6/16/2017

Weaning Adults From Mechanical Ventilation

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

- Analyze data pertaining to readiness for weaning from mechanical ventilation
- Evaluate weaning strategies with respect to effectiveness & safety
- > Explain common causes for weaning & extubation failure
- > Describe strategies to prevent weaning & extubation failure

Ventilator Discontinuance & Dependence

Types of Ventilator Discontinuance

- Rapid & routine discontinuance
- * Postoperative patients
- Drug overdoses
 Acute illness, trauma

Types of Ventilator Discontinuance

- Rapid & routine discontinuance
 - * Postoperative patients
 - * Drug overdoses
 - * Acute illness, trauma
- Weaning: gradual reduction of support
 Chronic or severe illness
 Severe trauma
- > Ventilator dependent patients

Ventilator Discontinuance

- > 20% of ventilated patients fail their first attempt at weaning
- > 40% of the total duration of mechanical ventilation is occupied by weaning

Causes of Ventilator Dependence Ventilation workload exceeds capacity Ancreased workload Increased airway resistance Decreased lung / thoracic compliance Increased deadspace - demands greater spontaneous TV

Causes of Ventilator Dependence

Ventilation workload exceeds capacity

- Decreased work capacity
 - Impaired neurologic function loss of ventilatory drive
 - Impaired muscular function
 - Debilitation, e.g. malnutrition

FYI see links below for abstract on ventilator-induced diaphragmatic dysfunction

When Should Weaning Commence?

- Evaluation for weanability should commence with decision to intubate, ventilate
- > Patient should be tested for reduced support when it is safe
- > Support should be reduced as it is determined safe to do so

Determinants of Weaning Readiness

 Primary factor: improvement or reversal of process that caused commitment to ventilation, i.e. the precipitating condition

Weaning Readiness

Determinants of Weaning Readiness

- General clinical determinants
- * APACHE II score (acute physiology & chronic health evaluation)
 - * Cardiovascular stability, e.g. vasopressors?

See links below for APACHE II score calculator

Determinants of Weaning Readiness

- General clinical determinants
- * APACHE II score (acute physiology & chronic health evaluation)
- * Cardiovascular stability, e.g. vasopressors?
- * Chest radiograph
- * Cough
- * Sputum production

Determinants of Weaning Readiness

- General clinical determinants * Mental status, e.g. cognition, attitude
- * Sleep deprived?
- * CNS depressant requirements

Determinants of Weaning Readiness

- General clinical determinants
- * Mental status, e.g. cognition, attitude * Sleep - deprived?
- * CNS depressant requirements
- * Hemoglobin level determines oxygenation, regardless of SaO₂
- * Fluid balance overload?
- * pH balance ventilatory drive
- * Electrolyte balance affects muscle contractility, dysrhythmias

Determinants of Weaning Readiness

Oxygenation parameters $PaO_2 > 60 \text{ mm Hg}$ * FiO₂ < 0.6

* P(a/A)O₂ > 0.35

Determinants of Weaning Readiness

Oxygenation parameters

- $PaO_2 > 60 \text{ mm Hg}$
- * FiO₂ < 0.6
- * $P(a/A)O_2 > 0.35$ * $P(A-a)O_2 < 350$ on $FiO_2 = 1.0$
- * PaO₂/FiO₂ > 200
- $* SvO_{2} > 60\%$
- \diamond Oxygen index = <u>FiO₂ x MAP x 100</u> PaO₂

FYI see links below for OI calculator

Determinants of Weaning Readiness

> Weaning parameters * VC > 20 ml/kg * TV = 5 - 8 mL/kg

Determinants of Weaning Readiness

> Weaning parameters

- * VC > 20 ml/kg * TV = 5 - 8 mL/kg
- $\begin{array}{l} * \ \mathsf{PE}_{\mathsf{MAX}} > 20 \ \mathsf{cm} \ \mathsf{H}_2\mathsf{O} \ \mathsf{-} \ \mathsf{assesses} \ \mathsf{cough} \ \mathsf{capability} \\ * \ \mathsf{PI}_{\mathsf{MAX}} \ @ 20 \ \mathsf{sec} > 20 \ \mathsf{cm} \ \mathsf{H}_2\mathsf{O} \ \mathsf{-} \ \mathsf{does} \ \mathsf{not} \ \mathsf{reflect} \ \mathsf{endurance} \end{array}$
- * Problem inconsistent measurement technique

