Respiratory Care Emergency Preparedness For Mass Casualty Events

Arthur Jones, EdD, RRT

This Presentation is Approved for 2 CRCE Credit Hours

Learning Objectives

- Identify infections capable of causing mass casualties & describe their etiologies, manifestations, diagnosis, management & prevention
- Describe strategies & devices to prevent communication of infections to caregivers, patients & the environment
- Identify chemical agents capable of causing mass casualties & describe their likely sources, effects, manifestations & management of chemically contaminated patients
- > Identify the sources of mass casualty radiation events & describe the effects, manifestations & management of radiation injuries
- Identify sources of blast injuries & describe the types of injuries, their manifestations & their management

Learning Objectives

- Describe major types of natural disasters, their associated types of injuries, their manifestations & management
- > Discuss problems associated with healthcare delivery in natural disasters, including those associated with transportation & destruction of physical facilities
- Distinguish among conventional, contingency, crisis modes within a healthcare facility with respect to space, staffing, equipment & supplies
- Describe preparations & response strategies for mass casualty situations with respect to respiratory care equipment & supplies, including oxygen & mechanical ventilators

Mass Casualty Events

Disaster

- Definition: a sudden calamitous event bringing great damage, loss, or destruction (Merriam-Webster)
- > Types
 - Natural disasters, e.g. pandemics, hurricanes, earthquakes, etc.
 - * Man-made
 - Accidental, e.g. industrial explosions
 Terrorism, which intends to injure & to provoke maximum fear

Medicine in Mass Casualty Incidents

- Conventional medicine: do the greatest good for the individual patient
- Disaster medicine: do the greatest good for the greatest number of patients
 - * Triage of victims
 - * Economizing resources
 - * Reliance on available assets
 - Mass evacuation

Possible Mass Casualty Scenarios

- > Pandemic infections (febrile respiratory illnesses)
- > Bioterrorism
- > Chemical injuries
- > Radiation injuries
- > Natural disasters
- > Explosions

Febrile Respiratory Illnesses (FRI) & **Bioterrorism**

Infections Capable of Mass Casualties

- Naturally-occurring
- Influenza, e.g. swine influenza A (H1N1)
- * Severe acute respiratory syndrome (SARS) coronavirus infection * Avian (bird) flu

Infections Capable of Mass Casualties

- **Bioterrorist threats**
- * Pulmonary anthrax * Smallpox
- * Plague
- * Tularemia
- * Viral hemorrhagic fever, e.g. Ebola, Marburg

Influenza

- > Causative agent: viruses
- Communication routes AirborneContact
- > Manifestations
 - * Fever

 - Headache
 Muscle pain
 Malaise
 - * Pneumonia may progress to ARDS

Influenza

- Diagnosis
- * Index of suspicion: clinical signs, multiple cases * Oral swab for viral ID * Clinical signs for mass victims

- > Problem: many people may be exposed before diagnosis is made

* Masks for patients in ER waiting rooms?

Influenza

- Management
 Home care, if possible & safe
 Supportive care, e.g. hydration

 - Oxygen
 Ventilation with low TV
 - * Antiviral agents
 - Amantidines
 - Neuramidinase inhibitors

Influenza

Prevention

- Vaccination
 Antiviral agents
- Amantidine
- Neuramidinase inhibitors
 Airborne isolation of patients

Influenza

- * Antiviral agents
- Amantidine
- Anumente
 Neuramidinase inhibitors
 Airborne isolation of patients
 Personal protection equipment (PPE)
- N95 mask
- Respirator for high-risk procedures
- * Minimize high-risk procedures

Pulmonary Anthrax

- > Pulmonary form likely due to bioterrorism
- > Causative agent: bacillus anthracis * Spore forming * Gram positive rod
- > Communication route Inhalation of spores * No person-to-person transfer

Pulmonary Anthrax

Manifestations

- * 3-5 day incubation period
- * Fever, chills
- * Dyspnea, chest pain
- * Cough
- * Headache
- Nausea & vomiting
- * Hypoxemia
- * Stridor
- * Widened mediastinum on radiograph

Pulmonary Anthrax

Diagnosis

- * Index of suspicion: exposure risk
- OccupationLocation
- Pathognomonic (distinct signature)
 Previously healthy adult
 Overwhelming flu-like signs
 Widened mediastinum

See link below to view chest radiograph of pulmonary anthrax

Pulmonary Anthrax

Diagnosis

* Sputum exams are NOT useful * Standard blood culture - growth in 6-24 H

Pulmonary Anthrax

> Management

* Supportive: ventilation, O₂ * Antibiotics

- DoxycyclineCiproflaxin
- Amoxicillin

Pulmonary Anthrax

Prevention

- * Universal precautions for patient care no special barriers
- * Antibiotics for suspected exposure (60 D)
- * Human live attenuated vaccine
 - Three injections, two weeks apart
 Three injections at 6, 12, 18 months

