Respiratory Therapeutics for Pulmonary Arterial Hypertension

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

- Explain the etiologies, pathophysiology, manifestations, & management of pulmonary arterial hypertension
- Explain the actions, effects, indications, contraindications, & administration techniques for agents used to treat pulmonary arterial hypertension

Etiologies, Pathophysiology, & Classifications

Definition

- Elevated mean pulmonary artery pressure (PAP) > 25 mm Hg (mean) at rest
- Normal = 13 mm Hg (mean)

See links below to view pulmonary hypertension

Pathophysiology

- Vascular analog of asthma
- Increased resistance to pulmonary blood flow, due to
 Vasoconstriction
 - Hypoxemia
 - Endothelin
 - Thromboxar
 - Impaired endogenous NO
 - Impaired endogenous prostacyclins

See links below to view endothelin pathway

Pathophysiology

- > Increased resistance to pulmonary blood flow, due to
 - * Vascular remodeling
 - Endothelin
 - Coagulation mediators

See links below to view pulmonary artery remodeling & airway remodeling

Asthma vs. Pulmonary Hypertension Condition Asthma PAH Etiologies Numerous **Numerous** Bronchoconstriction constriction Pathology Airway remodeling Vascular remodeling Patho-Increased rt. Increased WOB physiology ventricular work Vasodilators Bronchodilators Therapeutics Endothelin antagonists

Risk Factors

- Genetic predisposition early age
- > Female gender (female:male = 2:1)
- > Pregnancy
- > Cigarette smoking
- > Congenital heart disease with left-to-right shunt
- > Chronic thrombotic/embolic disease
- > Chronic hypoxemia
 - * Pulmonary disease
 - * High altitude residence
- > Peritoneal dialysis

Etiologic Classifications (WHO Groups)

- > Group I Pulmonary arterial hypertension (PAH)
 - * Idiopathic unknown etiology
 - ❖ Familial inherited
 - Persistent pulmonary hypertension of newborns (PPHN)

Etiologic Classifications (WHO Groups)

- > Group I Pulmonary arterial hypertension (PAH)
 - * Associated
 - Portal hypertension
 - Collagen disease
 - HIV infection
 - Toxins, e.g. Fen-Phen (litigation)
 - Congenital shunts Eisenmenger's complex

See links below to view evolution of Eisenmenger's complex

Etiologic Classifications

- Group II Pulmonary hypertension associated with left heart disease
 - * Left-sided atrial or ventricular disease
 - ❖ Left-sided valvular disease
- Group III Pulmonary hypertension associated with lung diseases &/or hypoxemia
 - ♦ COPE
 - Interstitial lung disease
 - * Sleep-disordered breathing
 - Chronic high-altitude exposure

Etiologic Classifications

- Group IV Pulmonary hypertension due to chronic thrombotic &/or embolic disease
- > Group V Miscellaneous
 - * Sarcoidosis
 - Histiocytosis
 - * Compression of pulmonary vessels (neoplasms)

Acute PAH & Cardiac Interventions

- Reperfusion injury return of blood flow to ischemic myocardium 'stunned myocardium'
- Prolonged post-ischemic dysfunction of viable tissue that was salvaged by reperfusion
- > Can affect all organs

FYI see links below for AHA article on reperfusion injury (very good article)

Cardiac Reperfusion Injury

- > Can occur after
 - Coronary thrombolytic therapy
 - * Percutaneous coronary interventions
 - * Coronary artery bypass
 - ❖ Heart transplantation

Cardiac Reperfusion Injury

- > Reperfusion injury factors
 - * Oxygen free radicals
 - * Altered calcium handling
 - * Cardiac anaerobic metabolism
 - * Release of endothelin, causing
 - Vasoconstriction
 - Cellular proliferation remodeling
- > May result in myocyte death

See links below to view reperfusion injury flow diagram

NYHA Functional Classifications

- > Class I no limitation of physical activity
- > Class II slight limitation of physical activity
 - ♦ Comfortable at rest
 - Ordinary physical activity: undue dyspnea or fatigue, chest pain, etc.

