Preventing Medical Errors Part Two: Devices Arthur Jones, EdD, RRT This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

- Identify the responsibilities of respiratory care managers & practitioners in preventing errors associated with medical devices
- Discuss examples of medical device errors & how they could have been prevented

Medical Devices

- > Number of devices at bedside has increased from 7 to 26 over previous 20 years
- Human error contributes to 90% of accidents associated with medical devices
- > Respiratory care devices
 - ❖ Greater variety
 - ❖ Greater capabilities
 - ❖ Greater complexity

See links below for illustration of devices at bedside

Terminology

Definitions

- Error: failure of planned action or use of a wrong plan to achieve a goal
 - * Latent errors: set the stage for future errors & usually are committed by the system
 - * Active errors: have immediate consequences
 - Slips: performing a correct action incorrectly (performance)
 - Mistake: performing an incorrect action (decisionmaking)

Definitions

- Adverse event: an injury that was caused by medical management & that resulted in measurable disability. These may be either
 - * Unpreventable, e.g. due to patient characteristic, or
 - * Preventable due to error

Definitions

- > Sentinel event (Joint Commission)
 - * An unexpected occurrence involving death or serious physical or psychological injury, or the risk thereof. Serious injury specifically includes loss of limb or
 - * Not all sentinel events occur because of an error & not all errors result in sentinel events.

FYI see links below to subscribe to Joint Commission Sentinel Alerts

Causes Of Device - Associated Adverse Events

Multifactorial View

- - * Personal attributes of practitioner
 - * Attributes of the system, e.g. the hospital
 - Patient attributes

Interplay of Contributing Factors

- Personal Factors
 - ❖ Health
 - * Cognitive state
 - Competency
 - ❖ Professional commitment

Interplay of Contributing Factors

- **System Factors**
 - * Device design & construction
 - ❖ Physical facilities
 - Management & supervisionOrganization culture

 - Commitment to safety

Interplay of Contributing Factors

- Patient Factors
 - Physical constitution
 - * Psychological constitution
 - * Illness acuity necessity of life support
 - * Comorbidities (all present conditions)

Analysis of Adverse Events > Root cause analysis (RCA) \$\distriction{1}{3} Identifies all contributing factors} \$\distriction{2}{3} Aims at problem-solving, NOT reactive measures & finger-pointing} \$\distriction{2}{3} Aims at performance improvement by eliminating root causes} \$\distriction{2}{3} Eliminating root causes will prevent recurrence of event FYI see links below for more information on root cause analysis

Medical Device Event Causes Device defect Design defects Product defects Device misuse Intentional Other system failure

Design Defects > Design defect \$ The device meets manufacturer's specifications, but \$ The device is not safe for all reasonably foreseeable uses OR \$ The design has deficient human factor engineering

Design Defects > Design defect ◆ Examples • A ventilator that operates everywhere except during air transport, because of electromagnetic interference • An ECG monitor that displays ventricular tachycardia when the patient also has an electronic urine output monitor

Design Defects Design defect Examples (human factor defects) A ventilator that requires navigation through layers of menus to change modes A monitor display that is difficult to see An alarm that is easy to ignore A ventilator port that permits easy misconnection

Design Defects

- Product defect
 - Device does not meet manufacturer's specifications or governmental standards
 - * Device was defective when it left the manufacturer

Design Defects

- Product defect
 - **& Examples**
 - Nebulizer that fails to nebulize
 - Oxygen fuel cell that fails within its life expectancy
 - Ventilator cabinet wheels that fail to lock

Device Misuse

- Device is operational
- > Use of device is not reasonably foreseeable (by manufacturer)
- Device instruction manual should describe & limit reasonable use
- > Implication liability is assumed by the user (misuser)

Device Misuse

- > Example
 - Using a nebulizer intended for a 50 PSIG source for a home compressor unit
 - Ineffective nebulization
 - Could prevent relief from exacerbations of asthma, COPD

Device Misuse

- > Examples
 - * Using a critical care ventilator in the home care setting
 - User manuals specify users as trained healthcare professionals
 - Home users must be informed & required to sign a waiver

Device Misuse

- > Example:
 - Using a blender & flowmeter to adjust oxygenation to a nasal cannula
 - Some blenders deliver 21% at low flows (check manuals for recommended flow ranges)
 - At best, FiO₂ is unknown

Potential System Failures

- Gas sources
- > Electrical power source
- > Purchasing decisions
- > Management
- > Inadequate training

Medical Device Regulations

Safe Medical Device Act of 1990

- Administered by Federal Drug Administration, Center for Devices & Radiologic Health (CDRH)
- > Functions
 - * Defines & classifies medical devices
 - Provides rules & regulations for safety (including human factors)
 - * Medical device failure reporting
 - * Mandates device recalls

