Lung Clearance & Expansion Techniques

Arthur Jones, EdD, RRT

This Presentation is Approved for 2.0 CRCE Credit Hours

Learning Objectives

Describe the current information on techniques used for lung clearance & expansion

Mucociliary Transport

Respiratory Romance Poem

When you're kissing your honey And her nose gets runny Don't think it's funny It's not

Functions of Mucus

- > Traps foreign particles for removal
- > Humidifies inspired air
- > Prevents infection
- > Dilutes toxins
- > Neutralizes toxic gases
- > Buffers pH

Mucus

- Composition
- ♦ H₂O 95%
- * Mucins
 - Complex glycoproteins
 Two primary types: MUC5AC, MUC5B
 - Bind bacteria decrease infections

2/28/2017

Mucus

Composition
 * H₂O 95%

- Mucins
- Complex glycoproteins
- Two primary types: MUC5AC, MUC5B
- Bind bacteria decrease infections
- * Carbohydrate, SO₄
- * Proteins: IgE, IgM, IgA, lysozyme
- * Oxidants, antioxidants
- * Surfactant

Sources of Mucus

- Normal production = 10 20 ml/day
- > Goblet cells
- > Submucosal glands
- > Clara cells defensive secretions
- > Serous cells defensive secretions
- > Type II pneumocytes surfactant
- > Epithelial cells transport Cl & Na H₂O follows

Mucus - Control of Secretion

Parasympathetic

- $\boldsymbol{\ast}$ Muscarinic receptors in submucosal glands
- * Stimulation increases secretion
- Blocking decreases secretion, e.g. anticholinergic agents (atropine)

Mucus - Control of Secretion

Sympathetic (adrenergic)

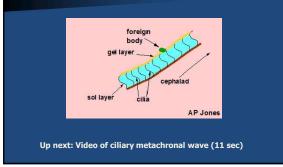
- There is no adrenergic innervation of secretory structures
- Adrenergic influence is through circulating catecholamines
- * Catecholamines increase secretion
- > Inflammatory mediators increase secretion

Mucus - Control of Secretion

Non-adrenergic, non-cholinergic (NANC)

- * Neurotransmitters
 - Vasoactive intestinal peptide
- Tachykinin
- * Stimulate secretion

Control of Transport


- > Mucociliary clearance
- > Tidal expiratory flow
- > Forced expiratory flow (cough)

Pulmonary Clearance Mechanisms

> Cilia

Line epithelium to terminal bronchi
Beat in metachronal wave @ 10 - 20 Hz

Mucociliary Escalator

Factors Affecting Ciliary Motility

- > Decrease ciliary motility
 - * Alcohol
 - * Hereditary dx ciliary dyskinesia
 - * Increased mucus viscosity
 - * Smoke
 - * Infection

Transport Abnormalities

- > Abnormal mucus
 - Chronic bronchitis
 - Asthma
 - Cystic fibrosis
- > Ciliary dyskinesia immotile cilia
- > Drying
- > Cough impairment

Transport Abnormalities

Chronic bronchitis

- * Increased mucus glands at expense of other cells
- (increased Reid index)
- * Increased depth of mucus layer
- * Decreased mucociliary clearance
- * Worsened with continued smoking

Transport Abnormalities

Asthma

Mucous plugging with eosinophilic sputum
 Bronchial casts

See links below to view microscopic images of Reid index

See links below to view bronchial cast

Transport Abnormalities

- Cystic fibrosis: hereditary defect of secretory glands
 Defective gene encodes cystic fibrosis transmembrane regulator (CFTR)
 - * CFTR affects ion transport across airway epithelium exact physiologic action is controversial
 - Airway surface liquids are decreased, increasing mucus viscosity & adhesiveness

Transport Abnormalities

Cystic fibrosis

- \diamond Chronic airway obstruction with mucus \rightarrow infection
- - Worsens mucus clearance
 - Loads mucus with DNA

Transport Abnormalities

Cystic fibrosis

* Colonization with pseudomonas produces biofilm that increases resistance of organisms to antimicrobials

