Preventing Ventilator Associated Pneumonia

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

- Explain the importance of ventilator-associated pneumonia (VAP)
- > Describe the epidemiology of VAP
- > Identify the risk factors for VAP
- > Outline the pathogenesis of VAP
- > Recommend diagnostic techniques for VAP
- > Recommend preventative measures for VAP
- > Recommended strategies for management of VAP

VAP Epidemiology

> Pneumonia has accounted for

- * 15% of all hospital-associated infections
- * 27% ICU infections * 24% CCU infections
- * 2nd most common nosocomial infection (after UTI)
- * 2 most common hosoconnar meetion (arter 011)
- Primary risk factor mechanical ventilation & endotracheal tube

FYI see link below to CDC website on VAP

VAP Epidemiology

> So what?

- * Costs of VAP • Prolonged intubation & ventilation
 - Patient discomfort
 - Greater ICU & hospital stay
 - Medications, e.g. antibiotics
 - Estimated cost/case = \$40,000
 - Estimated yearly cost = \$50 million/yr

VAP Epidemiology

> So what?

 Federal government had decided that VAP is a result of error & would not pay

* This decision has been reversed

VAP Etiologies & Pathogenesis

Normal Status

- > Aerodigestive tract above vocal cords is heavily colonized
- > Lower respiratory tract is normally sterile
- > Normal adults aspirate during sleep, without complications

Defense Mechanisms

- > Anatomic barriers
- > Cough
- > Mucociliary clearance
- > Cellular & humoral immunity
- > Alveolar macrophages

Compromise of Defenses

> Intratracheal tube

- * Provides a direct conduit for microorganisms * Impairs cough * Impairs mucociliary clearance
- * Airway injury

Compromise of Defenses

- > Critical illness
- > Comorbidities
- > Malnutrition

Routes for Development

> Aspiration

- * Direct from oropharynx * Reflux from GI tract
- Extension of existing infection
- > Inhalation of containments, e.g. aerosols
- > Blood-borne from other sites

Causative Factors

- > Aerodigestive colonization
- > Contaminated respiratory therapy equipment & aerosols
- > Contaminated tap water (pseudomonas, legionella)
- > Contaminated ambient air (fungi, TB, SARS, coronavirus)

Causative Factors

- > Biofilms on intratracheal tubes
- > Sinusitis infection spreads to lung
- > Gastric colonization reflux & aspiration

Risk Factors

- > Duration of mechanical ventilation (longer intubation)
- > Prolonged hospitalization before mechanical ventilation
- > Smoking impaired clearance
- > COPD impaired clearance

Risk Factors

- > Age (extremes)
- > Coma, neurosurgery, head trauma
- > Steroids immunosuppression
- > Gross aspiration
- > Prior antibiotics resistant strains

Ventilator Circuitry & VAP

- > Frequent circuit changes do not reduce risk for VAP
- > Humidification type does not affect risk for VAP
- > Closed suction does not reduce risk of VAP does it increase it?
- > Contaminated nebulizers increase risk of VAP
- > Manual resuscitators, tracheostomy collars, t-pieces

Endotracheal Tubes & VAP

- Rather than VAP, it should be called, `ETT associated pneumonia'
 - > Lower airways contaminated with oral secretions during intubation
 - > Leakage of oral, gastric secretions around tube cuff

Endotracheal Tubes & VAP

> Biofilm on lumen

- > Results in re-inoculation with pathogen
- > Instilled NSS for suctioning may increase re-inoculation?

Causative Organisms

- > Often, a polymicrobial infection
- > Pseudomonas aeruginosa (24%)
- > Staphylococcus aureus (20%)
- > Enterobacteriae (14%)
- > Hemophilus influenza (10%)

Causative Organisms

- > Pseudomonas aeruginosa (24%)
- > Staphylococcus aureus (20%)
- > Enterobacteriae (14%)
- > Hemophilus influenza (10%)
- > Streptococcus species (8%)
- > Acinetobacter (8%)
- > Streptococcus pneumoniae (4%)
- > Enterobacter (3%)> Other (4%)

Causative Organisms

- > Early onset (4-7 D post-intubation)
 - Hemophilus species
 Streptococci
 - * Staphylococci
 - * Enterobacter

Causative Organisms

- > Late onset (>7 D post-intubation) multiple drug-resistant pathogens
 - * Pseudomonas
 - * Methicillin-resistant staphylococcus aureus (MRSA)

