Hemoglobin Abnormalities

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

Explain the etiologies, pathophysiology, manifestations, diagnosis, & management of selected hemoglobin abnormalities

Hemoglobin Structure & Function

Hemoglobin Structure

- Molecule containing four heme groups
- > Each heme group contains an iron atom
- $\succ~$ One molecule of $\rm O_2$ binds to each heme group

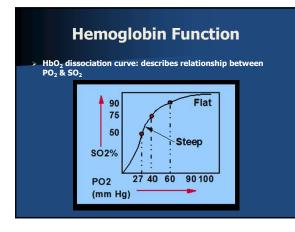
Hemoglobin Function

- > Four molecules O_2 per molecule of Hb = 100% saturation
- > Three molecules O_2 per molecule of Hb = 75% saturation

Hemoglobin Function

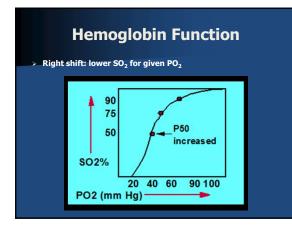
- > One gram of Hb carries 1.34 mL O_2
- > At 100% saturation, 15g Hb carries 20.1 mL O₂
- > At $PaO_2 = 100$, 0.3 mL O_2 is carried dissolved in plasma

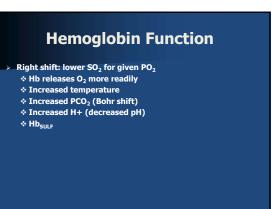
Hemoglobin Function

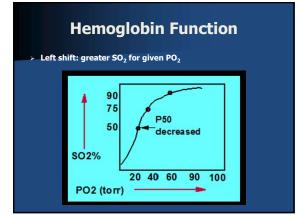

- Without Hb, cardiac output must increase to 36 L/min for same O₂ delivery
- Functions in O₂ transport
 Binds O₂ for transport
 Transports O₂ to tissues
 Releases O₂ to tissues

Hemoglobin Function

Additional functions
 & Buffer


 CO₂ transport: carries greatest amount of exchanged (excreted) CO₂


FYI see links below for additional information on structure & function of Hb



- Hb has greater affinity for O₂
- Facilitates uptake of O₂ in lung
- * Lower portion of curve
- Hb has lesser affinity for O₂
- Facilitates release of O₂ to tissues

Hemoglobin Function

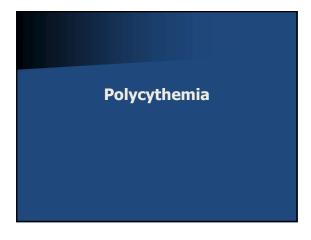
- Left shift: greater SO₂ for given PO₂
 - * Decreased temperature * Decreased PCO₂
 - * Decreased H+ (increased pH)
 - * Fetal Hb
 - * Decreased 2,3 diphosoglycerate (DPG): associated with stored blood

Hemoglobin Production

- **RBC:** production stimulated by erythropoietin
- Erythropoietin: secreted by kidney
- $\ensuremath{\boldsymbol{\ast}}$ Renal disease causes anemia by inhibiting production

Hemoglobin Metabolism

- > RBC ends life cycle (120 days)
- > Iron in Hb is recycled
- > Iron recycling byproducts
 * Carbon monoxide
 * Bilirubin


Hemoglobin Saturation

> Calculation vs. direct measurement

- * Calculations are based on HbO₂ curve
- * Direct measurement with oximeter or co-oximeter is
- more accurate
- Calculated SO₂ does not account for hemoglobinopathies, like
 - HbCO (carbon monoxide)
 - Methemoglobin
 - Sulfhemoglobin

Hemoglobin Abnormalities

- > Polycythemia
- > Anemia
- > Carboxyhemoglobin
- > Methemoglobin
- > Sulfhemoglobin

Definitions

Polycythemia: excessive RBCs

- Primary polycythemia (polycythemia vera): caused by genetic mutation in hematopoietic cells - rare condition
- Secondary polycythemia: caused by factors extrinsic to RBC precursors
- * Relative polycythemia: decreased plasma volume concentrates RBCs

Etiologies

Primary polycythemia: problem is within bone marrow
 Classified as myeloproliferative disease

* Origin

Secondary polycythemia

* Androgenic steroids

* Newborn: fetal asphyxia

Erythropoietin hypersecretion (tumor)

- Inherited mutation
- Acquired mutation

Etiologies

 Secondary polycythemia: problem is outside of bone marrow

- * Chronic hypoxemia
 - Altitude
 - Cardiac disease
 - Lung disease
 - Chronic hypoventilation
 - Smoking: carbon monoxideCongenital methemoglobinemia
 - Congenital 2, 3 DPG deficiency

