Ventilation Modes & Controls

Arthur Jones, EdD, RRT

This Presentation is Approved for 1 CRCE Credit Hour

Learning Objectives

- Compare ventilation modes available on state-of-the-art mechanical ventilators with respect to their attributes, advantages, & disadvantages
- > Identify modes available on specific brands of ventilators
- > Explain the purposes, physiological effects, & adjustment of tube compensation, expiratory timer, & rise time
- > Describe the evidence base for current modes of ventilation

Ventilation Modes

Volume Control

Advantage * Constant TV, despite changes in patients' lung mechanics

Volume Control

> Disadvantages

♦ Preset, limited flow - may not meet patients' needs
 ♦ Possibility of volutrauma

Pressure Control

> Advantages

- * Variable flow to meet patients' demands
- * Increased mean airway pressure improved oxygenation
- * Limits excessive airway pressure
- * Improves gas distribution
- * Decreases WOB

Pressure Control

> Disadvantages

- * TV varies with mechanics
- * TV may become excessive, causing overdistension, volutrauma
- * Inconsistent changes in TV with PEEP, PIP

Pressure Support

> Attributes

- * Pressure-limited
- * Flow-cycled inspiration ended by reaching a percentage of the peak inspiratory flow
- * Variable flow to meet patients' demands
- * Decreases WOB

Pressure Support

- > Original purpose: overcome WOB imposed by ETT
- > Problem: correct level of PS is hard to identify, because imposed WOB varies with flow rates, impedance
- Estimated PS level = PIP Ppt

Dual Control Modes

Combine volume & pressure control to achieve advantages of each type

- * Guaranteed minimum tidal volume
- * Minimized plateau pressure

Dual Control Modes

- Breaths are pressure controlled with a guaranteed minimum volume, based on feedback on patient ventilation to ventilator logic
- > Types * Within breath * Breath-to-breath

Within Breath Dual Control

> Availability

- * Volume-assured pressure support VAPS (Bird 8400sti, TBird)
- * Pressure augmentation PA (Bear 1000)

FYI see links below for picture of TBird[™] ventilator

Within Breath Dual Control

- Pressure support with volume guarantee for every breath
- Breath initiated, ventilator compares output with target, changing to volume control, if needed

Dual Control Breath-to-Breath

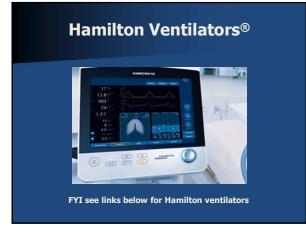
- > Volume guarantee over several breaths
- > Ventilator delivers test breaths, then adjusts pressure & flow to deliver a minimum tidal volume

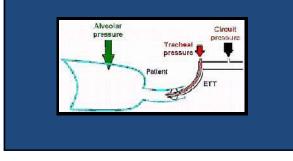
Dual Control Breath-to-Breath

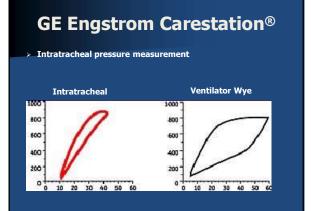
- Pressure control with volume guarantee company names
 - * Pressure-Regulated Volume Control PRVC (Maquet) * Volume Targeted Pressure Control - VTPC (Newport
 - e360)
 - * Volume Control Plus (VC+) (PB 840)
 - * Autoflow (Drager Evita)
 - * P-CMV (Hamilton Galileo, Raphael, G-5)
 - Pressure control volume guarantee (PCV-VG) GE Engstrom

Dual Control Breath-to-Breath

> Volume guaranteed PSV


- * Maquet Servoi, Servo 300
- Newport e360
- * Puritan Bennett 840
- * Drager Evita ventilators
- * Hamilton Galileo, Raphael, G-5
- * GE Engstrom

