

High Frequency Oscillatory Ventilation

Arthur Jones EdD, RRT

This Presentation is Approved for
1 CRCE Credit Hour

Learning Objectives

- Explain the indications, rationale & monitoring for HFOV
- Explain the effects of adjusting HFOV ventilator controls

High Frequency Ventilation Introductory Information

High Frequency Ventilation

- High frequency ventilation: any form of ventilation with frequency greater than 150/min
- Five basic types

High Frequency Ventilation Types

- High frequency positive pressure ventilation: conventional ventilation with high frequencies & low tidal volumes
- High frequency flow interruption
 - ❖ Early form of HFV
 - ❖ Interruption of gas flow from a high pressure source at a high rate

High Frequency Ventilation Types

- High frequency percussive ventilation (HFPV)
 - ❖ High frequency pulsations with conventional breaths
 - ❖ Volumetric diffusive ventilation - Bird VDR 4™
 - ❖ Inhalation injuries - burn centers
 - ❖ Ventilation during airway surgery
 - ❖ Neonatal ventilation

See link below to view the VDR

High Frequency Ventilation Types

- High frequency jet ventilation
 - ❖ Bunnell Life Pulse™ - currently in use
 - ❖ Jet ventilator in tandem with conventional vent
 - ❖ Triple-lumen jet tube - pressure monitoring lumen at distal end
 - ❖ Frequencies: 240-660/min

See link below to view Bunnell Life Pulse™ ventilator

High Frequency Ventilation Types

- High frequency oscillator ventilation
 - ❖ First developed by Emerson - 1950s
 - ❖ Most common HFV technique for pediatric patients
 - ❖ Approved & available for adults

HFOV Rationale, Physiology, & Applications

Definition & Description

- Definition: rapid rate ventilation with small tidal volume (often less than dead space)
- Goal: oxygenate & ventilate without ventilator-induced lung injury

Definition & Description

- HFOV: aka CPAP with a wiggle
 - ❖ CPAP: sustained lung inflation for alveolar recruitment
 - ❖ Wiggle: alveolar ventilation with oscillating pressure waveform at adjustable frequency (Hz) & amplitude (ΔP)

Rationale

- HFOV effectively ventilates with intrapulmonary volume changes that are less than conventional ventilation, decreasing volutrauma & ventilator-induced lung injury

Mechanisms for Gas Transport

- How does HFOV work, when tidal volume is less than dead space?
 - ❖ Tidal volume is not routinely measured, but it can be
 - ❖ Adult TV = 44 - 209 mL
 - ❖ Neonatal TV = 2.5 mL/kg BW

Mechanisms for Gas Transport

- Bulk convection, like conventional ventilators, to proximal alveoli
- Pendelluft: collateral exchange between distal units with varying compliance at
 - ❖ Airway bifurcations
 - ❖ Pores of Kohn
 - ❖ Canals of Lambert

See link below for illustration of gas exchange mechanisms

Mechanisms for Gas Transport

- Taylor dispersion: turbulence at airway bifurcations speeds diffusion
- Asymmetric velocity profiles: augmented gas mixing due to high energy from the oscillations

Mechanisms for Gas Transport

- Cardiogenic mixing: heart contractions augments gas mixing
- Simple molecular diffusion
- Active expiration $\rightarrow VE = f \times TV^2$

General Indications

- Failure of conventional mechanical ventilation (CMV) & before ventilator-induced lung injury (VILI) occurs
- Some studies favor HFOV before frank failure of CMV

Specific Indications

- ARDS/ALI (adults)
- Air leaks
 - ❖ Pneumothorax
 - ❖ PIE (pulmonary interstitial emphysema)
 - ❖ Bronchopulmonary fistula

See link below for abstract on HFOV & ARDS/ALI in adults

Specific Indications

- Other neonatal indications
 - ❖ RDS
 - ❖ Meconium aspiration
 - ❖ Persistent pulmonary hypertension
 - ❖ Pulmonary hemorrhage
 - ❖ Pulmonary hypoplasia
 - ❖ Congenital diaphragmatic hernia

Complications

- Hypotension
 - ❖ Due to decreased venous return
 - ❖ Responds to fluid bolus

Complications

- Hypotension
 - ❖ Due to decrease venous return
 - ❖ Responds to fluid bolus
- Pneumothorax
 - ❖ Sudden onset of hypotension
 - ❖ Decreased chest wiggle