Transport Abnormalities

 Hereditary ciliary dyskinesia (Kartagener's syndrome)
 ☆ Immotile cilia → impaired mucus clearance → recurrent infection → bronchiectasis

Transport Abnormalities

> Drying of mucus → increased viscosity

- Inadequate humidification of inspired air, especially with bypassed airways
- Ventilation increased above capabilities of airways to humidify
 - Exercise
 - Noninvasive ventilation we need to humidify BiPAP

Transport Abnormalities

Cough impairment

- Artificial airways
- * Neuromuscular weakness
- * Pain

Consequences of Impaired Transport

Mucus plugging - atelectasis

Infection
 <u>

 Pneumonia

</u>

* Recurrent pneumonia - bronchiectasis

Patient Assessment For Mucokinetic & Lung Expansion Therapy

Symptoms

- Shortness of breath
- > Cough
- > Mucus production
- > Wheezes

Physical Signs

- Fever NOT for atelectasis
- > Thick mucus &/or plugs
- > Tachypnea
- > Accessory muscle work
- > Asymmetric chest motion (severe)
- > Tracheal shift (severe)
 - FYI see links below for articles on fever & atelectasis

Physical Signs

Breath sounds

- Diminished or absent
- * Wheezes
- Crackles (atelectasis, pneumonia)
- * Bronchial (tubular) sounds
- > Cyanosis (severe)
- > Increased peak inspiratory pressure

Spirometry

Decreased FVC, IC

> Decreased PEF, FEV₁

Blood Gases

- > Hypoxemia V/Q mismatch
- › Hypercapnia
 - ♦ When superimposed on COPD
 ♦ Severe tachypnea → increased dead space

Radiologic Signs

> Atelectasis - especially with plugging

> Pneumonia

See links below to view chest X-rays of severe lobar atelectasis & atelectasis

Pharmacological Mucokinesis

Issues With Mucokinetic Agents

➤ Different condition → different mucus characteristics

- > Viscosity
 - * Excessive viscosity impairs cilia
 - * Decreased viscosity may impair clearance
 - Cilia may not mobilize very thin secretions (swimming in air)
 - * Thin secretions flow to dependent lung

Issues With Mucokinetic Agents

 Adhesiveness impairs clearance – secretions stick to airways

Beta Adrenergic Agents

- Bronchodilation may enable secretion mobilization enlarged airways loosen plugs
- Mucociliary effects
 Increase ciliary motility
- * Increase mucus production

Beta Adrenergic Agents

- Clinical outcomes
 - Short-acting beta-adrenergics: no benefits on clearance
 Long-acting beta-adrenergics, e.g. salmeterol: modest benefits

Mucokinetic Agents

- > Expectorants: increase mucus production
- > Mucolytics: reduce mucus viscosity
- > Surfactants: reduce mucus adhesiveness
- > Hypertonic saline
- > Bland aerosols
 - * No benefits
 - * May harm bronchospasm, etc.
 - * No further discussion

Expectorants

- > Potassium iodide (SSKI): acts directly on mucus glands
- Indirect-acting expectorants: irritate gastric mucosa, stimulating cholinergic receptors to stimulate secretion
 Guaifenesin (Mucinex)
 Elixir terpin hydrate (AKA GI gin)

OTC Cold Medications

 Does this make sense? Combining an agent to increase mucus secretion with another agent to suppress cough?

Mucolytics

- N-acetylcysteine (Mucomyst)
- Dornase alfa (Pulmozyme)
- Sodium bicarbonate
 No benefits
 May harm

N-acetylcysteine (Mucomyst)

Oral administration (200 mg TID)

- * May improve pulmonary function
- * May reduce risk of hospitalization
- * Reduced exacerbations
- * Reduced days of illness
- * Reduced days of antibiotic use
- * Effects may be due to antioxidant activity
- > There is no evidence to support aerosol administration

Dornase Alfa (Pulmozyme)