NYHA Functional Classifications

- Class III marked limitation of physical activity
 - ❖ Comfortable at rest
 - $\boldsymbol{\div}$ Minimal activity causes dyspnea, fatigue, chest pain
- Class IV inability to perform physical activity without symptoms
 - * Right heart failure
 - * Dyspnea &/or fatigue at rest
 - $\ \, \div \ \, \text{Discomfort with any physical activity} \\$

PAH Diagnosis & Assessment

History

- > Risk factors
 - ❖ Gender
 - ❖ Family hx
 - * Comorbidities, e.g. CHF, COPD
 - * Exposure to toxins, altitude
- > Symptoms
 - * Progressive exertional dyspnea
 - * Dizziness, syncope
 - Chest pain (angina)
 - ❖ Peripheral edema

Physical Signs

- > Can mimic asthma, especially in young patients
- > Cyanosis advanced disease
- > Abnormal heart sounds, e.g. pulmonary ejection click
- > Jugular venous distention
- > Hepatic enlargement

See links below to view PAH case

Diagnostic Studies

- > Electrocardiography isolate cardiac disease
- > Chest radiograph
- > Oximetry, ABGs hypoxemia
- > PFTs spirometry, DLco
- > Echocardiography

 - Detect shunt (bubble test)

See links below to view echocardiography in PAH

Diagnostic Studies

- > VQ scans to identify thrombo-embolism
- High resolution CT identify emphysema, interstitial lung disease
- > Heart catheterization
 - Definitive diagnosis
 - * Assess severity
 - * Measure hemodynamic parameters

See links below to view PAH diagnostic algorithm FYI see links below for article on PAH diagnosis

Diagnostic Studies

- > Pulmonary vasoreactivity test (like bronchial challenge)
 - * NO, prostacyclin, or adenosine are administered
 - ❖ To assess benefits of Ca++ channel blockers

FYI see links below for article on pulmonary vasoreactivity testing

Evaluation of Prognosis

- Complications
 - * Right heart failure (cor pulmonale)
 - * Thromboembolism PAH caused by clotting & it causes
 - Pulmonary hemorrhage (often fatal)
 - * Dysrhythmias, e.g. PSVT
- > Clinical profile
 - **⊹** Age
 - Comorbidities
 - Etiology
 - * Presence of heart failure
 - * Speed of progression

Evaluation of Prognosis

- Exercise capacity
 - ❖ Six-minute walk test simple, inexpensive
 - * Cardiopulmonary exercise testing
 - Method of choice
 - Standardizes exercise
 - Measures parameters, e.g. VO2_{MAX}

FYI see links below for article on PAH & exercise testing

PAH Management

PAH General Management (First Line)

- > Oxygen: reverses hypoxemic vasoconstriction
- > Anticoagulants
- > Diuretics
- > Potassium
- > Inotropic agents: increase myocardial contractility

See links below to view PAH treatment algorithm

Calcium Channel Blockers

- > Amlodipine (Norvasc)
- > Nifedipine (Procardia)
- > Diltiazem (Cardizem)
- Verapamil (Isoptan)

Endothelin Antagonists

- > Oral administration
- > Adverse effects
 - * Birth defects
 - Hepatotoxicity
- Agents

 - * Ambrisentan (Letairis)

FYI see links below for article on endothelin antagonists for PAH

Phosphodiesterase Inhibitors

- > Theophylline not for PAH
- > Sildenafil (Viagra)
- > Vardenafil (Levitra)
- > Tadalafil (Cialis)
- Milrinone (Primacor) nebulized for PAH from reperfusion injury
 - ❖ Pulmonary vasodilator
 - * Positive inotrope

FYI see links below for article on nebulized milrinone

Nitric Oxide (NO) Gas

- Selectively dilates pulmonary vessels, because it is rapidly taken up by hemoglobin & neutralized
- > Effects
 - * Decreases pulmonary vascular resistance
 - Improves V/Q matching by increasing blood flow to ventilated alveoli

Nitric Oxide Gas

- > Indications
 - Persistent pulmonary hypertension in newborns (PPHN): FDA-approved
 - * ARDS: off label use
 - Short-term oxygenation improvement
 - No improvement in mortality
 - Right ventricular failure, for patients with leftventricular assist devices
 - * Independent lung ventilation: increases blood flow to 'good' lung

Nitric Oxide Gas Delivery

- Disadvantages of NO
 - * FDA-approved only for PPHN
 - * Additional equipment: iNOvent, monitors
 - * Additional training required for all
 - * Potential toxicity to caregivers
 - * Rebound PAH with cessation of delivery
 - * Bottom line: very costly

Nitric Oxide Donors

- > Agents
 - * Aerosolized nitroprusside (Nipride)
 - * Aerosolized nitroglycerine
- > Additional studies needed

Prostacyclins, Prostanoids

- > Endogenous, produced in vascular endothelium
- > Prostaglandin i2 analogs (synthetic)
- > Non-acute indications
 - * WHO Group I
 - * NYHA Class III IV severity
 - * Failure of other medications
- > Evidence favors effects on mortality

Prostacyclins

- > Iloprost (Ventavis) prostaglandin i2 analog
 - Potency ≥ nitric oxide
 - * Aerosol 2.5 or 5.0 mcg 6 9 times daily
 - ❖ Effect duration = 120 min
 - * Unit doses 2.5 or 5.0 mcg
 - * Specific nebulizers required
 - $\boldsymbol{\diamondsuit}$ Not for acute care setting - but....