Smallpox

- Causative agents
 - * Variola minor virus (less virulent) Variola major virus
- > Communication route
- * Inhaled droplets, aerosols * Very contagious

Smallpox

Manifestations

- * Incubation: 10-14 days
- Pre-eruptive phase (lasts 2-4 D)
 - High fever
 - Severe headache
 - Malaise
- * Eruptive phase
 - Centrifugal rash, starting on face
 - Evolves to pustular rash

Smallpox Rash

Smallpox

Manifestations * Toxemia

* Encephalitis

* Mortality (20-30%) - 5th or 6th day after onset of rash

Smallpox

- - Centrifugal distribution
 - Same stage of development at each location Palmar & plantar location (rare with chickenpox)
 Confirmed by laboratory analysis

Smallpox

Management

- * Strict isolation for hospitalized patients * Home care recommended
- * Supportive care
- $\boldsymbol{\ast}$ Antibiotics for secondary bacterial infection

* Antiviral agents

- Currently, none are approved
 Agents for HIV have potential

Smallpox

- Prevention post-exposure control
- * All face-to-face contacts with victim
 - Vaccinated
 - Surveillance for fever, rash
- Vaccination of healthcare workers, police, transit workers, etc.

Smallpox

Prevention - hospital infection control * Rooms - negative pressure with HEPA Vaccination of employees, patients
 Laundry & waste - biohazards

Plague

Causative agent

- * Yersinia pestis
- * Gram negative rod
- Communication route(s)
 - * Bite from infected flea

 - * Droplets, aerosol (bioterrorism) * Contact (person-to-person)

Plague

> Forms

- * Bubonic (flea bites) * Septicemic
 - * Pneumonic (bioterrorist aerosols)

Plague (Pneumonic)

- - * Malaise

 - Halaise
 High fever, chills
 Hemoptysis
 Leukocytemia
 - * Rapidly progressive pneumonia * Hypoxemia
 - * Mortality: 100% if untreated

Plague (Pneumonic)

Diagnosis * Index of suspicion: sudden outbreak of severe pneumonia & sepsis $\boldsymbol{\ast}$ Gram stain: sputum or blood, gram negative bipolar rod

Plague (Pneumonic)

- Streptomycin drug of choice
 Gentamycin
 Doxycycline

Plague (Pneumonic)

Prevention

- $\ensuremath{\diamond}$ Post-exposure antibiotics: seven days post-exposure
 - Doxycycline

 - Tetracycline
 TMP-SMT (Bactrim[™])

Plague (Pneumonic)

Respiratory isolation

- * Patient for first 48 hours * Close contacts who refuse chemoprophylaxis
- > Vaccine no longer available
- > Decontamination usual measures

Tularemia

- Causative agent
 Francisella tularensis
 Gram negative bacterium
 Zoonotic organism (rabbit fever)
- > Communication route(s)
 - * Contact with infected animals
 - Vectors, e.g. ticks, flies
 Inhalation (bioterrorism)
 - * No person-to-person transfer

Tularemia

- Manifestations (ulceroglandular form)

 - * Cutaneous ulcer
 * Cutaneous ulcer
 * Lymph gland enlargement
 * Fever, chills
 * Headache, malaise
 * May progress to pneumonia

See link below to view tularemia cutaneous ulcer (rabbit bite)

Tularemia

- Manifestations (bioterrorist forms) & Incubation: 2-10 days * Typhoidal form

 - Fever
 Cough
 Chest pain
 Shortness of breath
 Mortality: 35%

Tularemia

- Manifestations (bioterrorist forms)
- Pneumonic form: severe atypical pneumonia
 ARDS → respiratory failure
 Mortality unknown no opportunity for study

Tularemia

- Diagnosis

 - May be missed on sputum exam
 Histology: intracellular organisms
 Serology
- > Management
 - Support: ventilation, oxygen
 Antibiotics

 - Streptomycin drug of choice
 Gentamycin, amikacin
 - Chloramphenicol (meningitis)

Tularemia

- Prevention
 - * Antibiotics for suspected exposure
 - * Universal precautions for victims

Viral Hemorrhagic Fevers

Causative agents

- Marburg virus (Angola, 2005)
 Ebola virus (4 species)
- > Communication routes
- * Contact with non-human primates * Droplet particles
 - Infected persons
 - Bioterrorism

FYI see link below to view trailer of "Outbreak" movie

Viral Hemorrhagic Fevers

Manifestations

- * Incubation period: 4-5 days * Fever, chills, headache * Nausea, vomiting, diarrhea, abdominal pain