- > Reduces viscosity of purulent secretions
- > May contribute to increased longevity in CF patients
- > Not recommended for COPD or bronchiectasis
- Several cases reporting direct instillation for mucus plugging with resolution of atelectasis

See links below for abstract on Pulmozyme & bronchiectasis

Hypertonic Saline Aerosol

- > Action: hyperosmolarity causes airway cells to secrete H₂O
- > Nebulized 3% 7% saline QID
- > Increases mucus clearance
- > May improve pulmonary function
- > Effective for sputum induction
- > Need trials comparing hypertonic saline with alfa dornase saline is much less costly

FYI see links below for meta-analysis on hypertonic saline for CF

Surfactant

- > Theoretically, decreases adhesion of mucus to airways
- Surfactant abnormality may play a role in generation of COPD
- One trial (1997) aerosol surfactant improved pulmonary function & mucus clearance for chronic bronchitics
- > Need more research

Potential Mucokinetics

- Mannitol dry powder: mucokinesis
- > Tyloxapol (formerly Alevaire): antioxidant, detergent
- > Nacystelyn: antioxidant, mucokinetic
- > Heparin: mucokinesis for CF
- Denufosol tetrasodium: hydrates mucus, improves clearance for CF patients

Summary

- Long-acting beta-agonists may increase mucus clearance
- > Bland aerosols & NaHCO₃: no confirmed mucokinetic effects
- > Oral mucokinetics, e.g. acetylcysteine: benefits in chronic bronchitis (antioxidant)
- > Aerosolized alfa dornase: effective for cystic fibrosis
- > Aerosolized hypertonic saline: effective for cystic fibrosis

Nonpharmacologic Mucokinesis

Bronchial Hygiene Physical Therapy

Components
 Percussion
 Postural drainage
 Vibration
 Shaking

Bronchial Hygiene Physical Therapy

- > Application as routine for COPD, bronchiectasis & chronic bronchitis
 - Research has been low-quality
 - * Increases sputum production
 - * No effects on pulmonary function
 - No evidence either way
- > Application for exacerbations of COPD & chronic bronchitis: no evidence

Bronchial Hygiene Physical Therapy

- Application as routine for cystic fibrosis
- * Some form of BHPT is an accepted standard
- * Trials with subjects getting no mucokinetic support would be unethical * Research with CF involves comparison of methods
- Research with CF involves comparison of methods
 Mechanical percussion is as effective as manual percussion

Cough

- For patients with compromised mucociliary transport, cough is the most effective & important mucokinetic method
- > Cough is compromised by
 - Neuromuscular weakness
 Obstructive disease: forced expiration collapses airways
 (dynamic compression)

FYI see links below to download RC article on FET, cough

Directed Cough

- Directed cough: a deliberate cough maneuver that is taught, supervised, & monitored
- Examples: forced expiratory technique (FET, or huff cough)
 & manually assisted cough

FYI see links below to AARC clinical practice guideline on directed cough

Directed Cough

Forced expiratory technique (FET)

- Slow diaphragmatic breaths followed by glottis-open huffs at low-to-mid lung volumes
- Produce higher flow than maximum forced expiration
 Especially useful for patients with obstructive disease

Directed Cough

- Active cycle of breathing: breathing control exercises with FET
 - * Relaxed, normal breathing
 - * Four deep breaths
 - * Relaxed, normal breathing
 - * Deep breaths
 - * Relaxed normal breathing
 - * Low lung volume huffs
 - * High lung volume huffs

Autogenic Drainage

Controlled breathing at increasing lung volumes * Slow, nasal breathing

- * 10 20 low volume breaths with 3 sec hold
- * 10 20 high volume breaths with 3 sec hold
 * Huff coughs

Autogenic Drainage

- Especially applicable to CF patients
- > At least as effective as BHPT, active cycle of breathing, PEP
- > Difficult to learn

Cough Assistance

- > Manual cough assistance: tussive squeeze, abdominal thrust
- > In/exsufflator: indicated for MEP < 60 cm H_2O * Positive pressure for inflation
 - * Negative pressure for increased expiratory (cough) flow
- \diamond Usual pressures 40 to -40 cm $\rm H_2O$
- * May reverse atelectasis
- Improves symptoms & SPO₂

