High Frequency Jet Ventilation

High Frequency Ventilation Types
- High frequency positive pressure ventilation - conventional ventilation with high frequencies
- High frequency flow interruption
 - Early form of HFV
 - Interruption of gas flow from a high pressure source at a high rate

High Frequency Ventilation Types
- High frequency percussive ventilation (HFPV)
 - High frequency pulsations with conventional breaths
 - Volumetric diffusive ventilation - Bird VDR 4™ applied to
 - Inhalation injuries - burn centers
 - Ventilation during airway surgery
 - Neonatal ventilation

High Frequency Ventilation Types
- High frequency oscillatory ventilation (HFOV)
 - High frequency ventilation with tidal volume less than dead space
 - First developed by Emerson - 1950s
 - Most common HFV technique for pediatric patients
 - Approved, available, & used for adults

Learning Objectives
- Explain the rationale, indications, & complications for high frequency jet ventilation (HFJV)
- Describe the equipment used in HFJV
- Explain patient management techniques associated with HFJV
- Apply jet ventilation management techniques in patient scenarios
High Frequency Ventilation Types

- High frequency jet ventilation (HFJV)
 - High frequency ventilation with delivery of a tidal volume (1-3 mL/kg) at a high flow (jet)
 - Originally used for short-term ventilation during airway surgery (1970s) because of capability to ventilate in face of leaks

Rationale, Principles, Indications, & Complications

Rationale

- Small tidal volume minimizes ventilator-induced lung injury & permits greater PEEP - lung protective ventilation strategy
- Short inspiratory time & small TV minimize flow through leaks

Mechanism for Gas Transport

- Bulk convection - jet of gas moves through the center of airways through dead space gas, delivering fresh gas to distal airways, with passive exhalation around the jet stream

- Pendelluft - collateral exchange between distal units with varying compliance at
 - Airway bifurcations
 - Pores of Kohn
 - Canals of Lambert
- Simple molecular diffusion

See link below for illustration of gas exchange mechanisms

- Resonant frequency - lungs have innate resonant frequency
- Ventilation is augmented because less pressure is required to ventilate lungs at their resonant frequency
 - 4 - 8 Hz (adults)
 - 10-12 Hz (small neonates)
Additional Effects

- Vibrations & expiratory flow along airway lumen mobilize secretions
- Short inspiratory time minimizes peak alveolar pressure - less pressure is transmitted to alveoli
- Small tidal volume minimizes lung motion during ventilation

Indications - Neonatal/Pediatric

- Ineffectiveness of other ventilation methods & BEFORE ventilator-induced lung injury occurs
- Evolving chronic neonatal lung disease (bronchopulmonary dysplasia)

Indications - Neonatal/Pediatric

- Failure of other ventilation methods & BEFORE ventilator-induced lung injury occurs
- Evolving chronic neonatal lung disease (bronchopulmonary dysplasia)
- Congenital diaphragmatic hernia
- Meconium aspiration
- Ventilation during transport, with or without inhaled nitric oxide

Indications - All Patients

- Pulmonary air leaks, e.g. bronchopulmonary fistula
- Difficult airway management
 - Ventilation during intubation
 - Ventilation during tracheostomy
 - Ventilation during bronchoscopy

Indications - All Patients

- Pulmonary air leaks, e.g. bronchopulmonary fistula
- Difficult airway management
 - Ventilation during intubation
 - Ventilation during tracheostomy
 - Ventilation during bronchoscopy
- Elimination of lung motion during chest surgical procedures
- Ventilation during airway surgery
- Ventilation following pneumonectomy
Contraindication
- Effectiveness of conventional ventilation methods

Complications
- Intracranial hemorrhage
- Periventricular leukomalacia - ischemic white matter injury
- Hypotension
- Air trapping - inadvertent PEEP
- Pneumo/thorax/mediastinum
- Mucosal desiccation - inadequate humidification

Evidence on Effectiveness
- Meta-analyses of RCTs on HFJV for premature infants conclude that there is inadequate evidence - not enough trials
- HFJV is another tool that requires judicious application on a case-by-case basis

Jet Ventilators
- No longer manufactured
 - Infrasonic Adult Star™
 - Bear 150™
- Bunnell Life Pulse™
- Accutronics
 - Mistral™
 - Monsoon™

Jet Ventilation Techniques
- Normal frequency jet ventilation
- High frequency jet ventilation – rates >60/min
- Combined frequency jet ventilation – rates > 60/min combined with normal rates
Bunnell Life Pulse™

- Currently used for neonates & pediatric patients (≤ 28 kg) in USA
- Applied in tandem with companion ventilator that provides
 - PEEP
 - Sigh breaths
 - Spontaneous breathing source gas

Bunnell Life Pulse™

- Controls - companion ventilator
 - FiO₂ - ideally, same blender as jet
 - Rate ≤ 5/min - ideally zero
 - PEEP - adjusts mean airway pressure (MAP)
 - Peak inspiratory pressure (PIP)

