Pulmonary Vascular Disease

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

Explain the etiologies, manifestations, diagnostic techniques, & current management strategies for pulmonary thromboembolism & pulmonary hypertension

Pulmonary Thromboembolism

Definitions

- Thrombus: stationary blood clot, such as in deep veins of legs (DVT)
- Embolus: blockage of an artery by matter, such as a blood clot - thromboembolism

Acute PE Epidemiology

- > Incidence (US) 650,000/yr
- Mortality > 15% for first 3 months after diagnosis
- > In 25% PE patients, first sign is sudden death
- > Third most common cause of death
- > Leading cause of maternal death

Acute PE Epidemiology

- Missed diagnosis of PE > 400,000/yr
- > About 100,000 patients die who would have survived with the proper diagnosis & treatment
- > Autopsies find much greater incidence of PE among patient deaths than are diagnosed
- > PE among hospital patients considered a public health crisis in the UK

Types of Emboli

- > Thromboemboli: blood clots
- > Fat (lipid embolus) fractured bones
- Air
 Decompression illness
 Parenteral injection

Types of Emboli

- > Amniotic significant cause of maternal death
- > Septic
 - * Thrombophlebitis
 - * IV drug abuse
- > Foreign substances IV drug abuse (fillers, e.g. talc)
- > Worms, e.g. schistosomiasis

See links below to view schistosoma mansoni in mesenteric veins & schistosoma masoni life cycle

Sites for Embolism

- > Brain: cerebrovascular accident (CVA)
- > Joints: sickle cell crisis
- Pulmonary arteries: pulmonary thromboembolism (our focus)

Risk Factors

- Inherited predisposition thrombophilia
 Younger patients
 Family members with history
- Deep venous thrombi (DVT)
 Stasis (immobility)
 Surgery
 - * Trauma
- > Malignancy

Risk Factors

- > Obesity
- > Myocardial infarction
- Pulmonary disease (smoking)
- > Polycythemia
- > Pregnancy
- > Trauma
- > Vascular catheters

PE Pathophysiology

Perfusion of the Lung

Pulmonary circulation
 Pulmonary arteries to alveolar capillaries
 Perfuses alveoli for gas exchange

Perfusion of the Lung

Bronchial circulation

* Thoracic aorta to terminal bronchioles

* Perfuses

- Esophagus
- Trachea • Visceral pleura
- Airways to terminal bronchioles

See links below to view pulmonary circulation

Perfusion of the Lung

Anastamoses between pulmonary & bronchial circulations

- * Bronchioles to pulmonary capillary beds * Bronchial circulation increases flow through
- anastamoses to compensate for pulmonary embolism

See links below to view peripheral bronchial & pulmonary circulation & a diagram of bronchial-pulmonary anastamoses

Perfusion of the Lung

Pulmonary infarction results from embolization of mediumsize pulmonary artery; compensatory bronchial circulation causes reperfusion injury, hemorrhage

See links below to view pulmonary infarction & hemorrhagic pulmonary infarction

Development of Thrombi

Blood clots in deep vein

- * Calf
- * Thigh
- * Pelvis frequently fatal
- * Axillary, subclavian frequently fatal

Development of Thrombi

Blood clots in deep vein

- * Calf
- * Thigh
- * Pelvis frequently fatal
- * Axillary, subclavian frequently fatal
- > Clotting predisposed by
 - * Hemostasis
 - * Coagulopathy
- > Clot breaks off, flows to lung

See links below to view DVT & pulmonary embolism

PE Pathophysiology

- Hemodynamics severity depends on size of embolus
 Physical obstruction
 - * Release of vasoconstrictors
 - * Hypoxemia of distal lung causes vasoconstriction
 - * Acute pulmonary hypertension

PE Pathophysiology

Hemodynamics

- * Acute pulmonary hypertension
- * Increased right ventricular afterload
 - Ventricular dilatation
 - Interseptal bulging to left
 - Left ventricular impairment
 - Right ventricular infarction release of troponin, brain natriuretic peptide (BNP)