In/exsufflator -**Cough Assistance**

Image Courtesy of **Philips Respironics**

FYI see links below to view Emerson CoughAssist™ web page

Positive Expiratory Pressure PEP

PEP – CPAP with mouthpiece or mask

- > Can administer with small-volume nebulizer treatment
- > Effective for cystic fibrosis; not for COPD (see abstract for evidence)
- > Patients prefer over BHBT

2/28/2017

Vibratory PEP

- Oscillations in airways produced by passive exhalation, with positive end-expiratory pressure
- > Devices equivalent performance
 ☆ Flutter[™]: gravity-dependent
 ☆ Acapella[™]: not gravity-dependent
- > Effective for mucus clearance
- > May be effective for atelectasis

Up next: Video of Flutter device (1 min)

Vibratory PEP

- > Two models: > 15 L/min, < 15 L/min</p>
- > Can administer via
- ♦ Mouthpiece ♦ Mask
- * Manual resuscitator
- > Can administer with small-volume nebulizer treatment
- > Adjustable, but no measure of PEP level

See links below to view Smith-Portex Acapella[™] device

Vibratory PEP (Acapella[™])

Recommended regimen

- * 10 20 breaths/cycle
- * Followed by directed coughs to raise mucus
- * Repeat cycles for 10 20 min up to QID
- > Author's preference: many patients require a mask for effective treatment

High-Frequency Oscillation/Percussion

Approaches

Internal airway oscillation/percussion
 External chest oscillation/percussion

Intrapulmonary Percussive Devices

> Vortran PercussiveNeb™

> Percussionaire devices (Dr. Forrest Bird)

 ◆ IPV 1CTM: institutional

 ◆ ImpulsatorTM: institutional & home

See links below to view PercussiveNeb™ brochure & picture & to view Impulsator™

Intrapulmonary Percussive Devices

- Operation: short inspiratory flow pulses to airways that may work by
- Causing radial displacement of airways, pulsing gas to distal side of secretions
- Generating high-frequency 'minicoughs' expiratory oscillations
- * Mucolysis, due to resonating frequency response
- Increased ciliary activity

External Oscillation/Percussion

- High-frequency chest wall oscillation/compression (HFCWO)

See links below to view The Vest[™] acute care system & to view The Smart Vest[™] System

Vest Device Operation

- Vest on chest inflated/deflated at adjustable pressure & frequency
 ÷ 5 - 20 cm H₂O
 - ♦ 2 25 Hz
- > Oscillates chest
 * 'Mini-coughs'
 - * Resonating frequency may cause mucolysis

High-Frequency Chest Wall Oscillation

- > Hayek RTX[™]
- Also operates in physiological frequency ranges as a cuirass ventilator (see neuromuscular conditions lesson)

Hayek RTX[™]

- Biphasic: inspiratory & expiratory pressures
 Frequency up to 17 Hz
 Pressures -70 cm H₂O to +70 cm H₂O
- > Oscillations for secretion mode
 \$ Vibration phase: high f, low P
 \$ Cough phase: low f, higher P

See links below to view Hayek[™] ventilator


Evidence for Effectiveness

- Trials are mostly small, crossover trials quality of evidence?
- These techniques seem to be at least as good as conventional BHPT (depends on who's doing the BHPT)
- Clinical trial (McIlwayne, 2013)
 Compared HFCWO vs. PEP
 Results favor PEP over HFCWO

Evidence for Effectiveness

> Considerations

- * Costs: capital, personnel, & training
- * Portability home use
- * Patient capability self-administration
- * Patient tolerance
- \diamond Patient preference \rightarrow adherence

Dymedso Frequencer[™]

- Operation: mechanical & acoustical stimulation over chest at 30 - 70 Hz
- Agitation by mechanical & acoustical waves causes mucolysis
- Controls adjusted by patient sensation
 Frequency
 Volume

Dymedso Frequencer[™]

