Learning Objectives

- Explain the rationale & physiological basis for independent lung ventilation (ILV)
- Identify clinical indications for ILV
- Describe the permutations of ILV
- Describe the equipment applied to ILV
- Explain the airway management procedures applied to ILV
- Explain the monitoring techniques applied to ILV
- Explain the ILV strategies applied to specific conditions

Description: ILV

- ILV is a ventilation strategy wherein the lungs are ventilated separately using a double-lumen tracheal tube (DLT)
 - Initially developed to isolate lungs during surgical procedures
 - Subsequently applied beyond the operating room for unilateral lung conditions

ILV Indications & Rationale

- During thoracic surgical procedures: ventilate one lung, while other one is resected, removed
- Lung lavage: ventilate each lung while other lung is lavaged, as for
 - Alveolar proteinosis
 - Cystic fibrosis

FYI see links below for information on lung lavage

ILV Indications & Rationale

- Massive hemoptysis: may ventilate only one lung
- Unilateral purulent infection: prevent spread of infection to healthy lung
- Single lung transplant: donor lung may have significantly different mechanical properties

FYI see links below for indications & rationale for lung isolation
ILV: Indications & Rationale

- Bronchopleural fistula (BPF): ventilate diseased lung (DL) with decreased volume & pressures to permit healing
- Unilateral lung disease, e.g. pulmonary contusion: ventilate diseased lung (DL) without injuring normal lung (NL)

ILV: Permutations

- Synchronized ILV: ventilators interconnected to synchronize triggering
- Asynchronous ILV: ventilators operated independently
- ILV with conventional ventilation & high-frequency ventilation

ILV Equipment

- Double-lumen tracheotomy tubes
- Double-lumen endotracheal tube
- Endotracheal tubes with blocker: used for one-lung ventilation
Airways

- Double-lumen tracheotomy tubes
- Double-lumen endotracheal tube
- Endotracheal tubes with blocker: used for one-lung ventilation
 - Arndt wire-guided endobronchial blocker (Cook Critical Care)
 - Univent TCB tube

Double-Lumen Tracheostomy Tube

Double-Lumen Endotracheal Tube (DLT) AKA Carlens Tube

Univent Torque Control Blocker (TCB) Tube

Next Lesson: Video of bronchial blocker insertion

SILV Capable Ventilators

- Siemens Servo 900C
- Siemens 300
- Bennett 7200
- Draeger Evita
- Note: non-synchronized ILV may be as effective

Monitoring Equipment

- End-tidal CO₂ monitors (2)
- Ventilation graphic monitors
- Cuff pressure manometer
ILV Airway Management

Intubation
- Done by trained anesthesiologist
- Estimation of depth: preoperative radiograph
- Selection of tube size
 - Too small: inadequate isolation
 - Too large: airway trauma

Intubation
- Placed with
 - Standard fiberoptic bronchoscopy
 - Video-assisted bronchoscopy
 - Video-optical stylet

Up next: Video of intubation with video-optical stylet

Confirmation of Tube Placement
- Auscultation: unreliable as sole indicator - 61% failure rate (left)
- Sequential ventilation of individual lungs: listen & observe for ventilation of contralateral lung
- Bronchoscopy: gold standard

Function Separation
- Failure of ventilatory separation results from tube cuff failure or underinflation
- Detected by sequentially ventilating lungs & detecting tidal volume from non-ventilated lung: place on spontaneous mode
Maintaining Tube Placement

- Movement by as little as 16 mm can compromise ILV
- Prevention of misplacement
 - Paralysis, sedation of patient
 - Secure tube-anchoring technique
 - Ventilator tube suspension, e.g. ventilator arms, angel frames
 - Extreme caution, if & when turning patient

Suctioning

- Preoxygenate with both ventilators
- Suction catheter
 - 8 - 10 Fr.
 - 22 - 24 cm (adult length)
- Thick secretions difficult to suction through smaller catheters → adequate humidification is critical

Cuff Management

- As little as 4.0 ml in cuff may generate excessive pressure on tracheal/bronchial wall
- With appropriate-size tube, a seal should be accomplished with 2.0 - 3.5 ml

Cuff Management

- Monitoring should include
 - Minimal occlusive volume
 - Cuff pressure

Complications of DLTs

- Tracheal or bronchial trauma: rupture
- Inappropriate tube size
- Excessive cuff volume
- Nitrous oxide anesthesia: diffuses into cuff, increasing volume

Complications of DLTs

- Malpositioning
 - Lack of functional separation
 - Unilateral ventilation
 - Inability to suction
 - Increased airway resistance
 - Laryngeal, vocal cord trauma
 - Patient discomfort
Ventilation Techniques

General Strategies

- One lung ventilation
- Ventilation for bronchopleural fistula
- Ventilation for unilateral lung disease

One Lung Ventilation

- Primarily, an operating room technique
- Airways used
 - Univent tube
 - DLT with bronchial blocker

One Lung Ventilation

- Poorly tolerated in some patients
- Invokes a 35 - 40% shunt, which is worse if
 - Larger, right lung is non-ventilated
 - Ventilated lung is diseased
 - Nitrous oxide anesthesia is used

One Lung Ventilation

- Shunt, which can be reduced by
 - Applying CPAP to non-ventilated lung
 - Using isoflurane anesthesia
 - Intermittent re-inflation of non-ventilated lung

One Lung Ventilation

- Shunt, which can be reduced by
 - Administering inhaled vasodilator to ventilated lung to increase perfusion
 - Nitric oxide
 - Prostacyclins (e.g. Flolan)
ILV for BPF
- BPF defined: persistent bronchopleural air leak
- Associated with high mortality