FYI see link below to download article on viral hemorrhagic fevers

Viral Hemorrhagic Fevers

- Manifestations (cont'd) * Prostration, stupor, shock
- Bleeding: conjunctival, soft tissue, skin (rash), gastrointestinal, alveolar
- * Mortality
- Marburg: about 25%
 Ebola: 50-90% (depends on strain)

Viral Hemorrhagic Fevers

- Management
 Strict isolation

 - * Supportive Shock
 - Ventilatory failure (ARDS is likely)

Viral Hemorrhagic Fevers

Prevention

- Strict isolation of victims, exposures
 Personal protective equipment, including airborne precautions

High-Risk Procedures

- > Endotracheal intubation
- > Noninvasive positive pressure ventilation
- > Bag-mask ventilation
- > Bronchoscopy

High-Risk Procedures

- > Exhaled aerosols all nebulizers
- > Nonrebreathing mask without expiratory filter

Flow of Patient Care

- Patient presents with FRI
 Placed in droplet or airborne isolation
 Caregivers use personal protective equipment (PPE)
 Diagnosis initiated

See link below for video showing exhaled aerosols

FYI see flowchart in: Sandrock CE. Severe febrile respiratory illnesses as a cause of mass critical care. Respir. Care 2008 Jan;53(1):40-53

Flow of Patient Care

If the etiology is NOT an emergency critical care agent
 Isolation removed or maintained, as indicated
 PPE for high-risk procedures
 Specific treatment undertaken

Flow of Patient Care

- > If the etiology is an emergency critical care agent
- Public health agencies notified
 Isolation maintained, as indicated
- * PPE for high-risk procedures

Flow of Patient Care

- Presence of cases associated with ARDS
 - * Low TV ventilation
 - * Surge capacity plan activated with ventilator stockpile * Aggressive PPE for caregivers * Vaccination or antiviral therapy for caregivers

Personal Protective Equipment

- Level A: self-contained breathing apparatus & encapsulating chemical-protective (TECP) suit
- > Level B: self-contained breathing apparatus or supplied-air respirator & nonencapsulated chemical-resistant garments, gloves, & boots

Personal Protection

- Level C: air-purifying respirator & non-encapsulated chemical-resistant clothing, gloves, & boots
- > Level D: universal precautions

See link below for personal protective equipment requirements (you will need to scroll down the page)

Environmental Controls

- Mass infection with airborne agent will overwhelm conventional isolation capabilities

- > Options
 > Cohorting patients
 > Industrial exhaust fans
 > High-capacity portable HEPA units
- > Masks for infected patients

Summary & Review

- > Types of disasters
- > Medicine in mass casualty events
- Febrile respiratory illnesses rebrite respiratory illnesses * Pandemic influenza * Pulmonary anthrax * Smallpox * Plague * Tularemia * Viral hemorrhagic fever

Summary & Review

- > High risk procedures
- > Optimal flow of patient care
- > Personal protective equipment
- > Environmental controls

Chemical Injuries

Categories of Chemical Agents

- Lung damaging agents
- > Blood agents
- > Blistering agents
- > Nerve agents

Categories of Chemical Agents

> Initial management for all agents * Rescuer personal protection * Removal of victim from source * Life support interventions * Decontamination

Lung Damaging Agents

- > Types of events
- * Chemical warfare
- * Terrorism
- * Industrial accidents most likely scenario

FYI see links below for information on Montana chlorine spill & video on SC chlorine spill (3 min)

Lung Damaging Agents

Agents

- * Chlorine: manufacture of paper, textiles
- * Ammonia: manufacture of fertilizer
- Methyl isocyanate (MIC): manufacture of pesticides, e.g. Sevin (Bhopal)
- * Phosgene
 - WW I chemical warfare
 - Manufacturing: pesticides, dyes, pharmaceuticals

Lung Damaging Agents

- Effects
 - * Copious secretions
 - * Cough * Stridor

 - * Laryngeal obstruction
 - * Bronchospasm
 - * Noncardiogenic pulmonary edema (ARDS) * Severe ocular burning (methyl isocyanate)

Lung Damaging Agents

> Treatment

- Intubation, ventilation for severe exposure
 Humidified air or O₂ (mild exposure)
- * Bronchodilators
- * Inhaled NaHCO₃ for chlorine
- * Removal of contact lenses

Blood Agents

Agents

- * Hydrogen cyanide
- * Cyanogen chloride
- > Sources
 - * Manufacturing
 - * Mining
 - * Metalworking
 - * Byproduct of combustion fires
 - * Chemical warfare