Evidence for effectiveness

- * One clinical trial
 - 22 CF patients
 - Non-randomized
 - Outcome measure: sputum weight
 - More sputum with Frequencer[™]

Kinetic Bed Therapy

- Intensive care beds with additional capabilities
 - Rotation
 Postural drainage
 - * Percussion
 - + Fercussion
- > Rationale: mobilize secretions to prevent ventilatorassociated pneumonia & atelectasis

Kinetic Bed Therapy

- Evidence of effectiveness for kinetic beds for mechanically ventilated patients
 - * May compromise hemodynamics some patients do not tolerate
 - * Clinical trials found mixed results
 - Meta-analysis concluded
 - Possible reduction in pneumonia
 - No effect on mortality
 - No effect on duration of ventilation
 - No effect on hospital stay

Fiberoptic Bronchoscopy

- > Advantage: direct visualization
- Disadvantages
 Expense
 - * Invasiveness
- > Not indicated for generalized secretion removal
- Indicated for lobar or segmental atelectasis due to mucus plug or foreign body (kids)

2/28/2017

Ventilation Patterns

- Ventilator settings influence mucokinesis
 Increased inspiratory flow moves mucus deeper
 Increased expiratory flow moves mucus cephalad
 Increased expiratory time moves mucus cephalad
 Auto-PEEP can work either way
- > Authors do not advocate clinical application of findings

Summary & Review

- Bronchial hygiene physical therapy
 Standard for CF, bronchiectasis
- * No support for routine application to COPD
- > Cough
- * Becomes primary mucokinetic with impaired mucociliary clearance
- * Compromised by neuromuscular ds, COPD

Summary & Review

- Directed cough: taught, supervised cough
 * FET
 * Active cycle of breathing
- > Autogenic drainage, esp. for CF
- > Cough assistance: manual & mechanical
- > PEP
- > Vibratory PEP

Summary & Review

- Intrapulmonary percussive devices
- Pulses to airways & mini-coughs
 Devices
 - Vortran PercussiveNeb™
 - IPV; Impulsator™ (Forrest Bird)
- ≻ External oscillators/percussors
 ♦ The Vest™
 ♦ SmartVest™
 - ♦ Hayek RTX[™] cuirass

Summary & Review

- > Frequencer[™] acoustic/mechanical vibrations
- > Kinetic bed therapy
- > Fiberoptic bronchoscopy
- > Ventilation patterns

Therapy for Atelectasis

Atelectasis Primary Types

- > Obstructive atelectasis, AKA absorption atelectasis
 - Most common
 Mechanism: airway obstructed & distal gas is absorbed
 - * Obstructions
 - Mucus plugs
 - Foreign body aspiration
 - Tumor intraluminal or extraluminal

Atelectasis Primary Types

Obstructive atelectasis

- * Worsened by high FiO₂ O₂ is absorbed
 - * Lessened by collateral ventilation augmented by endexpiratory pressure

Atelectasis Types & Causes

Non-obstructive

- * Passive atelectasis
 - Pleural separation pleural effusion
 - Shallow breathing healthy persons develop atelectasis with shallow breathing, as with TV watching
- * Compression atelectasis
 - Volume occupying lesions
 - Abdominal distension
 - Abdommar distension

Atelectasis Types & Causes

> Non-obstructive

- * Adhesive atelectasis
 - Surfactant deficiency, e.g. RDS, ARDS
- Shallow breathing
- Inhalation injury, e.g. smoke
- Cardiopulmonary bypass
- * Gravity-dependent atelectasis due to gravitydependent volume changes in alveoli

Risk Factors

Patient factors

- Current smoking
- * COPD
- * Ischemic heart disease
- * Obesity high risk & persistence
- * Hx of stroke
- * Shallow breathing
- * Watching television decreases sigh rates (sad movies?)