FYI see links below for article on primary polycythemia

Etiologies

Pathophysiology

Increased RBC mass

- * Expanded blood volume
- * Increased metabolism
- * Increased blood viscosity
- Increased myocardial work
- Increased risk for thrombus formation

FYI see links below for article on secondary polycythemia

Symptoms

- > Headache
- > Weight loss
- > Weakness, malaise
- > Bruising
- > Bleeding: gums, nose

Symptoms

- > Headache
- > Weight loss
- > Weakness, malaise
- > Bruising
- > Bleeding: gums, nose
- Itching (pruritis)
- > Joint dysfunctions
- > Gastrointestinal discomfort, constipation

Physical Signs

- Rubor (redness), esp. facial
- > Hypertension
- > Hepatomegaly
- > Splenomegaly
- > Ecchymoses

Diagnosis

History

- * Median age = 60 (primary)
- Family history of blood disorders
 Residence at high altitude
- Medical history
 - Cardiac disease
- Pulmonary disease

Diagnosis

- Increased red blood cell mass: essential to confirm erythrocytosis
- Epo levels: distinguish between types
 Normal in primary
 Elevated in secondary
- > Plasma volume: to rule out relative polycythemia

Diagnosis

- Complete blood count
 - Elevated RBCs, Hb
 - * Elevated WBCs (sometimes)
 - * Elevated platelets (sometimes)
- > Arterial blood gases: to identify etiology
- > HbCO: to identify etiology

Complications

- > Thrombotic events * Deep vein thrombosis * Stroke * Myocardial infarction
- > Heart failure
- > Kidney stones
- > Hemorrhage

Management

- Primary polycythemia
- * Treatment is palliative * Phlebotomy
- - Maintain normal cell mass
 Control blood viscosity
- * Chemotherapy to suppress bone marrow production

Management


Secondary polycythemia * Phlebotomy

- Maintain normal cell mass
- Control blood viscosity

Management

Secondary polycythemia

- * Treat underlying cause Relocate to lower altitude
- Supplemental oxygen
- Smoking cessation
- BiPAP for hypoventilation
- Surgery for cardiac defects
- Surgery for renal tumors

Definition & Causes

Anemia: deficient RBCs

- > Etiologies Inadequate production
 Hemolysis: increased destruction

 - * Chronic blood loss

Types > Dietary deficiency \$ Vitamin B12 \$ Folic acid

- * Iron
- Autoimmune disease
 Autoimmune hemolytic anemia
- Drug-induced immune anemia: drug causes immune reaction to RBCs

Types

- Secondary aplastic anemia: bone marrow depression
 Chemotherapy
 - * Immunotherapy
 - * Toxins, e.g. benzene

Types

Hereditary disease

- G6PD deficiency: African, Mediterranean
 Thalassemia: Middle East, Asia
- Sickle cell: African

- Vampires
- Werewolves

FYI see links below for information on porphyria, vampires, & werewolves

Types

Manifestations

- > Pale coloring
- > Chronic fatigue
- > Shortness of breath
- Laboratory
 Decreased RBCs
 Decreased Hb

Management

- RCPs: always consider Hb level part of oxygenation status
- > Blood replacement
- Erythropoietin (Epogen, Aranesp): stimulate RBC production
- Manage underlying cause
 Nutrition
 - * Avoid, remove toxins

Management

Silver bullet, crucifix, cardiac stake (vampires, werewolves)

Carbon Monoxide Toxicity

Carbon Monoxide

> Endogenous: trace

- Byproduct of incomplete combustion
 * Colorless
 * Odorless
- Physiologic level of HbCO is 0.2%
 Nonsmoker
 Rural dweller
- > Greater in smokers, city dwellers

Carbon Monoxide

Most common fatal poison in USA
 Accidental
 Suicidal

Carbon Monoxide

> Effects

- * Binds with Hb 240 times stronger than O₂
- * Binds with myoglobin: myocardial damage
- Shifts HbO₂ curve to left: interferes with release of O₂ to tissues

Carbon Monoxide

> Effects

- * Binds with Hb 240 times stronger than does O₂
- * Binds with myoglobin: myocardial damage
- \Leftrightarrow Shifts HbO_2 curve to left: interferes with release of O_2 to tissues
- * Stimulates release of NO, which increases free-radicals
- · Stimulates release of No, which increases free rad
- * Greater affinity for fetal Hb: fetal asphyxia

Signs and Symptoms
None
Mild headache, angina, dyspnea
Severe headache, dyspnea weakness, cognitive impairment
Fainting, tachypnea, tachycardia, convulsion, coma