Bunnell Life Pulse™

- Controls - jet
 - FiO₂ - low-flow blender, ideally same blender as companion
 - Peak inspiratory pressure (8 - 50 cm H₂O)
 - Rate (240 - 660/min)
 - On time (inspiratory time) - (0.02 - 0.034 sec)

See link below to view Life Pulse panel (click individual sections)

Bunnell Life Pulse™

- Monitors
 - Jet PIP displays distal pressure (companion PIP displays proximal pressure)
 - PEEP
 - Δp (PIP - PEEP)
 - Mean airway pressure
 - Servo pressure - servo-controlled drive pressure that adjusts flow to maintain PIP

Accutronics Mistral™

- Short-term ventilation, e.g. operating room
- Controls
 - Rate 12-150/min
 - Inspiratory time% 20-60%
 - Drive pressure 5 - 40 psi

Accutronics Monsoon™

- Short or long-term (includes humidification)
- Controls
 - Rate 12-1,600/min
 - Inspiratory time% 20-60%
 - Drive pressure 5 - 40 psi
 - Humidification - up to 100% RH

See link below to view Accutronics Monsoon™ ventilator
Accutronics Monsoon™

- Additional features
 - Color touch screen
 - Detachable control panel
- Options
 - Video camera
 - EtCO₂
 - TCO₂
 - Double jet

Bunnell LifePort™ adapter - for Life Pulse™ ventilator
- Attaches to ETT & pressure monitoring port
- Approximates distal airway pressure
- Use the same size as ETT or larger

See link below to view Bunnell LifePort™ adapter (click LifePort)

Airway Devices

- Triple-lumen jet endotracheal tube
 - Ports
 - Distal pressure monitoring
 - Companion ventilator
 - Jet ventilator

See link below to view triple-lumen jet endotracheal tube

- Percutaneous catheter
 - Ventilation via cricothyrotomy
 - Difficult airway management strategy

See link below to view percutaneous catheter
FYI see link below for article on percutaneous jet ventilation

HFJV Airway Devices

- Endotracheal jet catheter
 - Translaryngeal ventilation
 - Microlaryngeal surgical procedures

See link below to view intubation with Hunsaker Mon-jet™ tube (1.2)
Airway Devices
- Univent™ tube - bronchial blocking tube intended for single lung ventilation

HFJV Patient Management

Airway Management
- Suctioning - needed more frequently during initial hours on jet ventilation

Initiation
- Patient already on conventional or oscillatory ventilation
 - Follow Bunnell startup procedure, including attachment of LifePort adapter

FYI see link below to bookmark Bunnell Life Pulse™ slides

Ventilator Control Adjustment
- Companion controls
 - FiO₂ - both ventilators
 - PIP or TV, as previously adjusted
 - Rate
 - Weaned to zero, as tolerated
 - Desaturation during weaning indicates need for greater MAP
 - PEEP - adjust to maintain MAP
 - Oxygenation maintained with
 - FiO₂
 - MAP

Jet controls
- On time
- Rate
- PIP - adjusts TV (Δp)
Jet Control Adjustment

- On time
 - Defaults to 0.02 sec
 - Usually left on default setting
 - At lowest rate (240) I:E = 1:12

- Rate (240-660) - not the primary control for PaCO2
 - Typical jet rate ≥ 10 times CMV rate
 - For small infants, start at 420/min
 - Lower rates for
 - Larger infants
 - PIE
 - Meconium aspiration
 - Gas trapping, reversal of which may decrease PaCO2

Jet Control Adjustment

- PIP - control over PaCO2
 - Adjusts TV (Δp)
 - With HFV, VE = f x TV^2 → smaller TV changes have greater effect
 - Start with PIP 1-2 cm less than CMV PIP
 - Adjust for desired PaCO2
 - Transcutaneous CO2 monitor is helpful in adjusting PIP

Ventilation Monitoring

- Servo pressure
 - Fluctuates like PIP with patient activity & position
 - Should change in direction of PIP setting

- Proximal-distal pressure difference
 - Jet PEEP display is measured distally
 - CMV PEEP display is measured proximally
 - Significant difference between distal & proximal indicates intrinsic PEEP (PEEPi)
 - Decrease rate to eliminate PEEPi

Ventilation Monitoring

- Decreased by
 - Decreased compliance
 - Increased resistance
 - Obstructed ET
- Increased by
 - Increased compliance
 - Decreased resistance
 - Leak in system
- Increased servo P is usually good, but may indicate leak
Discontinuation

- Condition that precipitated need for HFJV must be resolved before weaning
- Wean slowly
- Maintain MAP for oxygenation

Discontinuation

- Decrease PIP slowly (1-2 cm H₂O)
- Decrease PEEP, which controls the MAP, to 8 or less as consistent with adequate oxygenation
- Decrease FiO₂ to 30%
- Change to CPAP or nCPAP when PIP < 15 cm H₂O & CMV rate at or near CPAP

Case Scenarios

Case One

- 26 wk 700 g BG
- Intubation & surfactant in DR
- Initial ventilator settings: TV = 12 mL, rate = 60/min, FiO₂ = 60%, PEEP = 6 cm H₂O - couldn’t wean FiO₂
- More surfactant - no changes (RDS)
- Over 36 H, PIP increased from low 30s to 55 cm H₂O - see CXR after CMV