Risk Factors

- Nosocomial factors
 - * Anesthesia
 - * High FiO₂ O₂ absorbed
 - * Cardiopulmonary bypass

Complications

- Atelectasis after upper abdominal & thoracic surgery is common
- Postoperative atelectasis does not commonly cause significant morbidity
- > Hypoxemia most common
- > Pneumonia rarely a result of postoperative atelectasis
- Fever NOT

Prevention of Atelectasis - NOT

- Interventions that do NOT prevent postoperative atelectasis * Incentive spirometry
 - * Bronchial hygiene physical therapy
 - * Kinetic beds
- Routine application of these measures to prevent postoperative complications is not justified by research findings

See links below for abstract on incentive spirometry evidence

Prevention of Atelectasis

- Interventions that may help prevent postoperative atelectasis
 - \div Avoiding high FiO_2 during & after surgery increasing FiO_2 to extubate increases risk for postoperative atelectasis
 - * PEEP during surgery, especially for obese patients * Ambulation

Prevention of Atelectasis

- Interventions that may help prevent postoperative atelectasis
 - * PEP, CPAP after surgery good evidence in support • Thoracoabdominal aneurysm surgery - continuous NCPAP @ 10 cm H_2O for 12 - 24H
 - PEP or CPAP via face mask 30 breaths Q1H x 3D (pressure?)
 - Meta-analysis supports

FYI see links below for article on nCPAP for postop patients

Prevention of Atelectasis

- Interventions that may help prevent postoperative atelectasis
 - * Deep breathing exercises? NOT
 - 2005 study deep breathing was with 10 cm PEP
 - * Cough assistance patients with impaired cough
 - * Vibratory PEP?

Treatment of Atelectasis

Obstructive atelectasis

- * Bronchial hygiene physical therapy first choice for
- acute atelectasis * Bronchoscopy
 - Foreign body aspiration
 - Acute, extensive atelectasis
- * Alfa dornase (Pulmozyme) nebulized & instilled for non-CF pediatric patients
- * Cough assistance?

Treatment of Atelectasis

> Non-obstructive atelectasis

- * Intrapulmonary percussive ventilation
 - 15 min BID via face mask pediatric patients • Superimposed on CMV for obese patients
- * Vibratory PEP?
- * Ambulation

Treatment of Atelectasis

> Non-obstructive atelectasis

- * CPAP, PEP * Noninvasive pressure support (BiPAP) - face mask
 - May be better than CPAP
- PEEP 5 cm H₂O
- PS for TV = 8 10 mL/kg
- 30 min QID
- Improved radiological atelectasis score over CPAP

Bottom Line (My Opinion)

- In most instances, atelectasis happens (like the bumper sticker)
- For most patients, ambulation is all that's needed to prevent & treat atelectasis
- > Incentive spirometry is a waste of time, money & environmental resources (plastic, dump space)

Bottom Line (My Opinion)

- Patients at risk may benefit from preventative measures * Morbidly obese
 - Excessive, tenacious secretions
 - * Prolonged procedures, especially on CP bypass
 - * Compromised cough
 - Peak cough flow < 160 L/min (adults) • MEP < $45 \text{ cm H}_2\text{O}$

Bottom Line (My Opinion)

Preventative measures

- * Cough assistance for weak cough
- * CPAP, BiPAP, vibratory PEP
- * Most patients need mask therapy
- \div End-expiratory pressure should be measured: ≥ 10 cm H_2O
- * Duration & frequency must be adequate?
 - Continuous nCPAP or BiPAP
 - 30 breaths Q1H

Bottom Line (My Opinion)

- Atelectasis is common only treat for acute, complicated cases
 - $\ensuremath{\diamond}$ Clinical signs of respiratory distress
 - * Moderate-severe hypoxemia
 - * Segmental, lobar involvement

Bottom Line (My Opinion)

Treatment measures

- CPAP, PEP, BiPAP, vibratory PEP by mask
- * Bronchial hygiene physical therapy
- * Cough assistance
 - Manual
 - Mechanical CoughAssist[™]
- Intrapulmonary percussive ventilation mask or with ventilator
- * Fiberoptic bronchoscopy lobar, from plugs