FYI see links below for article with predicted MIP & MEP values

Determinants of Weaning Readiness

Weaning parameters - supported by evidence

- ♦ f > 38/min → failure
- ◇ PI₁₀₀/PI_{MAX} < 0.3 → success
 ◇ Rapid-shallow breathing index (RSBI) (f/TV)
 - > 105 → failure
 - < 80 → success
 - RSBI > 120 may indicate need for NIPPV
 - Measurement with / without CPAP, ATC, on or off ventilator?

Determinants of Weaning Readiness

Measuring weaning parameters * All procedures must be standardized to ensure agreement among practitioners within a department

FYI see links below for article on evidence for RSBI

Determinants of Weaning Readiness

CROP weaning index

- * Components
 - Dynamic compliance
 - Resistance
 - Oxygenation (PaO₂/PAO₂)
 - Pressure (PI_{MAX})
 - Respiratory rate
- \diamond Success threshold \geq 13

Determinants of Weaning Readiness

Integrative weaning index (IWI)

- * Components • Respiratory system compliance, resistance
 - SaO₂
 - RSBT
- * 2009 pilot study only no comparisons

FYI see links below for article on IWI

Determinants of Weaning Readiness

Workload evaluation

- * Static compliance (Cstat)
- * Airways resistance (R_{aw})
- * Ventilator-generated WOB display
- * Electronic evaluation: measure workload
- \star Vd/Vt > 0.6 is excessive because it indicates a high spontaneous TV required for alveolar ventilation

Determinants of Weaning Readiness

Workload evaluation

- Accessory muscle usage
 Sternocleidomastoid inspiration
 - <u>Abdominal muscles expiration</u>
- * Intercostal retractions may predict extubation failure
- * Paradoxical abdominal motion diaphragmatic fatigue

Determinants of Weaning Readiness

Hemodynamic status (noninvasive)

 Brain natriuretic peptide (BNP) - elevation is associated with weaning failure

- > 712 → weaning failure
- > 864 → reintubation
- * Transthoracic echocardiography (TTE) detects decreased left ventricular ejection fraction during SBT

FYI see links below for article on echocardiography & weaning

Determinants of Weaning Readiness

> Adrenal status

- * Adrenal insufficiency is associated with weaning failure
 * Deficiency AM cortisol < 25 mcg/dl</p>
- * Hydrocortisone may enable weaning
- Nutritional status indirect calorimetry
 Proteins -> muscle strength

FYI see links below for article on weaning & calorimetry

Weaning Strategies

Optimize Patient Condition

- Acid-base balance Diamox for metabolic alkalemia?
- > Electrolyte balance repletion
- Nutrition
 Minimize carbohydrates
 Optimize proteins
- > Hemoglobin (> 9 g/dL)
- > No systemic infection

FYI see links below for article on weaning

Optimize Patient Condition

> Pain relief

- > Sleep
- Sedation dexmedetomidine (Precedex) alpha2 agonist
 \$ Sedative, anxiolytic, analgesic
 - Minimal respiratory / cardiovascular depression
 Easy arousal
 - * Reduces requirements for other drugs
 - * May facilitate weaning

Optimize Patient Condition

Depression \rightarrow negative attitude

- * Affects 40% of cognizant ventilator patients * Approximately doubles risk of weaning failure
- * Approximately doubles risk of wearing failure

FYI see links below for articles on daily sedation interruption plus depression & weaning

Optimize Patient Condition

- > Maximize communication
- > Comfortable positioning
- > Decrease FiO₂ to 0.4
- > Decrease PEEP to $\leq 5 \text{ cm H}_2\text{O}$

Rapid Ventilator Discontinuance

Criteria * Less than 72 hours on ventilator * No underlying cardiovascular problems