Safe Medical Device Act of 2009

- > Supreme court ruling (Riegel vs. Medtronic)
 - Manufacturer cannot be sued under state law for harm caused by a device with marketing approval by the FDA
 - * There are efforts underway to change the law

FYI see links below for editorial on Device Act of 2009

Medical Device Classification

- > Category I General controls
 - ❖ Least regulatory control
 - ❖ Minimal potential for harm due to malfunction
 - * Examples: bandages, gloves, handheld instruments

FYI see links below for FDA medical device safety web page

Medical Device Classification

- Category II Special controls
 - * Devices for which general controls are insufficient
 - * Regulations on labeling, mandatory performance, post market surveillance
 - Examples: anesthesia devices, which include respiratory care devices

FYI see links below for CDRH list of anesthesia devices

Medical Device Classification

- > Category III Devices requiring premarket approval
 - * Regulated as new devices
 - * Not equivalent to existing devices
 - **Examples:** pacemakers, implants, some ventilators

Human Factor Engineering

- Definition: study of the interactions between humans, machines, & complex systems
- Specific goals of HFE
 - * Reduced risk of device user error
 - * Easier to use (or more intuitive)
 - * Reduced need for training
 - * Reduced reliance on user manuals

Human Factor Engineering (HFE)

- Specific goals of HFE
 - * Reduced risk of device user error
 - * Easier to use (or more intuitive)
 - * Reduced need for training
 - * Reduced reliance on user manuals
 - ❖ Easier to read controls & displays
 - * Safer connections between devices
 - ❖ More effective alarms
 - * Easier repair & maintenance

FYI see links below for AHQR's human factors & medical devices

CDRH Recalls

- Device recall categories

 - ❖ Class I High risk❖ Class II Less-serious risk
 - * Class III Low risk

CDRH Recalls

- Possible device recall actions
 - * Inspect the device for problems
 - * Repair the device
 - $\boldsymbol{\div}$ Adjust settings on the device, e.g. software upgrade
 - * Re-label the device
 - * Notify patients of a problem
 - * Monitor patients for health issues
 - Destroy the device

Medical Device Reporting

- > Deaths due to devices reported within 10 days
- > Adverse events reported to Medwatch

See links below for Medwatch healthcare professional voluntary reporting

Medical Device Reporting

- Emergency Care Research Institute (ECRI)
 - * Nonprofit medical research institute
 - * Voluntary device reporting
 - * Medical device safety resources

FYI see links below for ECRI medical safety resources

Medical Device Reporting

- > Steps when a medical device has been found to be defective
 - * Take the device from service
 - Put the device & all its parts back in its packaging & write down its number
 - * Must put some kind of notification on the device

Medical Device Reporting

- Steps when a medical device has been found to be defective
 Notify the patient's physician
 - * If an employee was injured in the incident, the employee should be referred to Occupational Health

Medical Device Reporting

- > Steps when a medical device has been found to be defective
 - Complete an incident report & deliver it to Risk Management within 24 hours
 - * Notify whichever department is appropriate for handling the device

FYI see links below for FDA patient safety video updates

Adverse Events With Respiratory Care Devices

Nasal Cannula

- > Event: increased liter flow does not improve SPO₂
- > Cause: nasopharynx obstructed with surgical gauze
- > Contributing factors
 - ❖ Inadequate communication
 - * Inadequate documentation
 - Inadequate patient assessment

Nasal Cannula

Prevention

- ***** Comprehensive report on transfer
- * Documentation of nasal packing
- * Physical assessment of the patient

Oxygen Cylinder

- Event: pediatric patient struck in head by oxygen cylinder in MRI
- > Cause: steel cylinder in MRI
- > Contributing factors
 - * MRI area unsecured
 - * Inadequate signage
 - * Inadequate staff training
 - * Absence of piped-in O₂
 - * Absence of nonferrous cylinders

Oxygen Cylinder

- Monitoring by MRI personnel
- ❖ Prominent signage
- * Comprehensive staff training
- * Nonferrous transport cylinders
- ❖ Medical gas wall outlets
- * MRI compatible devices

Up next: Video of O₂ cylinder in MRI laboratory (2 min)

Manual Resuscitation Bag

- Event: bagging worsens hypoxemia
- > Cause: the manual resuscitator was connected to an air
- > Contributing factors
 - * Air flowmeter attached to wall * Spaghetti at bedside

 - ❖ Panic mode in unit

Manual Resuscitation Bag

- * Air flowmeters disconnected & stored when not in use
- * All gas tubing should be labeled for applications
- * Trace tubing to source before use
- Flow restriction device instead of air flowmeter for treatments

Manual Resuscitation Bag

- > Patient exhaled during bag squeeze
- > Cause: left-hander using right-handed bag
- > Contributing factors
 - * Purchasing failed to order left-handed bags
 - * Manager hired left-handed therapist