VAP Diagnosis

VAP Diagnosis

May be helpful
 Clinical criteria

* Sputum cultures, gram stains

> Diagnosis is difficult – no gold standard

- * Cytologic data inflammatory cells
- * C-protein

VAP Diagnosis

Not helpful
 Blood cultures
 Procalcitonin levels

Clinical Pulmonary Infection Score

> Each assessment scored 0-2 points

- * Assessments
 - Fever
 - Leukocyte count
 - Purulence of secretions
 - Oxygenation (PaO₂/FiO₂)
 Radiographic abnormality
 - Sputum culture & gram stain

FYI see links below for an article on clinical pulmonary infection score & a clinical pulmonary infection score calculator

Bacteriologic Assessment

> Qualitative tracheal aspirates

- * Faster diagnosis
- * Greater sensitivity than BAL
- * Earlier treatment

Bacteriologic Assessment

Quantitative diagnosis (bronchoscopic technique)
 Advantages

- Select specific area of CXR infiltrates
- (VAP frequently RLL)
- May be more effective
- May reduce unnecessary antibiotics

Bacteriologic Assessment

> Quantitative diagnosis (bronchoscopic technique)

- * Disadvantages
 - Invasive
 - Expense

Final Diagnosis

- > Clinical assessment to decide when to initiate treatment
- > Qualitative tracheal aspirates to select antibiotics

Antibiotic Therapy

Issues with VAP

antibiotics

- * Lung tissue concentrations vary does drug reach the microbe?
- * Local lung conditions reduce effectiveness of some drugs * ETT biofilm organisms are not exposed to systemic

Antibiotic Therapy

> Issues with VAP

- * Organisms that cause VAP are becoming more drugresistant
 - MRSA
 - Klebsiella
 - Pseudomonas

Antibiotic Therapy

- > De-escalation strategy
 - * Endorsed by American Thoracic Society (ATS)
 - Start with aggressive broad-spectrum regimen
 Narrow the spectrum as data on susceptibility are
 available

Antibiotic Therapy

> Early onset, nonresistant strains

- * Ceftriaxone (Rocef)
- * Ciproflaxin (Cipro)
- * Levoflaxin (Levaquin)
- * Ampicillin
- * Ertapenem (Invanz)

Antibiotic Therapy

- Late onset, resistant strains combinations may be indicated
 - * Cefipime (Maxipime)
 - * Imipenem (Primaxim)
 - Piperacillin
 Ciproflaxin
 Levoflaxin

 - * Vancomycin MRSA * Linezolid (Zyvox) MRSA

Antibiotic Therapy

- Late onset, resistant strains combinations of these may be indicated
 Vancomycin – MRSA
 - * Linezolid (Zyvox) MRSA

Antibiotic Therapy

Airway delivery
 & Evidence

- Some benefits
- Not recommended for routine use
- * Specific agents for resistant strains
 - Aerosolized colistin pseudomonas
 - Aerosolized gentamycin, tobramycinAerosolized amikacin
 - Instilled tobramycin

VAP Prevention

Environmental Sources

- > Reusable ventilator probes & sensors
- > Ventilator circuits, humidifiers
- > Nebulizers
- > Manual resuscitators
- > Bronchoscopes pseudomonas
- > Hands, fingernails, stethoscopes MRSA, etc.

Environmental Sources

- Infected patients
- > Infected caregivers
- > Ice & water pseudomonas, legionella
- > Ambient air fungi, TB, SARS

Preventative Measures

 Adequate staffing – caregivers pressed for time are less likely to adhere to infection control guidelines

Preventative Measures

Mouth care

* Reduce colonization of oropharynx * Clorhexidine mouth-swabbing appears to reduce VAP

Preventative Measures

> Caregiver interface

- * Alcohol-based hand rubs * Routine gloving between patients
- * Dedicated equipment stethoscopes
- * Patient isolation often done too late

FYI see link below to download article on chlorhexidine & VAP

Tracheal Tubes

≻ Agento[™] silver-coated endotracheal tube

Tracheal Tubes

≻ Hi-Lo Evac[™] tube

Reprinted by permission from Nellcor Puritan Bennett LLC Boulder, CO, part of Covidian See link below for abstract on effectiveness of subglottic suctioning