Complications

- Hypotension
 - ❖ Due to decreased venous return
 - ❖ Responds to fluid bolus
- Pneumothorax
 - ❖ Sudden onset of hypotension, desaturation
 - ❖ Decreased chest wiggle
- ETT obstruction
 - ❖ Hypercapnia, desaturation
 - ❖ Decreased chest wiggle

Complications

- Intraventricular hemorrhage, due to high MAP
- Neurodevelopmental problems for neonates from noise (unsubstantiated for HFOV)
- Critical illness polyneuropathy, due to
 - ❖ Sedation
 - ❖ Neuromuscular blockers

Relative Contraindications

- Increased ICP
- Obstructive lung disease

Research on Effectiveness

- Randomized clinical trials
 - ❖ Favor conventional ventilation
 - ❖ Favor HFOV
 - ❖ Find no difference
- Meta-analyses of RCTs no clear evidence favoring either
- My opinion: HFOV is another tool that requires judicious application on a case-by-case basis

HFOV Ventilators & Management

HFOV Ventilators (US)

- SensorMedics
 - ❖ 3100a - neonates & small children
 - ❖ 3100b - large children (> 35 kg) & adults

SensorMedics
3100a
Courtesy of
Cardinal
Health

HFOV Ventilators (US)

- SensorMedics operation
 - ❖ Electronically powered & controlled piston-diaphragm oscillator
 - PAW = 3 - 45 cm H₂O (b = 5 - 55)
 - f = 3 - 15 Hz
 - Amplitude = 8 - 110 cm H₂O (b = 5 - 130)

HFOV Ventilators (US)

- SensorMedics ventilator circuit
 - ❖ Very low volume & compliance
 - ❖ Strict motion limitation
 - ❖ Ventilator requires calibration (later)

See links below for diagram of the SensorMedics circuit

Up next: Video of the SensorMedics flexible circuit assembly

HFOV Ventilators (US)

- Dräger Babylog
 - ❖ Oscillation produced by expiratory valve switch
 - ❖ Provides active exhalation

Image used
with permission
from Dräger
Medical

FYI see link below for Dräger ventilators

HFOV Ventilators (US)

- Infant Star 950
 - ❖ Operates by flow interruption
 - ❖ Wave form same as other oscillators

Monitoring

- Arterial line
 - ❖ Blood pressure
 - ❖ Blood gas analysis
- SPO_2
- Endotracheal tube leak

Monitoring

- Chest Wiggle factor (CWF)
 - ❖ Absent or diminished- airway obstruction
 - ❖ Asymmetric- endobronchial intubation
 - ❖ Check, especially after patient repositioning

Monitoring

- Chest radiograph
 - ❖ Initially should be frequent
 - ❖ 8.5 - 9.0 ribs should be visible - infants & adults
 - ❖ Monitor for appropriate expansion

Ventilator Settings

- Mean airway pressure (MAP)
 - ❖ In conjunction with FiO_2 , used to adjust oxygenation
 - ❖ Initial settings
 - 2-5 cm H_2O greater than MAP for CMV (high volume strategy)
 - 2 cm H_2O less than CMV for air leak syndromes (low volume strategy)

Ventilator Settings

- Mean airway pressure (MAP)
 - ❖ Adjusted in 1-2 cm H_2O increments, as determined by
 - CXR
 - Oxygenation - PaO_2 , SPO_2
 - FiO_2 - MAP used to reduce FiO_2

Ventilator Settings

- Amplitude (ΔP)
 - ❖ SensorMedics - power control adjusts the piston displacement
 - ❖ Adjusted for chest wiggle factor (CWF)
 - Neonates from nipple line to umbilicus
 - Adults from clavicles to mid-thigh

Ventilator Settings

- Amplitude (ΔP)
 - ❖ Initially set at
 - Neonates: 2 cm H₂O
 - Adults: 6-7 cm H₂O
 - ❖ Changed in 1-2 cm increments
 - ❖ Similar to TV adjustment
 - ❖ For HFOV, $VE = f \times TV^2$

Ventilator Settings

- Amplitude (ΔP)
 - ❖ Increased $\Delta P \rightarrow$ decreased PaCO₂ - used to change PaCO₂
 - ❖ When amplitude changed, MAP requires change

Ventilator Settings

- Frequency - Measured in Hertz (Hz)
 - ❖ 1 Hz = 1/sec
 - ❖ 1 Hz = 60/min
- Changing frequency also changes ΔP & MAP