PE Pathophysiology

Gas exchange O₂

- Non-perfused lung increased VQ (dead space units)
 Blood directed to other units decreases their VQ (shunt)
- * Overall, mixed VQ defects
- Alveolar hemorrhage & atelectasis may contribute to hypoxemia
- If patent foramen ovale, then right-to-left shunt (severe hypoxemia)

PE Pathophysiolgy

Gas exchange - CO₂

- * Tachypnea arterial hypocapnea
- Alveolar dead space alveolar hypocapnea, with increased P(a - E)CO₂
 - If hypercapnea →
 - Massive embolus
 - Comorbidity, e.g. emphysema

FYI see links below for article on acute PE

PE Manifestations

Symptoms

- Anxiety
- > Chest pain
- > Chest wall tenderness (important)
- > Syncope
- > Shortness of breath
- > Back pain
- > Wheezing

Physical Signs

> Tachypnea

- > New onset wheezes
- Crackles (usually with infarction)
- > Tachycardia
- > Fever
- > Diaphoresis
- > Cyanosis
- > Hemoptysis
- > Thrombophlebitis

Massive PE

- > Dyspnea
- > Cyanosis
- > Altered mental status
- > Cardiogenic shock
- > Cardiac arrest

Chest Radiograph

- May be normal
- > Used to rule out alternatives
- > Reduced distal vascular markings
- > Dilated pulmonary arteries
- > Atelectasis common with infarction
- > Wedge-shaped density infarction
- > Pleural effusion 1/3 of PE patients
 - * Small Unilateral
 - * Likely to loculate

Electrocardiograph

- > May be unchanged from baseline
- > May suggest alternatives, e.g. MI
- > Most common with PE
- * Sinus tachycardia * Right axis deviation
- * Right bundle branch block

Blood Gases

Nonspecific for PE

- Hypocapnia
 Mild-severe hypoxemia
- > Severe hypoxemia with patent foramen ovale worsens with PEEP
- End-tidal CO₂ & ABG used to measure V_D/V_T

PE Diagnosis

Goals for Diagnostic Techniques

> Rule in/out PE

Risk stratification to select treatment
 Risk-benefits for drugs, interventions
 Avoid costly procedures, e.g. imaging

Bases for Diagnosis

- History
- > Physical findings
- > Laboratory tests
- > Imaging

Clinical Probability for PE

- Wells score parameters
- * Clinically suspected DVT
- * Alternative diagnosis is less likely than PE
- * Tachycardia
- * Immobilization/surgery in previous four weeks
- * History of DVT or PE
- * Hemoptysis
- Alignancy (palliative treatment within 6 months)

Clinical Probability for PE

Wells score interpretations

- * Traditional interpretation
 - Score > 6.0 High
 - Score 2.0 to 6.0 Moderate
 - Score < 2.0 Low

* Alternate interpretation

- Score > 4 PE likely → diagnostic imaging
- Score 4 or less PE unlikely → D-dimer to rule out PE

Laboratory Studies

- D-dimer formed by lysis of fibrin (clot)
- > Increased by
 - * Aging
 - Inflammation
 - * Malignancy
 - * Embolism
- > Negative predictive value
- Combined with Wells score strong negative predictive value

Laboratory Studies

Laboratory Studies

Troponin I - prognostic indicator
 Marker for myocardial injury

- Elevation suggests right ventricular overload
- * Peaks 4 hours after suspected PE
- * May predict adverse outcome for PE
- * May be used to select aggressive treatment

Laboratory Studies

Brain natriuretic peptide (BNP) - prognostic marker
 Elevated with right ventricular dysfunction
 Elevation is proportional to severity of embolism

Pulmonary Testing

Dead space measurement

- \star PE increases alveolar dead space & $\rm V_{\rm D}/\rm V_{\rm T}$
- * Measurement requires ETCO₂ & PaCO₂
- * Combined with negative D-dimer has strong negative predictive value
- * Research needed to standardize techniques & parameters for PE evaluation

Imaging

- Computed tomographic pulmonary angiography (helical, spiral)
 - * Agrees with VQ scan for exclusion
 - * Detects PE not found by VQ scan
 - * Useful in detecting alternative diagnoses