Rapid Ventilator Discontinuance

> Procedure

- * Evaluate, e.g. RSBI, etc.
- * Spontaneous breathing trial (SBT)
- Any ventilation mode without machine-triggered breaths
- <u>30 minutes is as go</u>od as 2 hours
- * Extubate
- * Monitor O2, WOB, stridor

Weaning Strategies

> T-piece trials

- > SIMV
- > PSV
- > CPAP
- > Special modes: Automode, ASV, PAV, SmartCare, NAVA, ATC
- > Noninvasive positive pressure ventilation (NPPV)
- > Weaning protocols

6/16/2017

T-Piece Trials

- > Advantages of T-piece * Rapid weaning
 - * Provides exercise of ventilatory muscles
 - * Zero ventilator-imposed WOB
 - * Assesses ventilatory capability without PEEP
 - * Requires minimal technology

T-Piece Trials

- Disadvantages
 - * More staff time ♦ Lack of alarms → less safe
 - * Imposed WOB from ETT
 - * Greater endocrine stress on patient
 - * Greater risk for infection

FYI see links below for article on weaning modes & stress

Synchronized Intermittent Mandatory Ventilation (SIMV)

- Machine-triggered breaths, with intermittent spontaneous breaths
- > Advantages
 - * Less staff time
 - * Presence of alarms
 - * Can incorporate PSV & PEEP
 - $\boldsymbol{\diamond}$ Psychological support: ventilator remains in place

Synchronized Intermittent Mandatory Ventilation (SIMV)

Disadvantages

- * Slower?
- * Some obsolete ventilators & circuits increase WOB
- * Inappropriate application

Pressure Support Ventilation (PSV)

Advantages

- * Compensates for imposed WOB
- * At least as fast as T-piece
- * Presence of alarms, backup ventilation
- * Can be combined with SIMV, CPAP
- * Flow pattern: physiologic, comfortable
- * Permits titration of workload

Pressure Support Ventilation (PSV)

Disadvantages

- * High mean airway pressures: may be misleading for extubatability
- * Flow cycling problematic with system leaks
- * Inappropriate adjustment of expiratory trigger may impede weaning

Continuous Positive Airway Pressure (CPAP)

> Advantages

- * Prevents atelectasis: emulates epiglottic closure * Presence of alarms, apnea backup ventilation * Compatible with SIMV, PSV
- Same as T-piece with respect to outcomes

Continuous Positive Airway Pressure (CPAP)

- Disadvantages CPAP can produce artifactual improvement
 k Lung mechanics may deteriorate when CPAP is discontinued
 - Pulmonary edema may develop when CPAP is discontinued
- > SBT without CPAP or prepare for mask CPAP?

Special Ventilation Modes

- PS with volume guarantee (most current ventilators)
- Appropriate minimum tidal volume
- Hyperpnea PS is decreaed
 Obstruction PS is increased
- Obstruction PS is increased
- > Auto-modeTM (Maquet) alternating pressure control & pressure support, both with volume guarantee

Special Ventilation Modes

- > Adaptive support ventilation[™]
 ☆ Adjusts rate, pressure
 ☆ Input patient mechanics
- Proportional assist ventilation[™]
 Adjusts pressure
 Input patient effort
- > SmartCare[™]
 ☆ Adjusts pressure support
 ☆ Input comfort rate, TV, ETCO₂

FYI see links below for abstract on automated weaning modes

Special Ventilation Modes

- Tube compensation provides PSV level based on tube size & inspiratory flow * Theoretically, WOB same as if patient is extubated * "Electronic extubation"
- > Evidence for newer weaning modes?
- > Negative pressure ventilation * Cuirass * Iron lung

Noninvasive Positive Pressure Ventilation (NPPV)

- For patients with borderline parameters
- > For patients likely to become ventilator-dependent, e.g. those with COPD

FYI see links below for abstract on weaning with NPPV & COPD

NPPV & Weaning

Rationales

- * Shorten intubation time
 - Decreased sedation
 - Decrease infection
 - Decrease ICU & hospital length-of-stay (LOS)
- * Prevent reintubation
- Prevent tracheotomy