Manual Resuscitation Bag

- Prevention
 - Fire all left-handed caregivers (equal opportunity litigation?)
 - * Train left-handers to bag right-handed
 - * Supply & label left-handed resuscitation bags

Endotracheal Tubes

- > Event: bronchoscopy required because closed-system suction catheter tip remained in the trachea when the ETT was shortened
- $\succ\,$ Cause: catheter was in ETT when it was cut to reduce its length

Endotracheal Tubes

- > Contributing factors
 - Catheter not withdrawn after suctioning
 - * Visibility of catheter was minimal

Endotracheal Tubes

- Prevention
 - Catheters should be withdrawn completely after suctioning
 - * Increased vigilance before cutting tube
 - Colored catheter would improve visibility

Tracheostomy Tubes

- Patient coughed & tube relocated into mediastinum patient expired
- > Cause: tube anchoring tie secured with slip knot

Tracheostomy Tubes

- > Contributing factors
 - Inadequate procedure for postoperative tracheostomy care
 - Inadequate training & supervision for caregiver & residents
 - Delay in surgical intervention

Tracheostomy Tubes

- > Prevention
 - ❖ Suturing new tracheostomy tubes in place
 - * Strict, clear procedure for tracheostomy tube anchors
 - * Comprehensive clinical training & supervision on tracheostomy procedures

Speaking Valves

- Event: patient develops respiratory failure after placement of speaking valve
- > Cause: failure to deflate cuff
- > Contributing factors

 - * No visible indication of cuff inflation

Speaking Valves

- Prevention
 - Speaking valves should be used only with uncuffed or fenestrated tubes
 - Cuff deflation must be double-checked with syringe

Suctioning Devices

- > ICU ventilator patients developed mucus retention
- > Cause: patients were not suctioned
- > Contributing factors
 - * Hospital ran out of vacuum
 - * Purchasing neglected to order vacuum cylinders
- > Prevention: increase supply of vacuum (outer space?)

Bite Block

- Laryngoscopy done because caregivers suspected aspiration of portion of oropharyngeal airway
- > Cause: bite-block created by cutting oropharyngeal airway

Bite Block

- > Contributing factors
 - ❖ Inadequate shift report
 - * Tribalism RCP was not consulted
- > Prevention
 - ❖ Improved shift report
 - $\ \, \boldsymbol{ \div } \, \textbf{Communication among tribes} \\$

Oximetry

- Event: patient requires multiple punctures due to disagreement of blood gas & pulse oximeter
- > Cause: inaccurate oximetry because sensor was misused
- > Contributing factors
 - ❖ Inadequate instruction & supervision of caregivers
 - ❖ Tribalism MD & RN did not believe RCP

Oximetry

- > Prevention
 - Oximeter sensors should be used in accordance with recommendations
 - * Physician & RN should trust RCP
 - * Strong medical direction to support RCP

Adverse Events With Mechanical Ventilators

Sentinel Events - Contributing Factors

- Staffing
 - * Inadequate orientation/training process (87%)
 - ❖ Insufficient staffing levels (35%)
- > Communication breakdown
 - * Among staff members (70%)
 - With patient/family (9%)

FYI see links below for ventilator sentinel event alert

Sentinel Events -Contributing Factors

- > Incomplete patient assessment
 - * Room design limits observation (30%)
 - * Delayed or no response to alarm (22%)
 - * Monitor change not recognized (13%)

Sentinel Events -Contributing Factors

- Equipment
 - * Alarm off or set incorrectly (22%)
 - * No alarm for certain disconnects (22%)
 - * Alarm not audible in all areas (22%)
 - * No testing of alarms (13%)

Sentinel Events - Contributing Factors

- > Restraint failure (13%)
- > Distraction (22%)
- > Cultural (13%)
 - Hierarchy
 - ❖ Intimidation

Current Ventilator Issues

- > Alarms
 - * Discerning among alternative devices
 - * Excessive activations 'crying wolf'
- > Displays, e.g. visibility
- > Layers of menus to adjust controls
- > Modes that self-adjust ventilation parameters

Mechanical Ventilation

- Event: patient in intermediate unit disconnected from ventilator & expired
 - * Alarms were adjusted & functioning
 - * ECG technician notified caregivers of dysrhythmias

Mechanical Ventilation

- > Cause: disconnect (cough?)
- > Contributing factors
 - * Patient was located in corner room, distant from station
 - Patient was in a unit where RCP was not assigned fulltime

Mechanical Ventilation

- > Contributing factors
 - * Patient was located in corner room, distant from station
 - ❖ Patient was in a unit where RCP was not assigned fulltime
 - $\begin{tabular}{ll} & \textbf{Caregivers were unfamiliar with mechanical ventilation} \\ \end{tabular}$
 - ❖ Ventilator had alarmed frequently
 - * Tribalism caregivers did not believe ECG technician