Ventilator Settings

- Increased frequency \rightarrow increased PaCO₂
- Initial frequency settings
 - ❖ Adults 5-6 Hz
 - ❖ Recent study supports 10 Hz - rationale was to decrease TV for lung protection

Ventilator Settings

- Initial pediatric frequency settings

1,000 g	15 Hz
1,000 - 2,000 g	12 Hz
2.0 - 10.0 kg	10 Hz
13 - 20 kg	8 Hz
21 - 30 kg	7 Hz
> 30 kg	6 Hz
Meconium aspiration	3 - 6 Hz

Ventilator Settings

- **TI%:** proportion of cycle occupied by inspiration
 - ❖ Initial setting = 33%
 - ❖ Increased TI% → increased TV → affects PCO₂
 - ❖ Increased TI% decreases PCO₂

Ventilator Settings

- **Bias flow**
 - ❖ Generates pressure in circuit
 - ❖ Flushes CO₂
 - ❖ Initial settings (usually not changed)
 - 10 - 15 L/min term neonate
 - 25 - 40 L/min (adults)

Ventilator Settings

- **Bias flow**
 - ❖ Too low - MAP not attained
 - ❖ Too high - dampens exhalation, increasing PCO₂

Strategies for Increased PCO₂

- **Permissive hypercapnea**
- **Deflate tube cuff (adults)**
 - ❖ Permits CO₂ excretion
 - ❖ Must adjust MAP to compensate for loss

Weaning, Transition to CMV

- **Criteria**
 - ❖ Resolution of pathology
 - ❖ Clinical stability
 - ❖ Tolerance of procedures

Weaning, Transition to CMV

- **Wean FiO₂ < 50%**
- **Slowly - decrease MAP in 1 cm H₂O decrements**
- **When MAP < 25, consider**
 - ❖ CMV with optimal TV
 - ❖ PCV with optimal TV
 - ❖ APRV
 - ❖ SIMV (Infant Star)

Practical Notes

- Competency-based training required for all personnel before they use HFOV
- Patients will require sedation, paralysis
- Ventilator is not transportable
- SensorMedics requires calibration (see link below)

Up next: video of successful calibration of the SensorMedics

Precautionary Notes

- Pneumatic nebulizer may not be used with HFOV
- Limit disconnects, suctioning, bronchoscopies
- Consider recruitment maneuvers after disconnects, suctioning

Case Examples

Case One

- 27 wk GA 1,095g BB delivered to 32 YO G2P1 mom. Initial pH = 6.90, Apgars = 6; 4
- BB intubated & hand-bagged; ABG 7.38/37/111
- BB placed on ventilator @ f = 40, PIP = 26, FiO₂ = 1.0, PEEP = 5
- 4.3 ml Survanta given via ETT adapter; ABG 7.43/37/58

Case One

- BB worsened over next 4 H; vent settings advanced to f = 60, PIP = 36, FiO₂ = 1.0, PEEP = 5 (MAP = 22); ABG 7.22/54/46

Case One

- BB placed on HFOV, settings f = 12 Hz, MAP = 24, ΔP = 42; ABG 7.28/62/174; CXR shows hyperinflation (10th rib) with flattened diaphragms
- What to do about PCO₂
- What to do about hyperinflation

Case One

- What to do about PCO_2
 - ❖ Leave it; the pH = 7.28 or
 - ❖ Increase ΔP or decrease frequency
- What to do about hyperinflation
 - ❖ MAP weaned to 22 cm, monitoring SpO_2 & CXR
- ABG 7.34/48/125

Case One

- Over 2 D, FiO_2 weaned to 40%, maintaining $\text{SpO}_2 > 94\%$, MAP weaned to 15, ΔP weaned to 20
- BB changed to PCV 25/5 (MAP = 14 cm H_2O), $f = 30/\text{min}$, $\text{FiO}_2 = 40\%$; ABG 7.47/34/96
- Conventional settings successfully weaned over next two days & BB extubated without sequelae

Case Two

- BG is 39 wk, 3,400 g infant vaginally delivered to 27 YO G1P0 mom with complete prenatal care
- At delivery, amniotic fluid is meconium stained & BG is distressed

Case Two

- Direct laryngoscopy reveals thick meconium in airways
- BG intubated with 3.5 mm ETT & suctioned with meconium aspirator for thick meconium

Case Two

- BG lavaged with Survanta & placed on SIMV, $f = 40$, PIP = 25, PEEP = 5, $\text{FiO}_2 = 1.0$; ABG 7.21/78/73
- Over several hours, f increased to 60, PIP increased to 40