Blood Agents

- Pathophysiology: block cytochrome, inhibiting cellular O₂ uptake (histotoxic hypoxia)
- > Effects
 - * Bitter almond smell reported by victim
 - * Bright red venous blood
 - * Tachypnea
 - * Metabolic acidemia

Blood Agents

> Treatment

- * Antidotes to displace & excrete cyanide
 - Amyl nitrite
 - Sodium nitrite
 Sodium thiosulfate
- Oxygen
- Hyperventilation
 NaHCO₃

Blister Agents

Agents

- * Mustard
- * Lewisite * Phosgene oxime

Sources

* Chemical warfare * Hot dog overdose (mustard)

Up next: video on blistering agents

Blister Agents

- Effects (mustard has delayed effects)
 - * Skin blisters

 - Burning eyes
 Injury to all airways • Upper airway obstruction
 - Peripheral airway obstruction

 - Pulmonary edema
 Gastrointestinal damage: vomiting, diarrhea

See link below for picture of blistering agent effects

Blister Agents

> Treatment

- * There are no antidotes
- * Supportive
 - Oxygen, intubation, ventilation
 - Bronchodilators
 - Medications for vomiting, diarrhea

Nerve Agents

Agents: organophosphates

- * GA (Tabun): genocide
- * GB (Sarin): genocide (Japan, 1994)
- * GD (Soman): genocide
- ↔ GF ↔ VX

Nerve Agents

> Agents: organophosphates

* Pesticides

• Sevin

- Diazinon
- Malathione

Nerve Agents

- Action: inhibit cholinesterase, which causes accumulation of acetylcholine at nerve synapses
- > Skeletal muscle (nicotinic) effects
 - * Twitching * Weakness
 - * Paralysis, including diaphragm
- > Muscarinic effects cholinergic crisis

Nerve Agents

- > Cholinergic crisis (see neuro lesson)
 - * Salivation
 - * Lacrimation
 - * Urination
 - * Diaphoresis
 - * GI distress (diarrhea, vomiting)
 - * Emesis
 - * Bronchospasm

See link below for video on nerve agents (1.5 min)

Nerve Agents

Treatment

- * Rescuer & caregiver personal protection caregivers in Japan sickened from Sarin
- * Decontamination of victims
 - Water
- Calcium hypochlorite
 Charcoal & absorptive resins (military)

Nerve Agents

- > Treatment: antidotes
 - Atropine: blocks nicotinic & muscarinic effects of acetylcholine (massive dosages)
 - * Pralidoxime (2-PAM-Cl): removes organophosphoryl molecule

Nerve Agents

- Supportive treatment
- * Endotracheal intubation
- * Ventilation
- * Bronchodilators: albuterol & ipratropium
- * Tracheal suctioning
- * Benzodiazipine for seizures

Chemical Agents

> Additional causes of surge of patients to institution will include frightened people who think they were exposed - it will be hard to sort them out

Summary & Review

- > Chemical injuries are likely due to industrial accidents
- > Lung damaging agents, e.g. chlorine
- > Blood agents, e.g. cyanide
- > Blistering agents, e.g. mustard
- > Nerve agents, e.g. Sarin

Radiation Injuries

Causes (mass casualties)
 Accidents, e.g. nuclear reactor meltdown
 Three Mile Island (Pa.)?
 Chernobyl (Ukraine, 1986)

* Nuclear warfare

FYI see links below to view nuclear explosion (1.5 min) & video about Chernobyl (3 min)

Radiation Injuries

> Causes

- * Terrorism
 - Radiation dispersion device, AKA "dirty bomb"
 Non-explosive radiation dispersal, e.g. radioactive material left in public place

Injuries With Nuclear Explosion

- > Blast injuries: multiple types of trauma
- Thermal injuries
 Flash burns
 Flame burns
- > Ionizing radiation injury

Ionizing Radiation Types

- > Alpha particles: stopped by sheet of paper
- > Beta particles: stopped by clothing
- > Gamma rays: stopped by inches of concrete or inch of lead
- > X-rays: concrete or inch of lead
- > Neutrons: concrete or inch of lead
- > Cell phones: nothing stops their annoying effects

Ionizing Radiation Types

- > External radiation: exposure to source
- > Contamination
 - External (skin, hair): exposure to radioactive debris (fallout), which can be transmitted to rescuers & caregivers

Ionizing Radiation Exposure

- > External radiation: exposure to source
- > Contamination
 - * External (skin, hair): exposure to radioactive debris (fallout), which can be transmitted to rescuers & caregivers
 - * Internal: entry of fallout via
 - Inhalation
 - Ingestion
 - Open wounds → decreased survival

Radiation Injuries

- ≻ Severe radiation → cell death
- ≻ Less severe radiation → cell injury
 - ♦ Repaired → scarring
 - Altered genetic information
 Carcinoma
 - Teratogenesis (birth defects)