Mechanical Ventilation

- Prevention
 - * Continuous ventilation only in unit with dedicated RCP
 - Clinical training on mechanical ventilation for caregivers
 - * Immediate response to alarms & monitors
 - * Improved communication, including listening

Mechanical Ventilation

- Event: ventilator patient with severe COPD developed respiratory distress due to air-trapping
- Cause: physician increased the control rate on a ventilator & did not decrease the inspiratory time or notify RCP

Mechanical Ventilation

- Contributing factors
 - Unfamiliarity of physician with interactions of ventilator controls
 - * Inadequate communication
 - * Tribalism chiefs do whatever
 - * Inadequate medical direction

Mechanical Ventilation

- Prevention
 - * Ventilator adjustments only by RCPs
 - * Training for physicians on interactions of ventilator controls
 - Prompt communication to RCPs for all ventilator adjustments
 - Medical director to enforce policies

Accidents Waiting to Happen

- Poorly located ventilator patients
- > Untrained personnel adjusting ventilators (too many chefs)
- > Other equipment located in front of ventilators
- > Procedures, unwritten, unclear, uncommunicated
- > Variety of ventilators, monitors

Accidents Waiting to Happen

- > Inadequate RCP competency assurance
- > Inadequate respiratory care orientation for other caregivers
- > Air flowmeters in wall outlets
- Spaghetti at the bedside
 - * Medical gas tubing
 - Suction tubing
- > Any others at your place?

General Preventive Measures

Strategies to Minimize Accidents

- > Adopt safe devices
 - * Homework research on devices
 - ❖ Safest, rather than cheapest
- > Standardization of devices
- Comprehensive trial evaluations with <u>structured</u> input from staff
- > Comprehensive competency assurance

Responsibilities of RCPs

- Management
 - Evaluate equipment before acquisition structured staff evaluation
 - Ensure staff competency on all equipment & applications, e.g. ventilator modes
 - Training
 - Monitoring (supervision)
 - **❖** Documented preventive maintenance

Responsibilities of RCPs

- Management
 - * Report adverse events
 - * Root cause analysis of adverse events

Responsibilities of RCPs

- > RC staff
 - * Assure competency on all devices
 - * Preventative maintenance & documentation
 - * Routine monitoring of device function
 - * Removing malfunctioning equipment from service (includes labeling)
 - Document & report adverse events to management
 - * Report any potential risks

Summary & Review

Summary & Review

- > Definitions
 - * Errors active & latent
 - ❖ Sentinel events
- > Multifactorial event factors
 - * System factors, including devices
 - * Personal factors
 - * Patient factors
- > Root cause analysis solve the problems

Summary & Review

- > Causes of device incidents
 - * Device defects
 - Product defects
 - Design defects, including HFE
 - * Device misuse examples
 - ❖ System factors

Summary & Review

- Medical device regulations
 - * CDRH device classifications & recalls
 - * Goals of human factor engineering
 - * Medical device reporting

Summary & Review

- > Examples of adverse events with respiratory care devices
- > Sentinel events with ventilators & contributing factors
- > Examples of ventilator events
- > General preventive measures
 - * Respiratory care management
 - * Respiratory care staff

References

- Curfman, Gregory D., Morrissey, Stephen, Drazen, Jeffrey M. The Medical Device Safety Act of 2009 N Engl J Med 2009 360: 1550-1551.
- Making Health Care Safer: A Critical Analysis of Patient Safety Practices. Evidence Report/Technology Assessment, No. 43. (Chap. 42) AHRQ 2001. http://www.ahrq.gov/clinic/ptsafety/index.html#toc
- Geddes, LA. Medical device accidents with illustrative cases. 1998; CRC Press; Boston.
- Haynes JM. The ear as an alternative site for a pulse oximeter finger clip sensor. Respiratory Care 2007;52(6) 727-729.

References

- David Y, Hyman W, Woodruff V, Howell M. Overcoming Barriers to Success: Collecting Medical Device Incident Data. Biomedical Instrumentation & Technology 2007;41:471-475.
 - http://www.acce-htf.org/documents/Colloquim_report__ _BIT.PDF
- Integrating human factors engineering into medical devices (video 1.8 H) http://www.youtube.com/watch?v=0zk4JjdnxBc
- Evans SR, et al. Enhanced notification of critical ventilator events. JAMIA 2005;12:589-595.

References

- Evans SR, et al. Enhanced notification of critical ventilator events. JAMIA 2005;12:589-595.
- Preventing ventilator-related deaths and injuries. Sentinel event alert, Issue 25, 2002 The Joint Commission http://www.jointcommission.org/SentinelEvents/SentinelE ventAlert/sea_25.htm