Case Two

- BG worsened, CXR revealed Rt pneumothorax, post-chest tube ABG 7.08/85/46
- HFO initiated, $f = 5 \text{ Hz}$, $\Delta P = 32$, MAP = 26; ABG 7.19/75/45
- What to do about PaO_2
- What to do about PaCO_2

Case Two

- ABG 7.19/75/45
- What to do about PaO_2
 - ❖ MAP increased to 30, observing SpO_2 & CXR
- What to do about PaCO_2
 - ❖ ΔP increased to 36
- ABG 7.32/52/85

Case Two

- Over two days, BG improves, but small air leak persists
- FiO_2 weaned to 40% with SpO_2
- ABG 7.56/24/213
- Next changes?

Case Two

- Over two days, BG improves, but small air leak persists
- FiO_2 weaned to 40% with SpO_2
- ABG 7.56/24/213
- Next changes
 - ❖ Reduce MAP, using $\text{SpO}_2 = 94\%$
 - ❖ Reduce ΔP to 30 for PaCO_2

Summary & Review

- HFV types
- HFOV definitions
 - ❖ High-frequency, with $\text{TV} < \text{Vd}_{\text{AN}}$
 - ❖ CPAP with a wiggle
- HFOV rationale
- Mechanisms for gas transport
- HFOV indications
- HFOV complications
- HFOV relative contraindications

Summary & Review

- Monitoring with HFOV
 - ❖ Chest Wiggle factor (CWF)
 - ❖ Chest radiographs
- Ventilator control settings
 - ❖ MAP
 - ❖ Amplitude (ΔP)- like TV
 - ❖ Frequency (Hz)
 - ❖ $\text{Ti} \%$
 - ❖ Bias flow

Summary & Review

- Strategies for hypercapnia
- Weaning from HFOV
- Precautionary notes

References

- Czervinske, MP, Barnhart SL. *Perinatal & Pediatric Respiratory Care*, 2nd Ed. Ch. 21. 2003. WB Saunders; St. Louis.
- Pilbeam SP, Cairo JM. *Mechanical Ventilation: Physiological & Clinical Applications* 4th Ed. 2006. pp. 555-561. Mosby-Elsevier, St. Louis.
- High-frequency oscillatory ventilation in adult acute respiratory distress syndrome. David M et al. *Intensive Care Med* Oct 2003;29(10):1656-1665.
- In Vitro performance characteristics of high-frequency oscillatory ventilators . Pillow JJ, Wilkinson MH, Neil HL, Ramsden CA. *Am J Respir Crit Care Med* 2001;164:1019-1024.
- High-Frequency Oscillatory Ventilation for Acute Respiratory Distress Syndrome in Adults. Derdak S et al. *Am J Respir Crit Care Med*. 2002;166:801-808.

References

- Prospective trial of high-frequency oscillation in adults with acute respiratory distress syndrome. Mehta S et al. *Crit Care Med*. 2001;29(7):1360-1369.
- Randomized trial of high-frequency oscillatory ventilation versus conventional ventilation: effect on systemic blood flow in very preterm infants. Osborn DA et al. *J Pediatr* Aug 2003;143:192-198.
- Pulmonary Interstitial Emphysema Treated by High Frequency Oscillatory Ventilation. Clark RH et al. *Crit Care Med*.1986;14:926-930.
- Results of the Provo Multicenter Surfactant High Frequency Oscillatory Ventilation Controlled Trial. (Abstract) Gerstmann DR, Minton SD, Stoddard RA, et al. 1995 Society for Pediatric Research.
- Sturtz WJ, Touch SM, Locke RG, Greenspan JS, Shaffer TH. Assessment of neonatal ventilation during high-frequency oscillatory ventilation. *Pediatr Crit Care Med*. 2008 Jan;9(1):101-4.

References

- Fessler HE, Hager DN, Brower RG. Feasibility of very high-frequency ventilation in adults with acute respiratory distress syndrome. *Crit Care Med*. 2008; 36(4):1043-8.
- Hager DN, Fessler HE, Kaczka DW, Shanholtz CB, Fuld MK, Simon BA, Brower RG. Tidal volume delivery during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. *Crit Care Med*. 2007;35(6):1522-9.
- Lista G, Castoldi F, Bianchi S, Battaglioli M, Cavigoli F, Bosoni MA. Volume guarantee versus high- frequency ventilation: lung inflammation in preterm infants. *Arch Dis Child Fetal Neonatal Ed*. 2008 Jul;93(4):F252-6.