Summary & Review

> Atelectasis

- Types

 Obstructive
- Non-obstructive: adhesive, passive, etc.
- * Risk factors patient & nosocomial
- * Complications
 - Hypoxemia
 - Pneumonia rare
 - Fever NOT

Summary & Review

Prevention of atelectasis

- ♦ NOT
 - BHPT
 - Incentive spirometry
- * Maybe
 - PEP, CPAP, vibratory PEP • Cough assistance

Summary & Review

Treatment of atelectasis

- * Obstructive
- BHPT
- Bronchoscopy
- * Non-obstructive
 - von-obstructive
 - Intermittent percussive ventilation
 PEP, CPAP, vibratory PEP
 - BIPAP

References

- Rogers DF. Physiology of airway mucus secretion & pathophysiology of hypersecretion. Respir Care 2007;52:1134-45.
- > van der Schans CP. Bronchial mucus transport. Respir Care 2007;52:1150-56.
- Restrepo RD. Inhaled adrenergics & anticholinergics in obstructive disease: Do they enhance mucociliary clearance? Respir Care 2007;52:1159-73.
- > Thornton DJ, Sheehan JK. From mucins to mucus: Toward a more coherent understanding of this essential barrier. Pro AM Thorac Soc 2004;1:54-61.

References

- Rogers DF. Mucoactive agents for airway mucus hypersecretory disease. Respir Care 2007;52:1176-93.
- Houtmeyers E. Gosselink, R, Gayan-Ramirez G, Decramer M. Effects of drugs on mucus clearance. Eur Respir J 1999;14:452-67.
- > Donaldson SH, et al. Mucuc clearance & lung function in cystic fibrosis with hypertonic saline. NE J Med 2006;354:241-50.
- > Jelic S, Cunningham JA, Factor P. Clinical review: Airway hygiene in the intensive care unit. Crit Care 2008;12:1-9.

References

- Anzueto A, et al. Effects of aerosolized surfactant in patients with stable chronic bronchitis. JAMA 1997;278:1426-1431.
- > Wark P, McDonald VM, Jones AP. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database of Systematic Reviews 2005, Issue 3
- > Engoren M. Lack of association between atelectasis & fever. Chest. 1995;107(1):81-4.
- > Thomas JA, Cusimano RJ, Hoffstein V. Is atelectasis following aortocoronary bypass related to temperature? Chest. 1997;111(5):1290-4.

References

- Kamin W, Klär-Hlawatsch B, Truebel H. Easy removal of a large mucus plug with a flexible paediatric bronchoscope after administration of rhDNase (Pulmozyme). Klin Padiatr. 2006;218(2):88-91.
- McCool FD, Rosen MJ. Nonpharmacologic airway clearance therapies: ACCP evidence-based clinical practice guidelines. Chest 2006;129:250s-259s.
- Nunn JF. Conscious volunteers developed hypoxemia & pulmonary collapse when breathing air & oxygen at reduced lung volume. Anesthesiology. 2003 Jan;98(1):258-9.

References

- Freitas ER, Soares BG, Cardoso JR, Atallah AN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2007;18;(3):CD004466.
- Ferreyra GP, et al. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review & meta-analysis. Ann Surg. 2008 Apr;247(4):617-26.
- Chandy D, Sahityani R, Aronow WS, Khan S, DeLorenzo LJ. Impact of kinetic beds on the incidence of atelectasis in mechanically ventilated patients. Am J Ther. 2007 May-Jun;14(3):259-61.