See links below for algorithm of PE diagnosis with CT angiography

Imaging

- Magnetic resonance imaging (MRI)
- * Similar accuracy to CT scanning
- * Also detects alternative diagnoses
- $\boldsymbol{\ast}$ No ionizing radiation safer for pregnant patients, esp. females
- * Technology is advancing

Imaging

- Pulmonary angiography
- * Criterion standard for PE
- * Adverse effects cannot be done on sickest patients
- * Expensive

See links below to view PE on angiogram

Imaging

- Ventilation-perfusion (VQ) scan
 - * Former, usual test for PE * If normal, excludes PE

 - Significant number of abnormal scans do not have PE
 High probability scan confirms PE

See links below to view VQ scan with PE

Imaging

- > Ultrasonography
 - * Detection of DVT
 - ♦ Positive test → evidence of PE
 - Negative result suggests decreased risk for recurrence of PE
 - * Safe no ionizing radiation

Imaging

Echocardiography

- * Not a routine test for PE
- * May visualize central emboli
- Identifies cardiac dysfunction & alternative causes of hemodynamic compromise
- * Detects shunting through patent foramen ovale

PE Management & Prevention

Respiratory Care

> Oxygen - all PE patients

- Ventilation PEEP may open foramen ovale by increasing pulmonary vascular resistance
- ETCO₂ particularly useful observe for changes in P(a E)CO₂

Anticoagulants

- Reduce risk of additional clots
- > Slow clot progression
- > Do not dissolve clots
- > Low molecular weight heparin * Enoxaparin (Lovenox)
 - * Ardeparin (Normiflo)
 - * Dalteparin (Fragmin)

Thrombolytics

- > Dissolve clots
- Definite for massive PE
 Clinical ventricular dysfunction
 Hypotension
 - * Severe hypoxemia
- > Controversial for submassive PE

Thrombolytics

- Considered for all patients with PE & without contraindications, e.g.
 - $\boldsymbol{\ast}$ Previous hemorrhagic stroke at any time
 - Active internal bleeding
 Suspected aortic dissection
 - * Acute pericarditis
- > Decrease mortality, morbidity, recurrence

Thrombolytics

> Agents

- * Tissue plasminogen activators (TPA)
 - Alteplase (Activase[®])
 - Retaplase (Retavase®)
 - Tenecteplase (TNK-tPA)
- * Streptokinase (Eminase®)
- * Urokinase (Abbokinase®)

Invasive Interventions

- Percutaneous methods
 Catheter-directed thrombolysis
 Embolectomy
- > Pulmonary endarterectomy
- Circulatory arrest
 Hypothermia
- * Serious postoperative complications
- > Embolectomy via thoracotomy

FYI see links below for article on invasive interventions for PE

Prevention

Anticoagulants

- * Heparin
- * Warfarin (Coumadin)
- Compression stockings
- > Pneumatic compression
- > Physical activity

Prevention

Air travel - longer flights, greater risk for PE

- > Prevention
 - * Fluids
 - * Avoidance of alcohol & smoking
 - * Loose clothing
 - * Elastic support stockings
 - * Avoidance of leg crossing
 - * Physical activity

FYI see links below for article on air travel & PE

Prevention

- > Vena cava (Greenfield) filter
- Especially for patients with contraindications to anticoagulation

Percutaneous insertion

- * Outpatient procedure
- * Temporary, retrievable filters are available

Pulmonary Hypertension

See links below to view retrievable vena cava filter

Pulmonary Arterial Hypertension (PAH)

> Elevated pulmonary artery pressure

- » Normal = 13 mm Hg (mean)
- > Hypertension = 25 mm Hg (mean) at rest

PAH WHO Classifications

> Group I - Pulmonary arterial hypertension (PAH)

- * Idiopathic: unknown etiology
- * Familial
- Persistent pulmonary hypertension of newborns (PPHN)
 Associated with
 - Portal hypertension
 - Collagen dx
 - HIV
 - Toxins, e.g. Fen-Phen (litigation)