FYI see links below for info on iloprost

Prodose AAD (Respironics)

- > Compressor-driven
- > Microchip-controlled dosage delivery
- > Aerosol during inspiration, only
- > Adjusts delivery to patient's ventilatory pattern

I-neb AAD (Respironics)

- Vibrating mesh nebulization: similar to ultrasonic nebulizer
- > Microchip-controlled delivery

FYI see links below for Respironics AAD nebulizers

Epoprostenol (Flolan)

- > Short-acting PGi-2
- > Duration of action 3 5 min
- > Equally effective & less expensive than iNO
- > Administration
 - ***** Continuous infusion: acute or non-acute care
 - ❖ Continuous aerosol: acute care alternative to nitric oxide

FYI see links below to Flolan information center

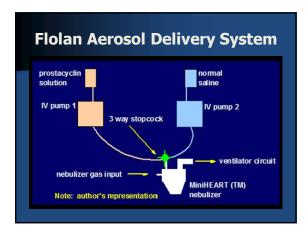
Epoprostenol (Flolan)

- > Delivery by infusion
 - * Same indications as Ventavis for non-acute setting
 - * Cost > \$100,000 / year
 - * Home care setting: patient has infusion pumps

Epoprostenol (Flolan)

- > Contraindication: CHF with severe left-ventricular failure
- > Precautions
 - * Abrupt withdrawal can result in rebound, death
 - $\boldsymbol{\div}$ Should be used only by clinicians experienced with PAH
 - Must be reconstituted by pharmacist with specific solution

Flolan Acute Care Aerosol Delivery


- > Indication severe PAH, refractory to standard therapy
 - * Reperfusion injury, e.g. post-cardiopulmonary bypass
 - $\ \, \textbf{ \div Portal-pulmonary hypertension} \\$
 - * Independent or single-lung ventilation
 - * ARDS
 - ❖ PPHN
 - ♦ RV failure
 - * Septic shock

Flolan Acute Care Aerosol Delivery Additional potential benefits of Flolan

- - * Increased gastrointestinal perfusion
 - * Inhibition of platelet aggregation: antithrombotic, antiinflammatory
 - Stimulation of endogenous nitric oxide

Flolan Acute Care Aerosol Delivery

- Adverse effects
 - ❖ Bleeding, due to platelet inhibition
 - * Hypotension spillover to systemic circulation
 - ♦ Flushing
 - * Nausea, vomiting
 - ❖ Chest pain
 - * Rebound PAH, with abrupt withdrawal

Flolan Continuous Aerosol Delivery

- > O₂ flow @ 2 L/min for output = 8 mL/H
- > Pumps adjusted for dosage = 1050 ng/kg IDBW/min
- > Titration charts used to adjust IV pump flows

Aerogen Aeroneb Pro Nebulizer Wire mesh technology > Does not alter ventilator performance Image Courtesy of Aerogen, Inc. FYI see links below to Aerogen

Flolan Continuous Aerosol Delivery

- - * Interruption of delivery can result in rebound, death
 - * During transports, nebulizer must be maintained in vertical position
 - Minimize transports, suctioning
 - * Medication will clog filters

Flolan Continuous Aerosol Delivery

- > Precautions
 - * May cause systemic hypotension
 - * May increase pulmonary shunting
 - * May cause hemorrhage
 - * Flolan is photosensitive, so must be shielded from light

Alternatives to Flolan

- Nebulized iloprost (Ventavis)
 - * Longer duration than Flolan
 - * Replaces continuous nebulization
 - * 10 mcg/mL over 20 min
 - * Administered in OR during bypass surgery

Alternatives to Flolan

- Nebulized milrinone (Primacor): prevents endothelial dysfunction post-CPB (5 mL; 1 mg/mL)
- > Nebulized milrinone & Flolan
 - * Additive effects
 - * Separate nebulizers required

FYI see links below for article on nebulized milrinone & prostacyclin

Alternatives to Flolan

- > Treprostinil (Remodulin)
 - * Intravenous or subcutaneous injection
 - ❖ Four hour duration of action
 - Pilot studies of aerosolized treprostinil found sustained vasodilation (>3 H) with dosage delivered in a single breath
 - * Metered-dose inhaler under study

See links below to view treprostinil (Remodulin) pump

Summary & Review

Summary & Review

- > PAH defined: mean PAP >25 mm Hg at rest
- > Pathophysiology vasoconstriction, vascular remodeling
- > Reperfusion injury postoperative heart patients
- > Etiologic classifications (WHO groups)
- > Functional classifications (NYHA classes)