See links below to view CXR before CMV & CXR after 36 H on CMV

Case One

- Diagnosis - PIE
- Conventional ventilator: FiO₂ = 60%, MAP = 22 cm H₂O, PIP = 35 cm H₂O
- Initial settings for jet ventilation
 - Companion: FiO₂ = 60%, PEEP = 12 (for MAP = 22), rate = 5/min
 - Jet: FiO₂ = 60%, PIP = 50 cm H₂O, rate = 420/min, On time = .020
- ABGs: PaO₂ = 60 mm Hg, SaO₂ = 93%, PaCO₂ = 35 mm Hg, pH = 7.42

Case One

- ABGs: PaO₂ = 60, SaO₂ = 93%, PaCO₂ = 35, pH = 7.42
- Ventilator adjustments
 - Companion rate to zero - SPO₂ decreased, increased MAP to 23 cm H₂O with SPO₂ rebound
 - Decreased PIP to 47 cm H₂O, PCO₂ increased to 36 mm Hg
- Over 24 H, FiO₂ decreased to 42% & PIP decreased to 40 cm H₂O
- PIE resolving on radiograph
Case One

- At 48 H on jet, ABGs: PaO$_2$ = 70, SaO$_2$ = 95%, PaCO$_2$ = 32, pH = 7.46
- FiO$_2$ weaned to 30%
- PIP weaned to 10 cm H$_2$O
- PEEP weaned to 8 cm H$_2$O
- Patient stable on CPAP 8 cm H$_2$O, FiO$_2$ = 30%
- Extubated to nCPAP

Case Two

- 41 wk, 3,500 g BB
- Delivered with meconium in amnion & in upper airways
- Intubated, suctioned through ETT
- Lavaged with surfactant
- Placed on nCPAP = 6, FiO$_2$ = 35%, SpO$_2$ = 89%, then to NICU
- 6 H later, SpO$_2$ decreased & RR increased to 80/min

See link below to view a radiograph of MAS

Case Two

- Placed on volume-control ventilator with FiO$_2$ = 50%, TV = 22 mL, rate = 40/min; PEEP = 6 cm H$_2$O, PIP = 48 cm H$_2$O, MAP = 18 cm H$_2$O
- ABGs: PaO$_2$ = 45 mm Hg, SaO$_2$ = 81%, PaCO$_2$ = 76 mm Hg, pH = 7.18
- Changed to jet ventilator
- Settings??

Case Two

- Initial settings for jet ventilation
 - Companion FiO$_2$ = 60%, PEEP = 6 cm H$_2$O for MAP = 18 cm H$_2$O, rate = 5/min
 - Jet FiO$_2$ = 60%, rate = 360/min, PIP = 46 cm H$_2$O
- ABGs: PaO$_2$ = 42 mm Hg, PaCO$_2$ = 75 mm Hg, pH = 7.10

Case Two

- Ventilator adjustments
 - Companion PEEP increased to 10 cm H$_2$O for MAP = 20 cm H$_2$O, rate decreased to zero
 - Jet rate decreased to 240/min
- ABGs: PaO$_2$ = 59 mm Hg, SaO$_2$ = 91%, PaCO$_2$ = 55 mm Hg, pH = 7.27
- CXR - less hyperinflation
- Note: increased PIP might decrease PaCO$_2$, but decreased rate worked by decreasing I:E

Case Two

- Over two days, CXR improved & patient stable on FiO$_2$ = 38%, PIP = 22 cm H$_2$O, PEEP = 6 cm H$_2$O
- PIP weaned to zero, FiO$_2$ weaned to 30% with patient stable
- Patient extubated to nCPAP
Summary & Review

- HFV types
- HFJV definition & types
- HFJV rationale
- Mechanisms for gas transport
- HFJV indications
- HFJV complications

Summary & Review

- Jet ventilators
 - Bunnell LifePulse™
 - Accutronics
 - Mistral™ - short-term only
 - Monsoon™
- Bunnell controls
 - Rate
 - PIP
 - On time

Summary & Review

- Jet airway devices
 - Bunnell LifePort™
 - Triple-lumen jet endotracheal tube
 - Cricothyrotomy catheter
 - Translaryngeal catheter

Summary & Review

- HFJV management
 - Control adjustments
 - Oxygenation - MAP, FiO₂
 - PaCO₂ - PIP (Δp)
 - Rate - decreased for air-trapping
 - Monitoring
 - Servo P
 - Distal - proximal pressure difference
 - Discontinuation

References

- Woodruff, K. Personal communications pertaining to Bunnell Life Pulse 2010.

References

References

- Patel RG. Chest. Percutaneous transtracheal jet ventilation: a safe, quick, & temporary way to provide oxygenation & ventilation when conventional methods are unsuccessful. 1999 Dec;116(6):1689-94.

- Stewart DL, Dela Cruz TV, Duncan SD, Cook LN. Response to high frequency jet ventilation may predict the need for extracorporeal membrane oxygenation. Eur Respir J. 1996 Jun;9(6):1257-60.