References

- Pasquina P, Tramèr MR, Granier JM, Walder B. Respiratory physiotherapy to prevent pulmonary complications after abdominal surgery: a systematic review. Chest. 2006 Dec;130(6):1887-99.
- > Delaney A, Gray H, Laupl& KB, Zuege DJ. Kinetic bed therapy to prevent nosocomial pneumonia in mechanically ventilated patients: A systematic review & meta-analysis. Crit Care 2006;10:1-12.
- > Ahrens T, Kollef M, Stewart J, Shannon W. Effect of kinetic therapy on pulmonary complications. Am J Crit Care 2004;13:376-82

References

- Shimizu K, Nakata M, Hirami Y, Maeda A, Tanemoto K.Recent results regarding the clinical impact of smoking history on postoperative complications in lung cancer patients. Interact Cardiovasc Thorac Surg. 2008;7(6):1001c
- Westerdahl E, Lindmark B, Eriksson T, Friberg O, Hedenstierna G, Tenling A. Deep-breathing exercises reduce atelectasis & improve pulmonary function after coronary artery bypass surgery. Chest. 2005 Nov;128(5):3482-8.
- > Woodring JH, Reed JC. Types & mechanisms of pulmonary atelectasis. J Thorac Imaging. 1996 Spring;11(2):92-108.

References

- Hark WT, Thompson WM, McLaughlin TE, Wheatley LM, Platts-Mills TA. Spontaneous sigh rates during sedentary activity: watching television vs reading. Ann Allergy Asthma Immunol. 2005 Feb;94(2):247-50.
- > Yen Ha TK, Bui TD, Tran AT, Badin P, Toussaint M, Nguyen AT.Atelectatic children treated with intrapulmonary percussive ventilation via a face mask: clinical trial & literature overview. Pediatr Int. 2007 Aug;49(4):502-7.
- > Tsuruta R, Kasaoka S, Okabayashi K, Maekawa T. Efficacy & safety of intrapulmonary percussive ventilation superimposed on conventional ventilation in obese patients with compression atelectasis. J Crit Care. 2006 Dec; 21(4):328-32.

References

- Pasquina P, Merlani P, Granier JM, Ricou B. Continuous positive airway pressure versus noninvasive pressure support ventilation to treat atelectasis after cardiac surgery. Anesth Analg. 2004 Oct;99(4):1001-8.
- Ricksten SE, Bengtsson A, Soderberg C, Thorden M, Kvist H. Effects of periodic positive airway pressure by mask on postoperative pulmonary function. Chest. 1986 Jun;89(6):774-81.
- Henke MO, John G, Germann M, Lindemann H, Rubin BK. MUC5AC & MUC5B mucins increase in cystic fibrosis airway secretions during pulmonary exacerbation. Am J Respir Crit Care Med. 2007 Apr 15;175(8):816-21. Epub 2007 Jan 25.

References

- > Voynow JA, Fischer BM, Zheng S. Proteases & cystic fibrosis. Int J Biochem Cell Biol. 2008;40(6-7):1238-45.
- Moreau-Marquis S, Stanton BA, O'Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther. 2008 Aug;21(4):595-9. Epub 2008 Jan 29.
- Broughton-Head VJ, Shur J, Carroll MP, Smith JR, Shute JK. Unfractionated heparin reduces the elasticity of sputum from patients with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007 Nov;293(5):L1240-9. Epub 2007 Sep 7.

References

- Deterding RR, Lavange LM, Engels JM, Mathews DW, Coquillette SJ, Brody AS, Millard SP, Ramsey BW Phase 2 randomized safety & efficacy trial of nebulized denufosol tetrasodium in cystic fibrosis. Am J Respir Crit Care Med. 2007 Aug 15;176(4):362-9. Epub 2007 Apr 19.
- > Volpe MS, Adams AB, Amato MB, Marini JJ. Ventilation patterns influence airway secretion movement. Respir Care 2008;53:1287-1294.
- Zarbock A, et al. Prophylactic nasal continuous positive airway pressure following cardiac surgery protects from postoperative pulmonary complications. Chest 2009;135:1252-1259.

References

- Templeton M, Palazzo MG. Chest physiotherapy prolongs duration of ventilation in the critically ill ventilated for more than 48 hours. Intensive Care Med. 2007 Nov;33(11):1938-45.
- McIlwaine MP, et al. Long-term multicentre randomised controlled study of high frequency chest wall oscillation versus positive expiratory pressure mask in cystic fibrosis. Thorax. 2013 Feb 13. doi: 10.1136/thoraxjnl-2012-202915. [Epub ahead of print]