PAH WHO Classifications

> Group II - Pulmonary hypertension associated with left heart disease

* Left-sided atrial or ventricular disease

Left-sided valvular disease

PAH WHO Classifications

 Group III - Pulmonary hypertension associated with lung diseases &/or hypoxemia

- * COPD
- * Interstitial lung disease
- * Sleep-disordered breathing
- * Chronic high-altitude exposure

PAH WHO Classifications

- Group IV Pulmonary hypertension due to chronic thrombotic &/ or embolic disease
- > Group V Miscellaneous
 - * Sarcoidosis
 - * Histiocytosis
 - * Compression of pulmonary vessels (neoplasms)

Acute PAH & Cardiac Interventions

- Reperfusion injury: return of blood flow to ischemic myocardium - 'stunned myocardium'
- Definition: prolonged post-ischemic dysfunction of viable tissue salvaged by reperfusion

FYI see links below for AHA article on reperfusion therapy

Acute PAH & Cardiac Interventions

Reperfusion injury

- > Occurs after
 - * Coronary thrombolysis
 - * Percutaneous coronary interventions
 - * Coronary artery bypass
 - * Heart transplantation

NYHA Functional Classifications

- Class I no limitation of physical activity ordinary physical activity
- Class II slight limitation of physical activity
 Comfortable at rest
 - Ordinary physical activity undue dyspnea or fatigue, chest pain, etc.

NYHA Functional Classifications

- Class III marked limitation of physical activity
 Comfortable at rest
 - * Minimal activity causes dyspnea, fatigue, chest pain
- Class IV inability to perform physical activity without symptoms
 - * Right heart failure
 - * Dyspnea &/or fatigue at rest
 - $\boldsymbol{\ast}$ Discomfort with any physical activity

PAH Manifestations

Manifestations

- Increased pulmonary artery pressure
 Echocardiography noninvasive
 Right heart catheterization (definitive)
- > RV hypertrophy
- Severe hypoxemia, esp. in presence of anatomic shunt (cyanosis)

Manifestations

- Dyspnea, fatigue
- > Syncope
- > Chest pressure or pain
- > Edema: pedal edema, ascites
- > Tachycardia, palpitations
- > Can mimic asthma, especially in young persons

PAH General Management (First Line)

- > Oxygen: reverses hypoxemic vasoconstriction
- > Anticoagulants
- > Diuretics
- > Potassium
- > Inotropic agents

See links below for PAH treatment algorithm

Calcium Channel Blockers

- > Amlodipine (Norvasc)
- » Nifedipine (Procardia)
- > Diltiazem (Cardizem)
- > Verapamil (Isoptan)

Endothelin Antagonist

Bosentan (Tracleer)

- Oral administration
- Likely to cause birth defectsPotential for hepatotoxicity

FYI see links below for article on endothelin antagonists for PAH

Phosphodiesterase Inhibitors

- > Sildenafil (Viagra)
- > Vardenafil (Levitra)
- > Tadalafil (Cialis)
- Milrinone (Primacor): nebulized for PAH from reperfusion injury

FYI see links below for info on phosphodiesterase inhibitors

Nitric Oxide Gas

Selectively dilates pulmonary vessels, because it is rapidly taken up by hemoglobin & neutralized

> Effects

Decreases pulmonary vascular resistance
 Improves V/Q matching by increasing blood flow to
 ventilated alveoli

Nitric Oxide Gas Delivery

Disadvantages of NO

- $\boldsymbol{\ast}$ Additional equipment: iNOvent, monitors
- * Additional training
- * Rebound PAH with cessation of delivery
- * Bottom line: very costly

Prostacycline

- Endogenous vasodilators
- > Prostaglandin i2 analogs (synthetic)
- > Non-acute indications
- WHO Group I
 NYHA Class III IV severity
 Failure of other medications

Prostacyclins

iloprost (Ventavis) - prostaglandin i2 analog

- ♦ Potency \geq nitric oxide
- Effect duration = 120 min
- * Aerosol 2.5 or 5.0 mcg 6 9 times daily
- * Unit doses 2.5 or 5.0 mcg
- * Specific nebulizers required

Epoprostenal (Flolan)

Short-acting PGi-2

- > Less expensive than iNO
- > Duration of action 3 5 min
- > Delivery
 - Continuous infusion: acute or non-acute care
 Continuous aerosol: acute care alternative to nitric oxide