Preventative Interventions

- ETT cuff pressures
 \$ 25-30 cm H₂O to prevent aspiration
 \$ Avoid MLT, which permits aspiration
- > Early tracheotomy not supported by research
- Noninvasive ventilation decreased VAP risk, because there is no intubation
- > Ventilator weaning protocols earlier extubation

Preventative Interventions

- > Metered-dose inhalers, instead of nebulizers for aerosolized drugs
- > Resuscitators, etc. * Store in clean containers
 - * Discard when contaminated

Preventative Interventions

- > Prophylactic antibiotics
 - * Aerosolized antibiotics prevent VAP in intubated patients with tracheobronchitis
 - * Routine use is not supported by research
 - * Excess antibiotics increase VAP risk
- > Rotational beds not supported by research

VAP Bundle

- Series of interventions related to ventilator care to reduce VAP
- Key components
 - * Elevate head of the bed
 - Daily "sedation vacations" to expedite extubation
 Peptic ulcer disease prophylaxis
 Deep venous thrombosis prophylaxis

FYI see link below for link to IHI Bundle implementation

Summary & Review

> VAP epidemiology & costs

- > Etiologies & pathogenesis
- * Compromised defenses
- * Causative factors
- * Risk factors
- * Ventilator circuitry * Endotracheal tubes
- * Causative microorganisms

Summary & Review

VAP diagnosis

- * Clinical diagnosis
- * Qualitative tracheal aspirates
- * Bronchoscopic, quantitative technique
- VAP management
- * Early onset
- * Late onset

Summary & Review

VAP prevention

- Environmental sources
- * Preventative measures
- Mouth care
- Caregiver interface interventions
- ETT care
- VAP bundle

References

- Ventilator-associated Conference proceedings I. Respir Care 2005;50:714-838.
- > Ventilator-associated Conference proceedings II. Respir Care 2005;50:892-983.
- Craven DE. Preventing ventilator-associated pneumonia in adults: Sowing seeds of change. Chest 2006; 130:251-260.
- Mayhall CG. Ventilator associated pneumonia or not? Contemporary diagnosis. Emerging infectious disease 2001;7:200-204
- Chastre J, Fagon J. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002; 165:867-903.
- Rea-Neto A, et al. Diagnosis of ventilator-associated pneumonia: a systematic review of the literature. Crit Care. 2008 Apr 21;12(2):R56.

References

- Kaynar AM et al. Attitudes of respiratory therapists & nurses about measure to prevent ventilator-associated pneumonia: A multicenter cross-sectional survey study. Respir Care 2007;52:1687-1694.
- Sud S, Sud M, Friedrich JO, Adhikari NK. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review & meta-analysis. CMA J. 2008 Apr 22; 178(9):1153-61.
- > Siempos II, Vardakas KZ, Kopterides P, Falagas ME. Impact of passive humidification on clinical outcomes of mechanically ventilated patients: A meta-analysis of randomized controlled trials. Cit Care Med. 2007 Oct. 16.

References

- Siempos II, Vardakas KZ, Falagas ME. Closed tracheal suction systems for prevention of ventilator-associated pneumonia. Br J Anaesth. 2008 Mar; 100(3):299-306. Epub 2008 Feb 4.
- Papadimos TJ, Hensley SJ, Duggan JM, Khuder SA, Borst MJ, Fath JJ, Oakes LR, Buchman D. Implementation of the "FA STHUG" concept decreases the incidence of ventilatorassociated pneumonia in a surgical intensive care unit. Patient Saf Surg. 2008 Feb 12;2:3.
- Parker LB, et al. Aerosolized antibiotics & ventilatorassociated tracheobronchitis in the intensive care unit. Crit Care Med. 2008 Jul;36(7):2008-13.

References

- Kollef MH, et al. Silver-coated endotracheal tubes & incidence of ventilator-associated pneumonia: the NA SCENT randomized trial. JAMA. 2008 Aug 20;300(7):805-13.
- Bouza E, Perez MJ, Munoz P, Rincon C, Barrio JM, Hortal J. Continuous aspiration of subglottic secretions in the prevention of ventilator-associated pneumonia in the postoperative period of major heart surgery. Chest. 2008 Nov;134(5):938-46. Epub 2008 Jul 18.
- Caruso, P, Denari S, Ruiz S, Demarzo SE, Deheinzelin D. Saline instillation before tracheal suctioning decreases the incidence of ventilator-associated pneumonia. Critical Care Medicine. 37(1):32-8, January 2009.