FYI see link below to view Chernobyl birth defect

Radiation Injuries

Severity of injury depends on dose received, which is function of

* Exposure time

Radiation dosage

Radiation Sickness

High dose manifestations

- * Nausea
- * Vomiting
- Diarrhea
- * Fatigue
- Mental status changesFever
- * Respiratory distress

Radiation Sickness

- > Delayed manifestations
 - Decreased WBC, platelet production
 Severe gastrointestinal damage

 - Severe CNS damage
 Teratogenesis birth defects
 - * Carcinoma

Treatment

- > Wound closure
- > Medical treatment may not be indicated for first few hours
- > Supportive treatment
- Potassium iodide (SSKI): protects only the thyroid from radioactive iodine

Summary & Review


- Causes of mass casualty radiation injuries, e.g. meltdowns, terrorism
- > Nuclear explosion injury types, e.g. radiation injury
- > Radiation exposures: external, contamination
- > Manifestations of radiation sickness
- > Radiation sickness treatment

Explosions Blast Injuries

Sources of Blast Injuries

- > Industrial accidents
- > Natural disasters, e.g. earthquakes & natural gas lines
- > Warfare
- > Terrorism: blast injuries are the most common result * Mumbai, India, 2006

 - * London, 2005 * New York City, 2001
 - * Oklahoma City, 1995

the state of

Categories of Blast Injuries

- > Primary blast injuries
- > Secondary blast injuries
- Fertiary blast injuries
- > Quaternary blast injuries

Primary Blast Injuries

- Caused by high-energy explosions that produce a pressure wave
- Pressure wave can cause severe damage without overt signs of trauma
- > Pressure wave primarily affects gasfilled structures * Abdominal hemorrhage, perforation
 - * Cerebral concussion
 - * Blast lung: bilateral lung contusion
 - * Tympanic membrane: red flag

FYI see link below for article on blast injuries

Secondary Blast Injuries

- Caused by flying debris
- > Penetrating & blunt force injuries to any body parts, e.g. open pneumothorax

Tertiary Blast Injuries

- > Caused by victims being propelled by wind from explosion
- > Most common injuries
 - * Fractures & traumatic amputations * Brain injury: open & closed

See links below to view blast injuries

Quarternary Blast Injuries

- > Injuries not caused by the explosion
 - * Burns
 - * Crush injuries from structure collapse * Exacerbations of asthma & COPD from inhalation of dust

 - Angina, MI

FYI see link below to download 1 hour course - scroll down to Bombings: **Injury Patterns & Care Class Material**

Respiratory Care

Supplemental O₂

- > Airway management difficult airways are likely
- > Ventilation for
 - * Pulmonary contusions
 - * Bronchopulmonary fistulae
 - * Massive trauma: acute lung injury
 - Srain & spinal cord injuries

Summary & Review

- Sources of blast injuries: accidents, natural disasters, terrorism
- > Categories of injuries
 - * Primary
 - * Secondary
 - * Tertiary
 - * Quaternary
- Management
 Airway management
 Ventilation

Natural Disasters

Types of Natural Disasters

- Floods: most common
- > Hurricanes: wind, flooding, fires
- > Tornadoes: wind
- > Wild fires
- > Avalanches, landslides, mudslides

FYI see link below for information on disaster death tolls

Types of Natural Disasters

- > Heat waves
- > Blizzards, extreme cold
- > Earthquakes: collapses, explosions
- > Tsunamis
- > Volcanic eruptions

FYI see links below to view a natural disaster risk map & video of earthquakes

Injuries From Natural Disasters

- Near drowning: flooding
- > Suffocation: structural collapse
- > Crush injuries: structural collapse
- > Blunt trauma: structural collapse, winds
- > Penetrating trauma: structural collapse, winds
- > Thermal injuries: wildfires, blizzards
- > Inhalation injuries: fires, collapses
- > Psychological trauma: all disasters

Additional Problems

> Services lost, impaired &/or overwhelmed

- * Water
- * Electricity
- * Sewer
- * Communications
- * Fire, EMS, police agencies

Additional Problems

- Transportation problems
 Impassable roads
 Loss of vehicles
 Death, injury, or illness of transport personnel
- > Destruction of healthcare facilities
- > Impaired sanitation: increased risk for infectious diseases
- > Criminal activities, e.g. looting

Mass Casualty Critical Care Demands

Surge Capacity

- Definition: Health Care system's ability to expand quickly to meet an increased demand for medical care in the event of a large scale public health emergency (AHRQ definition)
- The same event can produce different stresses on different institutions, e.g. influx of trauma patients to non-trauma ER