FYI see links below for additional Flolan information

See links below to view nebulizers for Ventavis

Epoprostenal (Flolan)

- Delivery by infusion
 - * Same indications as Ventavis for non-acute setting Cost > \$100,000/year
 - * Home care setting: patient has infusion pumps

Flolan Acute Care Aerosol Delivery

Indications - severe PAH, refractory to standard therapy * Reperfusion injury, e.g. post-cardiopulmonary bypass

- * Portal-pulmonary hypertension
- Independent or single-lung ventilation
 ARDS
- * PPHN
- * RV failure
- * Septic shock

Flolan Acute Care Aerosol Delivery

- Precautions/contraindications
- * Interruption of delivery can result in rebound, death * May cause systemic hypotension (unlikely)
- * May cause hemorrhage
- * Flolan is photosensitive, so must be shielded from light

Treprostinil (Remodulin)

- Formulated for IV of SC injection
- > Four hour duration of action
- Pilot studies of aerosolized treprostinil found sustained vasodilation (> 3 H) with dosage delivered in a single breath
- > Additional study required for aerosol route

Summary & Review

Summary & Review

- > Pulmonary embolism epidemiology & importance
- > Types & sites for embolism
- > Risk factors for thromboembolism
- > PE pathophysiology * Hemodynamics * Gas exchange

Summary & Review

PE manifestations

- Symptoms & signs
- ♦ Radiograph
 ♦ ECG
- * Blood gases
- > PE diagnosis
 - * Clinical probability Wells score
 - * Laboratory studies PE markers vs. prognostic indicators
 - Imaging

Summary & Review

- PE management
 - * Respiratory care * Anticoagulants
 - * Thrombolytics
 - * Invasive interventions
- > PE prevention
 - * Anticoagulants
 - * Thromboembolic deterrent (TED) stockings
 - * Vena cava filters

Summary & Review

- PAH classifications (WHO groups)
- > PAH functional classifications (NYHA classes)
- > Manifestations

Summary & Review

- General management: O₂, etc.
- > Calcium channel blockers
- > Endothelin antagonist
- > Phosphodiesterase inhibitors
- > Nitric oxide gas
- > Prostacyclins
 - Flolan
 - Ventavis
 - * Remodulin

References

- Baglin T. Venous thromboembolism in hospitalised patients: a public health crisis? Br J Haematol. 2008 Jun;141(6):764-70. Epub 2008 Apr 10.
- Frazier AA, et al, From the Archives of the AFIP : Pulmonary Vasculature: Hypertension and Infarction. RadioGraphics 2000 20: 491-524.
- Goldhaber SZ, Elliott CG. Acute pulmonary embolism: part I: epidemiology, pathophysiology, and diagnosis. Circulation. 2003;108(22):2726-9.
- Stein PD, Henry JW. Clinical characteristics of patients with acute pulmonary embolism stratified according to their presenting syndromes. Chest 1997;112:974-79.
- Wells PS. Derivation of a Simple Clinical Model to Categorize Patients Probability of Pulmonary Embolism: Increasing the Models Utility with the SimpliRED D-dimer. Thrombosis and Haemostasis 2000 833 : 416-420.
- Kearon C. Diagnosis of pulmonary embolism. CMAJ 2003;168:183-194.

References

- Dresang LT, Fontaine P, Leeman L, King VJ. Venous thromboembolism during pregnancy. Am Fam Physician. 2008 Jun 15;77(12):1709-16.
- Becattini C, Vedovati MC, Agnelli G. Diagnosis and prognosis of acute pulmonary embolism: focus on serum troponins. Expert Rev Mol Diagn. 2008 May;8(3):339-49.
- Klok FA, Mos IC, Huisman MV.Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med. 2008 Aug 51;718(3):425-30.
- Porcel JM, Light RW. Pleural effusions due to pulmonary embolism. Curr Opin Pulm Med. 2008 Jul;14(4):337-42.
- Anderson DR, et al. Computed tomographic pulmonary angiography vs ventilation perfusion lung scanning in patients with suspected pulmonary embolism: a randomized controlled trial. JAMA. 2007;298:2743-53.

