
- > Systematic analysis of ECG > Rate
 - > Regularity
 - > Waves, intervals

Review and Summary

- Sinus Dysrhythmias
 - > Bradycardia > Tachycardia
 - > Dysrhythmias

> Atrial Dysrhythmias

- > Atrial tachycardia, PAT > Atrial flutter
- > Atrial fibrillation
- > Premature atrial contractions

Review and Summary

Junctional Dysrhythmias

- > Junctional bradycardia
- > Junctional tachycardia > Premature junctional complex

> Ventricular Dysrhythmias

- > Premature ventricular contractions
- > Ventricular tachycardia
- > Ventricular fibrillation
- > Idioventricular rhythm

Review and Summary

Heart block – conduction defects

- > First degree
- > Second degree, Mobitz I
- > Second degree, Mobitz II
- > Third degree (complete)
 > Bundle branch
- > Pacemaker beats
- > Atrial
- > Atrioventricular
- > Failure to capture

Review and Summary

Unusual conditions

- Heterotopic transplants > Dextrocardia
- > Artifacts
 - > Tremors, movements
 - > TTS

References

- Brown KR, Jacobson S. Mastering dysrhythmias 1988: FA Davis; Phila.
- Wilkins RL, Krider SJ, Sheldon RL. Clinical assessment in respiratory care, 3rd ed. 1995 Mosby-Yearbook; St. Louis.
- Elstun LR. Electrocardiography and cardiac monitoring, Chap 7 in Chang DW, Elstun LR, Jones AP. The multiskilled respiratory therapist: A competency-based approach 2000: FA Davis; Phila.
- > Pace Symposia. ECG Simulator 2009. (source of ECG waveform graphics). http://www.ecgsimulator.net/