NPPV & Weaning

- Evidence from research
 - * Decreased mortality
 - * Decreased duration of invasive mechanical ventilation
 - * Decreased ventilator-associated pneumonia
 - * Decreased ICU & hospital length of stay (LOS)

See links below for abstract of meta-analysis of NPPV & weaning

NPPV & Weaning

- Disadvantages / complications
 - * Gastric insufflation high pressures
 - * Aspiration
 - * Mucus plugging
 - * Patient intolerance
 - * Caregiver time

NPPV & Weaning

Supportive evidence is moderate, when applied to selected patients who

- * Meet criteria to initiate SBT
- * Meet criteria for extubation
 - Do not have excessive secretions
 - Have an effective cough
 - Have acceptable mental status
 - Are not a difficult intubation

NPPV & Weaning

- Supportive evidence is moderate, when applied to selected patients who
 - * Have no impediments for interface, e.g. can tolerate a mask
 - * Tolerate short term spontaneous breathing for mask adjustments, etc.

NPPV & Post-Extubation Failure

- Evidence does not support efficacy of NPPV in treating postextubation respiratory failure
- > Evidence supports that NPPV may be effective in preventing post-extubation respiratory failure where high-risk patients are identified in advance
- > NPPV is not recommended as a routine intervention for post-extubation situations

Weaning Protocols

- Protocol: clinical algorithm to guide decisions regarding progression of weaning, based on clinical data & observations
- > Apply combinations of techniques

Weaning Protocols

> Advantages

- * Evidence faster extubation, equal safety
- * Exercises therapists' knowledge & skills motivating
 - * Decreased demand for physician time

See links below for weaning algorithm example

See links below for abstract on effectiveness of protocols FYI see links below for AARC adult weaning protocol

Weaning Protocols

Barriers to adoption / implementation

- * Physician resistance to loss of decision-making
- Inadequate knowledge, skills, & professionalism of therapists

Weaning Protocols

- > Daily screening (DS)
- > Spontaneous breathing trial (SBT)
- > Continuation of ventilation or extubation

FYI see links below for article on weaning with evidence-based protocols

Weaning Protocol (Ely, 2000)

- > Daily screening: 2 min test
 - \diamond Patient coughs when suction catheter inserted
 - * Intact gag reflex
 - * Patient not receiving continuous infusions of vasopressors or sedatives
 - A PaO₂/FiO₂ ≥ 200 mm Hg
 - ♦ f/TV (RSBI) ≤ 105
 - ♦ PEEP \leq 5 cm H₂O

Weaning Protocol (Ely, 2000)

> SBT

- * Recommended by RT
- * Ordered by MD
- * 120 minutes flowby without PS
- * Monitored by RN

Weaning Protocol (Ely, 2000)

Termination of SBT

- * f > 30 for 5 min
- SpO₂ < 90% for 30 sec</p>
- 20% change in HR for > 5 min
- * P_{SYS} > 180 or < 90 for 1 min * Anxiety, agitation, or diaphoresis for 5 min

Weaning Protocol (Ely, 2000)

Weaning & Extubation Failure

Causes of Weaning Failure

- > Underlying disease(s) unresolved patient not ready
- > Poor lung mechanics, i.e. compliance, resistance
- > Muscular atrophy immobility & prolonged support
- > Ventilatory muscle fatigue overdoing weaning

FYI see links below for article on weaning failure

Causes of Weaning Failure

Inadequate / inappropriate respiratory care
 PSV expiratory trigger maladjustment
 Mechanical deadspace - HME
 Inadequate humidification

Causes of Weaning Failure

- Inadequate / inappropriate respiratory care
 - PSV expiratory trigger maladjustment
 Mechanical deadspace HME
 - * Inadequate humidification
 - Bronchial hygiene
 - * Bronchodilators
 - * Inadequate monitoring, e.g. for fatigue

Causes of Weaning Failure

- Malnutrition
- > Anemia
- > Psychological dependence
- CNS depressants
 Propofol associated with increased RSBI & decision not to wean
 - * Precedex may facilitate weaning

FYI see links below for article on Precedex & weaning

Causes of Weaning Failure

- > Cardiovascular disease, e.g. CHF
 - * Extubation failure predicted with pre- post SBT comparison of BNP
 - Monitor high-risk patients with transthoracic echocardiogram?