Summary & Review

- PAH diagnosis echocardiography, heart catheterization, pulmonary vasoreactivity
- > PAH management
 - ❖ General management: O₂, etc.
 - * Calcium channel blockers
 - * Endothelin antagonists, e.g. bosentan, ambrisentan
 - * Phosphodiesterase inhibitors, e.g. Viagra, Primacor

Summary & Review

- Nitric oxide gas
 - * Approved for PPHN
 - * iNOvent required
 - * Costly
- Nitric oxide donors nitroprusside, nitroglycerine (experimental)

Summary & Review

- > Prostacyclins
 - ❖ Prostacyclin analogs
 - Iloprost (Ventavis)
 - Treprostinil (Remodulin): longest acting
 - * Prostacyclin: PGi2 (Flolan)
 - * Aerosol delivery systems
 - Respironics AAD™ devices for iloprost
 - Aeroneb Pro™ device for Flolan
 - Precautions for aerosol delivery

References

- Kassiani T, et al. Inhaled iloprost controls pulmonary hypertension after cardiopulmonary bypass. Can J Anesth 2002;49(9):963-967.
- Komai H, et al. Increased plasma levels of endothelin-1 after cardiopulmonary bypass in patients with pulmonary hypertension and congenital heart disease. J Thor Cardio Surg 1993;106:473-478.
- Eichelbrönner O, Reinelt H, Wiedeck H, Mezödy M, Rossaint R, Georgieff M, Radermacher P. Aerosolized prostacyclin and inhaled nitric oxide in septic shock--different effects on splanchnic

References

- Lamarche, Y., Malo, O., Thorin, E., Denault, A., Carrier, M., Roy, J., Perrault, L.P. Inhaled but not intravenous milrinone prevents pulmonary endothelial dysfunction after cardiopulmonary bypass. J Thorac Cardiovasc Surg 2005 130: 83-92
- Sablotzki, Armin, Starzmann, Wolfgang, Scheubel, Robert, Grond, Stefan, Czeslick, Elke G. Selective pulmonary vasodilation with inhaled aerosolized milrinone in heart transplant candidate. Can J Anesth 2005 52: 1076-1082
- Haraldsson A, Kieler-Jensen N, Ricksten SE. The Additive Pulmonary Vasodilatory Effects of Inhaled Prostacyclin and Inhaled Milrinone in Postcardiac Surgical Patients with Pulmonary Hypertension. Anesth Analg 2001 93: 1439-1445

References

- Siobal M, Kallet H, et al. Description of a delivery system for aerosolized prostacyclin. Resp Care 2003;48(8):742-753.
- Boutet K, Montani D, Jaïs X, Yaïci A, Sitbon O, Simonneau G, Humbert M. Therapeutic advances in pulmonary arterial hypertension. Ther Adv Respir Dis. 2008 Aug;2(4):249-65.
- Sandifer BL, Brigham KL, Lawrence EC, et al. Potent effects of aerosol compared with intravenous treprostinil on the pulmonary circulation J Appl Physiol 99: 2363-2368, 2005.
- Wilkins MR, et al. Simvastatin as a treatment for pulmonary hypertension trial. Am J Respir Crit Care Med. 2010 May 15;181(10):1106-13.

References

- McLaughlin VV, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010 May 4;55(18):1915-22.
- Ryerson CJ, Nayar S, Swiston JR, Sin DD. Pharmacotherapy in pulmonary arterial hypertension: a systematic review and metaanalysis. Respir Res. 2010 Jan 29;11:12.
- Khan TA, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009 Dec; 138(6):1417-24.

References

- Wang H, Gong M, Zhou B, Dai A. Comparison of inhaled and intravenous milrinone in patients with pulmonary hypertension undergoing mitral valve surgery. Adv Ther. 2009 Apr;26(4):462-8.
- Voswinckel R, et al. Metered dose inhaler delivery of treprostinil for the treatment of pulmonary hypertension.
 Pulm Pharmacol Ther. 2009;22(1):50-6.
- Escribano Subias P, Barberà Mir JA, Suberviola V. Current diagnostic and prognostic assessment of pulmonary hypertension. Rev Esp Cardiol. 2010; 63(5):583-96.

References

- Triantafyllidi H, Kontsas K, Trivilou P, Orfanos SE, Lekakis J, Kremastinos D, Anastasiou- Nana M. The importance of cardiopulmonary exercise testing in the diagnosis, prognosis and monitoring of patients with pulmonary arterial hypertension. Hellenic J Cardiol. 2010;51(3):2459.
- Unal A, Sipahioglu M, Oguz F, Kaya M, Kucuk H, Tokgoz B, Buyukoglan H, Oymak O, Utas C.Pulmonary hypertension in peritoneal dialysis patients: prevalence and risk factors.Perit Dial Int. 2009 Mar-Apr;29(2):191-8.