Management

- > 100% O₂ decreases HbCO by 1/2 every 60 minutes
- $\succ\,$ HbCO > 10%: 100% O_2 until HbCO is less than 5%
- > HbCO > 40%: transport for hyperbaric O_2
- > Pregnant patients: hyperbaric O₂ for HbCO > 30%

FYI see links below for article on HbCO management

Methemoglobin

- Hemoglobin that has been oxidized to the ferric state (Fe+++)
- > Does not transport O_2 or CO_2

Etiologies

Congenital cytochrome b5 reductase deficiency
 Subtypes (4)
 Chronic cyanosis (blue-gray)
 May be otherwise asymptomatic

Etiologies

- Acquired: exposure to
- Nitrites
 * Food preservatives
- Street drugs (poppers)
 Aniline dyes

Etiologies

- Acquired: exposure to
- Nitrites
 * Food preservatives
 - * Street drugs (poppers)
- > Aniline dyes
- > Silver nitrate: topical disinfectant
- Nitroprusside, nitric, nitrous oxide
- > Antimalarials
- > Inadequately cooked, contaminated vegetables

Etiologies

- Local anesthetics, esp. when applied to mucosa
 Bronchoscopies
 - Intubations
 - Throat lozenges

Etiologies

- Susceptible patients
 - * Congenital reduced methemoglobin reductase
 - * Elderly, infants

Manifestations

Hb_{MET} > 10% cyanosis: refractory to increased FiO₂

- Hb_{MET} 20 50%
 Anxiety
 Fatigue
 Tachycardia
- > Hb_{MET} 50 70%
 ☆ Coma
 ☆ Death

FYI see links below for article on methemoglobinemia

Manifestations

- SpO₂ is unreliable: will display 80 85% with very high Hb_{MET}
- > Diagnosis: CO-oximetry

Management

- O₂ has no beneficial effect
- > Hb_{MET} < 30%: no treatment may be needed</p>
- ▹ Hb_{MET} > 30%
- Hethylene blue (IV), unless patient has G6PD deficiency
 Ascorbic acid (oral)
- * n-acetylcysteine (off-label use)

See links below for case of methemoglobinemia after bronchoscopy

Sulfhemoglobin

- Incorporation of a sulfur atom into Hb molecule
- > Characterized by cyanosis in absence of hypoxemia

Sulfhemoglobinemia

Etiologies

- Chronic constipation may predispose (elderly patients)
- > Aniline dyes (paint)
- Medications
 - * Sulfonamides (Bactrim)
 - * Phenazopyridine (Pyridium)
 - * Phenacetin (APC, Excedrin)
 - * Dapsone
 - Treats leprosy, malaria
 - Also causes Hb_{MET}

Manifestations

- > Cyanosis
- > Green-brown blood
- > Otherwise asymptomatic
- > Hb_{SULF} does not carry O₂
- $\succ~Hb_{SULF}$ shifts HbO_2 curve to right, improving tissue O_2 delivery
- > Looks worse than it is

Manifestations

- Problems
 - * Hb_{SULF} is not measured by standard CO-oximetry * Hb_{SULF} measured as Hb_{MET}
- Some CO-oximeters can be software-calibrated for measurement

Diagnosis

- History of ingestion, exposure
- > Cyanosis, unresponsive to ↔ O₂
 ↔ Methylene blue

FYI see links below for case of sulfhemoglobinemia

Management

- > No intervention is necessary
- > Stop causative medication
- > Treat constipation

Summary & Review

Hemoglobin

- * Structure & functions
- * Production
- * Metabolism
- * Abnormalities

Summary & Review

Polycythemia

- * Etiologies: primary vs. secondary
- * Manifestations
- DiagnosisComplications
- * Management

Summary & Review

Anemia

- * Etiologies: blood loss, low production
- * Manifestations: deficient Hb
- * Management: blood replacement, erythropoeitin

Summary & Review

 CO poisoning
 ÷ Etiologies: CO inhalation
 ÷ Manifestations: depends on Hb_{co} level ♦ Diagnosis: Hb_{co} measurement
 ♦ Management: O₂, hyperbaric O₂

Summary & Review

- Methemoglobinemia
 Etiologies: nitrites, local anesthetics
 - * Manifestations: cyanosis
 - Diagnosis: Hb_{MET} measurement
 Management: methylene blue

Summary & Review

Sulfhemoglobinemia

- * Etiologies: sulfa drugs, constipation, paint
- Manifestations: cyanosis, green blood
 Diagnosis: R/O methemoglobinemia
- * Management: none