FYI see links below for articles on weaning failure of cardiac origin plus echocardiography & weaning

Causes of Weaning Failure

- Cardiac failure or ischemia
- > Discontinuation of CPAP
- > Respiratory failure load exceeds capacity
- > Excessive secretions & inadequate cough
- > Inability to swallow, inadequate gag aspiration

Causes of Weaning Failure

Upper airway obstruction

- * Edema that may be preventable with steroids
- * Administer four hours before extubation
- * For high-risk patients, as detected by cuff leak test

FYI see links below for article on steroids & extubation failure

6/16/2017

Summary & Review

- > Types of ventilator discontinuance
- > Ventilatory work, capacity

> Weaning readiness

- * General status Oxygenation
- * Ventilatory parameters * Cardiac / hemodynamic status
- * Evaluation of ventilatory workload
- * Adrenal status

Summary & Review

- > Weaning strategies
 - * T-piece
 - * SIMV * PSV
 - * CPAP
 - * Special modes, e.g. VAPS, PAV, NAVA
 - * NPPV
 - * Weaning protocols

Summary & Review

Weaning failure

- * Unresolved precipitating condition
- * Poor lung mechanics
- Inappropriate respiratory care, e.g. deadspace, bronchodilators, hygiene
- * Cardiac disease, e.g. CHF

Summary & Review

Weaning failure

- * Muscular atrophy
- * Malnutrition
- * CNS depressants
- * Anemia
- * Psychological dependence

Summary & Review

Extubation failure

- * Upper airway obstruction
- * Discontinuation of CPAP
- * Cardiac failure edema
- * Excessive secretions
- Inability to swallow, inadequate gag reflex

References

- Walsh TS, Dodds, S, McArdle F. Evaluation of simple criteria to predict successful weaning from mechanical ventilation in intensive care patients Br. J. Anaesth. (2004) 92(6): 793-799.
- > Stawicki SP. Mechanical ventilation: Weaning and extubation. Opus 12 Scientist 2007:1:13-15
- > Schönhofer B, Guo JJ, Suchi S, Köhler D, Lefering R. The use of APACHE II prognostic system in difficult-to-wean patients after long-term mechanical ventilation. Eur J Anaesthesiol. 2004 Jul;21(7):558-65.

References

- Affessa B, Hogans L, Murphy R. Predicting 3-Day and 7Day Outcomes of Weaning From Mechanical Ventilation. Chest. 1999;116:456-461.
- Khamiees, et al. Propofol infusion is associated with a higher rapid shallow breathing index in patients preparing to wean from mechanical ventilation. Respir Care 2001;47:150.
- Chung-Jen Huang, and Horng-Chyuan Lin Association between Adrenal Insufficiency and Ventilator Weaning. Am. J. Respir. Crit. Care Med. 173: 276-280.

References

- Mekontso-Dessap A, et al. B-type natriuretic peptide and weaning from mechanical ventilation. Intensive Care Med. 2006 Oct;32(10):1529-36. Epub 2006 Aug 29.
- McCaffrey J, Farrell C, Whiting P, Dan A, Bagshaw SM, Delaney AP. Corticosteroids to prevent extubation failure: a systematic review and meta-analysis. Intensive Care Med 2009 Jun;35(6):977-86.
- > Teboul JL, Monnet X, Richard C. Weaning failure of cardiac origin: recent advances. Critical Care 2010, 14:211.
- Caille V, Amiel JB, Charron C, Belliard G, VieillardBaron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care. 2010;14(3):R120.