Surge Considerations

- Critical care capabilities are essential to limiting mortality in a mass casualty event
- > Facilities may not be able to divert or evacuate casualties
- > Assistance from other agencies will take time

Components of Surge Capacity

- > System
- > Space
- > Staff
- > Stuff

System

- Command: incident command system (ICS) for overall management
- Control: control of facility infrastructure, e.g. building access
- > Communication: internal & external communications
- Coordination: coordination of facility response with other facilities & public agencies

Space Considerations

- > Critical care beds are premium
- Facility must identify & plan for using alternate spaces to accommodate surge patients
- > Facility should train personnel for alternate space utilization

Facility Space Categories

- > Conventional space: available for daily operations
- Contingency space: areas in facility that can be used temporarily for patient services
- Crisis space: do not meet usual standards of care, but sufficient for disaster situation

Space Response

- Conventional space * Economize on critical care beds, moving patients to step-down units, general care floors * Cancel elective procedures * Discharge patients, as possible * Add beds to patient rooms eliminate private rooms

Space Response

- Contingency spaces that can be used for patient care * Recovery rooms * Surgical waiting areas * Procedural areas, e.g. dialysis units

Space Response

- Crisis spaces that can be equipped for patient care
 Hallways
 Lobbies
 Adjacent medical offices

 - * Temporary structures, e.g. tents

Staff Considerations

- Personnel may be unable to travel to facility, because of roads, etc.
- Personnel may be unwilling to report, due to Illness or injury from event (victims)

 Fear of contracting illness
 - * Concerns over care for family, pets
- Critical care personnel need to be enabled to focus on their primary patient care responsibilities

Staff Considerations

- Facility must have plan to mobilize its personnel in response to emergency
- > Facility must have plan to use ad hoc staff effectively
- Facility must have mechanism for emergency credentials & privileges for ad hoc staff

Staffing Categories

- Conventional: staff within the facility who are credentialed & privileged at facility
- Contingency: staff within the facility who can assume additional duties or staff imported from other facilities
- > Crisis: non-clinical staff assigned to basic patient care

Staffing Response

Conventional

* Departmental managers assume patient care * Surgeons assess, treat ER trauma patients

Staffing Response

Contingency

- * Staff within the facility assume additional duties, under supervision
- * Staff imported from other facilities
- * Provider extenders, e.g. Project XTREME to cross train
- Physicians, physician assistants
- Nurses
- Physical therapists

FYI see link below for information on Project XTREME

Staffing Response

- - Lay personnel assisting with patient hygiene & monitoring
 Housekeeping providing bag-valve ventilation

Stuff Considerations

- > Hospitals & suppliers avoid surplus of materials
- > Medications & supplies stockpiled by CDC for delivery
- > Transportation of supplies to facility may be crippled

FYI see link below for information the national stockpile

Stuff Considerations

- Mass casualties will overwhelm critical care equipment & supplies on-hand * Mechanical ventilators

 - * Mechanical ventilation supplies Oxygen

 - Oxygen administration supplies
 Monitors, e.g. pulse oximeters

Options for Short-Supply Situation

- > Prepare (stockpile) before the event
- > Substitute equivalent items
- > Adapt, using items that are sufficient, though not ideal
- > Conserve resources, e.g. oxygen
- > Reuse items after disinfection
- > Reallocate items or therapy to patient with greater benefit

Stuff

- Conventional supply: maximum supplies for usual facility operations
 - $\ensuremath{\bigstar}$ Critical care equipment & supplies should NEVER be in short-supply
 - ★ Example: minimal inventory of ventilator circuits → trouble!
 - The inventory should ALWAYS include an excess of personal protective equipment

Stuff

- Contingency supply: conventional inventory exhausted; response examples
 - $\boldsymbol{\ast}$ Adapt: pulse oximeters to monitor heart rate
 - * Substitute: transport or anesthesia ventilators for ICU ventilators
 - * Reuse: manual resuscitators

Stuff

- > Crisis supply: overwhelming number of critical care patients * Bag-valve ventilation
 - * Accept lower limits, e.g. SpO₂ to conserve oxygen
 - \diamond Reallocate therapeutics \rightarrow ethical decisions

Respiratory Care Stuff

Oxygen

- > Potential sources
- * Bulk liquid oxygen system
- * Cylinders
- Oxygen concentrators
 Mobile liquid oxygen systems

Bulk Liquid Oxygen System

> Failure possibilities

- * Structural damage: container, pipe system
- * Impaired delivery of oxygen, e.g. roads, lack of personnel or vehicles
- * Damage to gas separation plants
- * Overwhelming demand for oxygen