BPF
- **Causes**
 - Ventilator-induced lung injury
 - Surgical complication, e.g. bronchial stump rupture
 - Trauma
 - Necrotizing pulmonary infection
 - Bullous emphysema (predisposing factor)

BPF
- **Manifestations**
 - Persistent air flow through chest tube
 - Exhaled tidal volume significantly less than inhaled volume
 - Ventilatory failure refractory to increased ventilation settings

BPF
- PaCO$_2$, EtCO$_2$ likely decreased, due to excretion of CO$_2$ through chest tube
- Elevated PaCO$_2$ reflects severe disease in the lung without fistula

FYI see links below for article on BPF

BPF
- **Problem:** conventional ventilation applies equal pressures to lungs, worsening leak, preventing healing of fistula
- ILV permits ventilation of DL at reduced pressure & volume, while ventilating NL

BPF
- **Alternative measures**
 - Manipulation of chest tube suction
 - Obstruction of chest tube during inspiration
 - High-frequency ventilation: success is not substantiated
ILV for BPF

Goals
- Oxygenate, ventilate patient
- Permit healing of BPF
- Avoid tension pneumothorax

Procedure
- Place chest tube large enough to accommodate leak: to avoid tension pneumothorax
- Minimize pleural suction

ILV for BPF

Procedure
- Place DLT
- Minimize cuff pressure
- Monitor tube position
 - Tube length marks @ teeth
 - Auscultation
 - Ability to suction
 - Bronchoscopy, if misplacement suspected

ILV for BPF

Procedure
- Connect to two ventilators
- If synchronized, label ventilators
- If synchronized, rate for both will be adjusted with master ventilator
- Secure, suspend ventilator circuit

ILV for BPF

Procedure
- Ventilate DL to minimize air flow through fistula
 - Adjust TV, PIFR for PIP < 30 cm H$_2$O
 - PEEP ≤ 6 cm H$_2$O

ILV for BPF

Procedure
- Ventilate NL
 - Adequate oxygenation
 - CO$_2$ removal usually not problematic
 - Lung protective strategies
ILV for BPF

- Monitoring
 - Tube position
 - Tube length markings
 - Auscultation
 - Bronchoscopy, if misplacement suspected

ILV for BPF

- Monitoring
 - Tube position
 - Tube length markings
 - Auscultation
 - Bronchoscopy, if misplacement suspected
 - Cuff inflation
 - Cuff pressure
 - Minimal occlusive volume

ILV for BPF

- Monitoring
 - Volume of bpf leak = (TVi - TVe)
 - Lung mechanics
 - Static compliance
 - Airway resistance
 - Plateau pressure
 - Total PEEP
 - ETCO₂: Increased CO₂ from DL indicates less leakage

ILV for BPF

- Discontinuance of ILV
 - When air leak reaches minimal volume
 - Replace DLT with ETT & ventilate with minimal plateau pressure (Ppt)

ILV for Unilateral Lung Disease

- Conditions - unilateral:
 - Blunt trauma: pulmonary contusion
 - Pneumonia, aspiration pneumonitis
 - ARDS
 - Re-expansion/re-perfusion pulmonary edema
 - Single lung transplant

FYI see links below for information on re-expansion/re-perfusion pulmonary edema
ILV for Unilateral Lung Disease

Problem: DL has decreased compliance →
- With conventional ventilation, TV goes to NL
- Increasing ventilation pressures causes
 - Perfusion to shift to DL → increased shunt
 - Overexpansion of NL → volutrauma

ILV for Unilateral Lung Disease

Goals
- Improve ventilation-perfusion matching by maximizing recruitment in DL
- Avoid barotrauma/volutrauma by using lung-protective strategies for each lung

ILV for Unilateral Lung Disease

Procedure
- Determine need for ILV
 - Unilateral disease, as per chest radiograph
 - Failure to oxygenate with conventional ventilation

ILV for Unilateral Lung Disease

Procedure
- Place & confirm placement of DLT as for BPF
- Connect to two ventilators, as for BPF
- Adjust frequency to physiologic range: avoid inadvertent PEEP
- Adjust each TV for plateau pressure Ppt ≤ 26 cm H₂O

ILV for Unilateral Lung Disease

Procedure
- Identify best PEEP for DL
- Maintain TV for plateau pressure Ppt ≤ 26 cm H₂O
- As Ppt in DL decreases, increase TV to attain 26 cm H₂O

ILV for Unilateral Lung Disease

Monitoring
- Tube position, as for BPF
- Cuff inflation, as for BPF
- Lung mechanics, as for BPF
- EtCO₂ (if available): evaluates ventilation-perfusion matching
- Usual critical care monitors: ECG, SPO₂, etc.

FYI see links below for information on EtCO₂ monitoring with DLTs
ILV for Unilateral Lung Disease

- Discontinuation
 - Determining readiness
 - When Cst between lungs differs less than 20%
 - When TVs are within 100 ml
 - When EtCO\textsubscript{2} equalizes
 - Replace DLT with standard ETT
 - Apply conventional ventilation

Final Notes

- ILV is a complex procedure, requiring special knowledge, skills, & attention to detail on the part of all caregivers
- ILV should not be undertaken by those without the requisite skills, knowledge, or attentiveness

Summary & Review

- Indications for ILV
- Rationale
- Permutations for ILV
- ILV equipment
 - Special endotracheal tubes
 - Ventilators
 - Monitoring equipment

Summary & Review

- Techniques for ILV
 - Single lung ventilation
 - Bronchopulmonary fistula
 - Unilateral lung disease

References

References