References

- De Santo LS, et al. Noninvasive positive-pressure ventilation for extubation failure after cardiac surgery: Pilot safety evaluation. J Thorac Cardiovasc Surg. 2009 Feb;137(2):342-6.
- Antonelli M, Bello G. Noninvasive mechanical ventilation during the weaning process: facilitative, curative, or preventive? Crit Care. 2008;12(2):136. Epub 2008 Apr 21.
- Trevisan CE, Vieira SR; Research Group in Mechanical Ventilation Weaning. Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial. Crit Care. 2008;12(2):R51. Epub 2008 Apr 17.

References

- Burns KE, Adhikari NK, Keenan SP, Meade M. Use of noninvasive ventilation to wean critically ill adults off invasive ventilation: meta-analysis and systematic review. BMJ 2009; 338.b1574.
- > Arpino PA, Kalafatas K, Thompson BT. Feasibility of dexmedetomidine in facilitating extubation in the intensive care unit. J Clin Pharm Ther. 2008 Feb;33(1):25-30.
- > Jaber S, Jung B, Chanques G, Bonnet F, Marret E. Effects of steroids on reintubation and post-extubation stridor in adults: meta-analysis of randomised controlled trials. Critical Care 2009;13:R49. http://ccforum.com/content/pdf/cc7772.pdf

References

- Epstein SK, Durbin CG Jr. Should a patient be extubated and placed on noninvasive ventilation after failing a spontaneous breathing trial? Respir Care. 2010 Feb;55(2):198-206; discussion 207-8.
- > Eskandar N, Apostolakos MJ. Weaning from mechanical ventilation.Crit Care Clin. 2007 Apr;23(2):263-74, x.
- Principi T, Falzetti G, Elisei D, Donati A, Pelaia P. Behavior of B-type natriuretic peptide during mechanical ventilation and spontaneous breathing after extubation. Minerva Anestesiol. 2009 Apr;75(4):179-83.

References

- Koksal G, Sayilgan C, Sen O, Oz H. The effects of different weaning modes on the endocrine stress response. Critical Care 2003;8:1-4.
- Heunks L, van der Hoeven J. Clinical review: The ABC of weaning failure - a structured approach. Critical Care 2010;14:1-9.
- Yang KL. Inspiratory pressure/maximal inspiratory pressure ratio: a predictive index of weaning outcome. Intensive Care Medicine 1993;19:204-208.

References

- Cohen JD, Shapiro M, Grovoski E, Singer P. Automatic tube compensation assisted respiratory rate to tidal volume ratio improves the prediction of weaning outcome. Chest 2002;122:980-984.
- > Jaber S, Jung B, Matecki S, Petrof B. Ventilator-induced diaphragmatic dysfunction - human studies confirm animal model findings. Critical Care 2011;15.
- Hermans G, DeJonghe B, Bruyniinckx F, Van den Berghe G. Clinical review: Critical illness poly-neuropathy and myopathy. Crit Care 2008;12:238.

References

- Yang KL, Tobin MJ. A Prospective Study of Indexes Predicting the Outcome of Trials of Weaning from Mechanical Ventilation. NEJM 1991;324:1445-1450.
- Callas S, et al. Should natriuretic peptide B-type be used to predict weaning failure in mechanically ventilated patients? Critical Care 2006;10:193.
- > Jubran A, et al. Depressive disorders during weaning from prolonged mechanical ventilation. Intensive Care Med. 2010 May;36(5):828-35.

References

- Kress, JP. Pohlman AS, Connor MF, Hall JB. Daily Interruption of Sedative Infusions in Critically III Patients Undergoing Mechanical Ventilation. NEJM 2000;342:1471-1477.
- > de Wit M, Gennings C, Jenvey W, Epstein S. Randomized trial comparing daily interruption of sedation and nursingimplemented sedation algorithm in medical intensive care unit patients. Critical Care 2008:12(3).
- Kulkarni PS, Downs JB. "Physiologic Peep": Fact or Fiction? Anesthesiology 1984;61.

References

 Ely EW, Bennett PA, Bowton DL, Murphy SM, Florance AM, Haponik EF. Large scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med. 1999 Feb;159(2):439-46.