Oxygen Cylinders

- Mass casualty applications
 - * Small cylinders
 - Transports
 - Temporary therapy
 - Built-in regulator most desirable
 - * Large cylinders
 - Individual long-term therapy
 - Back-pressure feed units
 - Manifolds can create multiple-patient capabilities

See link below to view emergency oxygen manifold

Oxygen Cylinders

- Limitations
 - Facility storage capacity
 Transport difficulties
 - * Transport difficulties
- > Infectious events demand disinfection of cylinders before transport

Oxygen Concentrators

- Mass casualty applications: large oxygen generators
 Refill cylinders
 - * Back pressure feed units for capability of 93% O₂ at 50 PSIG

See link below to view Medical Oxygen Generator Skid™

Oxygen Concentrators

- Mass casualty applications: large oxygen generators
 Refill cylinders
 - Back pressure feed units for capability of 93% O₂ at 50 PSIG
- > Limitations
 - * Size: storage space
 - * Require electricity
 - Expense

See link below for information on Oxair oxygen generator

Mobile Liquid Oxygen Systems

- > Primarily used to refill aircraft oxygen systems
- > Requires less space than cylinders
- Mass casualty application: refill mobile multiple-patient system

Oxygen Conservation Methods

- > Repair all leaking outlets this should be an ongoing effort
- > Turn flowmeters off when not in use
- > Use minimum FiO₂ & liter flows necessary
- > Use reservoir cannulae
- > Use gas-sparing ventilators
- > Use HMEs for humidification
- > Target lower SpO₂

Endotracheal Intubation

See link below to view multiple-patient LOX systems

- Caregivers are at risk for contagions & some chemical injuries
- > Emergency intubations should be avoided
- > Preparation for intubation is essential
- > Patient must be sedated
- > Performed in negative-pressure room
- > All caregivers wear PPE

Ventilator Sources

> Conventional

- On-hand intensive care ventilatorsRental ventilators availability?
- Contingency situation
 Transport ventilators
 - * Borrowed availability?
 - * NPPV devices NOT for mass casualties
 - * Anesthesia ventilators
 - Negative pressure ventilators no intubation required

Ventilator Sources

> Crisis situation

- * Pressure-cycled ventilators?
- * Single patient use ventilators?
- * Bag-valve ventilators
- * National stockpile ventilator kits
 - Impact Eagle Uni-Vent
 - Puritan-Bennett LP-10 (discontinued)
 - Carefusion LTV 1200

Mass Casualty Ventilator Requirements

- > Approved for adult & pediatric patients
- > Capability to operate without 50 PSIG source
- > Battery life ≥ 4 hours
- > Constant volume delivery
- > CMV mode included
- > Adjustable PEEP capability (5-15 cm H₂O)

Mass Casualty **Ventilator Requirements**

- > Separate controls for rate & TV
- > Monitors for airway pressure & TV
- > Alarms
 - * Circuit disconnect
 - * High & low airway pressure * Loss of electrical power
 - * Loss of high pressure gas source
- > Ease of use
 - FYI see link below for article on mass casualty ventilation

Ventilators

- > Intensive care ventilators
- > Noninvasive positive pressure ventilators
- > Transport ventilators
- > Anesthesia ventilators
- > Negative pressure cuirass ventilators
- > Pressure-cycled, single use
- > Bag-valve ventilators
- > National stockpile ventilator kits

Ventilators

- > Intensive care ventilators
 - A May be too expensive to stock for surge requirements
 A Requires respiratory therapist to manage
 Reserve for sickest patients, e.g. ARDS
 Cradle-to-grave devices also may be applied to neonates
 & small infants

Ventilators

Ventilators

- Transport ventilators
 Some have ICU ventilator capabilities
- Less expensive than ICU ventilators
 Some are oxygen & electrical power economical
 Likely choice as ventilator to stock for surge

Ventilators

- Managed by
 Anesthesia personnel - availability of time?
 Respiratory therapists - require orientation to devices

Ventilators

- Negative pressure cuirass ventilators * No intubation required less risk of infection for caregivers
- Some casualties require airways
 United Hayek MRTX[™] has been tested as an option for application to patients by physicians at the scene
 Not available in U.S.A.