References

- Chaye B, Dondelinger RF. When to perform CTA in patients suspected of PE? Eur Radiol. 2008 Mar;18(3):500-9.
- Mitchell AM. Tandem measurement of D-dimer and myeloperoxidase and C-reactive protein to effectively screen for pulmonary embolism in the emergency room. Acad Emer Med. 2008;15:800-805.
- Horlander KT, Leeper KV. Troponin levels as a guide to treatment of pulmonary embolism. Curr Opin Pulm <u>Med. 2003;9:374-77.</u>
- Klok FA, Mos IC, Huisman WJ. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med. 2008 Aug 15;178(4):425-30.
- Kline JA, et al. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead space measurement for rapid exclusion of pulmonary embolism. JAMA. 2001;285:76168

References

- Eriksson L, et al. Diagnosis of pulmonary embolism based upon alveolar dead space analysis. Chest. 1989;96:357-62.
- Konstantinides SV. Massive pulmonary embolism: what level of aggression? Semin Respir Crit Care Med. 2008; 29(1):47-55.
- Uflacker R, Schönholz C. Percutaneous interventions for pulmonary embolism. J Cardiovasc Surg .2008 Feb;49(1):3-18.
- Roscoe A, Klein A. Pulmonary endarterectomy. Curr Opin Anaesthesiol. 2008 Feb;21(1):16-20.
- > Douma RA, Kamphuisen PW. Thrombolysis for pulmonary embolism and venous thrombosis: is it worthwhile? Semin Thromb Hemost. 2007 Nov;33(8):8218.
- Young T, Tang H, Aukes J, Hughes R. Vena caval filters for the prevention of pulmonary embolism. Cochrane Database Syst Rev. 2007 Oct 17;(4):CD006212.

References

- Haraldsson A, Kieler-Jensen N, Ricksten SE. The Additive Pulmonary Vasodilatory Effects of Inhaled Prostacyclin and Inhaled Mirinone in Postcardiac Surgical Patients with Pulmonary Hypertension. Anest M. Analg 2001 93: 1439-1445
- > Siobal M, Kallet H, et al. Description of a delivery system for aerosolized prostacyclin. Resp Care 2003;48(8):742753.
- > Siobal M. Pulmonary vasodilators. Resp Care 2007;52(7):885-899.
- > Siobal M. Aerosolized prostacyclins. Resp Care 2004;49(6):640-652.
- Sandifer BL, Brigham KL, Lawrence EC, et al. Potent effects of aerosol compared with intravenous treprostinil on the pulmonary circulation J Appl Physiol 99: 23632368, 2005

References

- Kassiani T, et al. Inhaled iloprost controls pulmonary hypertension after cardiopulmonary bypass. Can J Anesth 2002;49(9):963-967.
- Komai H, et al. Increased plasma levels of endothelin-1 after cardiopulmonary bypass in patients with pulmonary hypertension and congenital heart disease. J Thor Cardio Surg 1993;106:473-478.
- Olschewski H, et al. Aerosolized Prostacyclin and Iloprost in Severe Pulmonary Hypertension. Ann Intern Med 1996; 820-824
- Eichelbrönner O ; Reinelt H ; Wiedeck H ; Mezödy M ; Rossaint R ; Georgieff M ; Radermacher PAerosolized prostacyclin and inhaled nitric oxide in septic shockdifferent effects on splanchnic oxygenation? Intensive Care Med. 1996; 22(9):880-7 (ISSN: 032-4642).

References

- > Lamarche, Y., Malo, O., Thorin, E., Denault, A., Carrier, M., Roy, J., Perrault, L.P. Inhaled but not intravenous milirinone prevents pulmonary endothelial dysfunction after cardiopulmonary bypass J Thorac Cardiovasc Surg 2005 130: 83-92
- > Sablotzki, Armin, Starzmann, Wolfgang, Scheubel, Robert, Grond, Stefan, Czeslick, Elke G. Selective pulmonary vasodilation with inhaled aerosolized milrinone in heart transplant candidate. Can J Anesth 2005 52: 1076-1082