FYI see link below for information Hayek MRTX

Ventilators

* Ventilation can be provided by ancillary staff, volunteers

* Effective ventilation without electrical power

Ventilators

Ventilators

Pressure-cycled, single-use ventilators
 Non-constant volume delivery

* No alarms * Not for unattended patients * Require 50 PSIG source

* Use large amounts of gas

- - Airway management materials contained in 12 hour push packages
 Takes hours to days for delivery

FYI see link below for article on healthcare & Katrina

Organizational Preparation

- > Maintain stocks of devices & supplies
- > Plan for mass casualty events

Bag-valve ventilators * Short-term support

- > Rehearse mass casualty scenarios
- > Prepare & train ALL personnel for mass casualty events

Individual Preparation

- > Gain & maintain familiarity with hospital mass casualty plan
- > Familiarize with likely surge equipment & supplies * SNS ventilators * Others acquired for mass casualty events
- > Participate in planning, rehearsals & debriefings

Individual Preparation

- Personal preparations * Plan for disposition of family, pets, etc. * Assemble & store personal kit Clothes, underwear Toiletries Noticeting

 - Medications
 Eyeglasses, contact lenses

Summary & Review

- > Conventional, contingency, crisis modes

Summary & Review

- Respiratory care stuff * Oxygen resources * Ventilator resources
- > Organizational preparations
- > Individual preparation

References

- Briggs SM, Brinsfield KH. Advanced disaster medical response: A manual for poviders 2003. Harvard Medical International; Boston.
- Christian MD, Devereaux AV, Dichter JR, Geiling JA, Rubinson L. Definitive care for the critically ill during a disaster: current capabilities & limitations: from a Task Force for Mass Critical Care summit meeting, January 26-27, 2007, Chicago, IL. Chest. 2008 May;133(5 Suppl):8S-17S.
- Ben-Abraham R, Gur I, Bar-Yishay E, Lin G, Blumenfeld A, Kalmovich B, Weinbroum AA. Application of a cuirass & institution of biphasic extra-thoracic ventilation by gear-protected physicians. J Crit Care. 2004 Mar;19(1):36-41.

References

- Talmor D. Airway management during a mass casualty event. Respir Care. 2008 Feb;53(2):226-31.
- Daugherty EL. Health care worker protection in mass casualty respiratory failure: infection control, decontamination, & personal protective equipment. Respir Care. 2008 Feb;53(2):201-12.
- O'Laughlin DT, Hick JL. Ethical issues in resource triage Respir Care. 2008 Feb;53(2):190-7.
- Hanley ME, Bogdan GM. Mechanical ventilation in mass casualty scenarios. Augmenting staff: project XTREME.Respir Care. 2008 Feb;53(2):176-88; discussion 189.
- Little CM, Merritt M, Wentworth A. An improvised oxygen supply system for pandemic & disaster use. Acad Emerg Med. 2009 Jun;16(6):558-63.

References

- Wilgis J. Strategies for providing mechanical ventilation in a mass casualty incident: distribution versus stockpiling. Respir Care. 2008;53(1):96-100.
- Malatino EM. Strategic national stockpile: overview & ventilator assets. Respir Care. 2008 Jan;53(1):915.
- Branson RD, Johannigman JA, Daugherty EL, Rubinson L. Surge capacity mechanical ventilation. Respir Care. 2008 Jan;53(1):78-88.
- Hotchkin DL, Rubinson L. Modified critical care & treatment space considerations for mass casualty critical illness & injury.Respir Care. 2008 Jan;53(1):67-74.
- Muskat PC. Mass casualty chemical exposure & implications for respiratory failure. Respir Care. 2008 Jan;53(1):58-63

References

- Sandrock CE. Severe febrile respiratory illnesses as a cause of mass critical care. Respir Care. 2008 Jan;53(1):40-53
- > Branson RD, Rubinson L. Mechanical ventilation in mass casualty scenarios. Respir Care. 2008 Jan;53(1):38-9.
- Hick JL, Barbera JA, Kelen GD. Refining Surge Capacity: Conventional, Contingency, & Crisis Capacity. Disaster Medicine & Public Health Awareness; 2009 0: DMP.0b013e31819f1ae2. http://www.dmphp.org/cgi/content/full/3/Supplement_1 /S59
- Ritz RH, Previtera JE. Oxygen supplies during a mass casualty situation. Respir Care 2008;53:215-224.
- > Loeb M, et al, Surgical mask vs. N95 respirator for preventing influenza among healthcare workers. JAMA 2009; 302:1865-1871.

References

- Rubinson L, et al. Definitive care for the critically ill during a disaster: medical resources for surge capacity: from a Task Force for Mass Critical Care summit meeting, January 26-27, 2007, Chicago, 1L. Chest. 2008 May;133(5 Suppl):325-50S.
- Hui DS, Hall SD, Chan MT, Chow BK, Ng SS, Gin T, Sung JJ. Exhaled air dispersion during oxygen delivery via a simple oxygen mask. Chest. 2007 Aug;132(2):540-6. Epub 2007 Jun 15.
- Hui DS, Chow BK, Ng SS, Chu LC, Hall SD, Gin T, Sung JJ, Chan MT. Exhaled air dispersion distances during noninvasive ventilation via different Respironics face masks. Chest. 2009 Oct;136(4):9981005. Epub 2009 May 1.