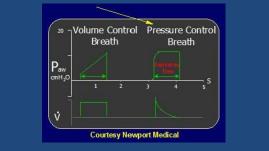

GE Engstrom Carestation®



GE Engstrom Carestation® • FRC measurement during ventilation - volume-oriented pEEP adjustment • Intratracheal pressure measurement Image: Comparison of the pressure measurement

GE Engstrom Carestation®

Intratracheal pressure measurement



Pressure Control with Volume Guarantee

Breath attributes

- Patient or time-triggered
- * Pressure limited
- * Flow variable meets patient demands
- * Time-cycled proper adjustment of inspiratory time is critical

Pressure Control with Volume Guarantee Wave form

Pressure Control with Volume Guarantee

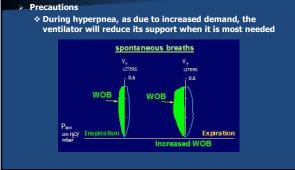
Precautions

* Not for all patients

 Erratic patient effort prevents ventilator logic from making appropriate adjustments & tidal volume will not be delivered

Pressure Support with Volume Guarantee

> Pressure support breaths with minimum tidal volume


- > Breath attributes
 - * Patient-triggered
 - * Pressure-limited
 - * Flow-cycled
 - * Flow variable
 - * Volume guarantee (minimum)

Pressure Support with Volume Guarantee

Precautions

- $\ensuremath{\div}$ Pressure level increases to maintain TV for a patient with obstruction
- * Auto-PEEP may result from patient actively attempting to exhale

Pressure Support with Volume Guarantee

Pressure Support with Volume Guarantee

> Precautions

- * Inappropriate expiratory trigger prolongs inspiration & may cause
 - Auto-PEEP
 - Patient discomfort
 - Inability to trigger breaths

Patient-Tailored Modes

- > Proportional assist ventilation (PAV[™]) Puritan Bennett 840
- > Adaptive support ventilation (ASV[™]) Hamilton ventilators

Patient-Tailored Modes

Commonalties

- * IBW entered
- $\boldsymbol{\ast}$ Respond to changes in mechanics
- * % support adjusted
- $\boldsymbol{\ast}$ TV determined by ventilator

FYI see links below for article on dead space & body weight

PAV

- > Weaning mode
- > Support level is based on patient demand
- > Ventilator adapts to changes in resistance & compliance
- > Weaning proceeds by decreasing % support by ventilator
- > Graphics display of WOB

Volume-Pressure Loop

> Spontaneous WOB

Adaptive Support Ventilation

Not just a weaning mode

- ASV algorithm determines optimal breathing pattern (TV, f) for patient, based on
 - $\boldsymbol{\ast}$ Estimated anatomic deadspace
 - * Expiratory time constant (R*C)

Adaptive Support Ventilation

- Ventilator maintains minimum minute ventilation
- Absence of patient effort pressure control with volume guarantee
- > Presence of patient effort
 - Automatic reduction of mandatory breaths
 Automatic reduction of pressure support

Adaptive Support Ventilation

> Weaning proceeds by decreasing % minute volume support by ventilator

FYI see links below for article on ASV

Neurally Adjusted Ventilatory Assist (NAVA™)

- ➤ Modality developed by MaquetTM
- A gastric catheter detects & transmits diaphragmatic electrical activity to the ventilator
- Ventilator uses the strength of the signal to adjust the level of support for the patient

FYI see links below for video about NAVA

Tube Compensation

- Provides PSV level based on tube size & inspiratory flow
 Availability
 - Drager ventilators
 - Hamilton ventilators
 - Puritan-Bennett 840
 - Engstrom Carestation

Tube Compensation

Provides PSV level based on tube size

- $\boldsymbol{\ast}$ Theoretically, WOB same as if patient is extubated, but...
- * "Electronic extubation"
- * Measurement of rapid shallow breathing index on tube compensation mode

Adjustable Expiratory Trigger

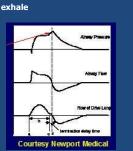
> Purposes

- * Increase synchrony for expiration
- Increase patient comfort
- * Prevent auto-PEEP
- Leak compensation especially important for uncuffed tubes (pediatrics)

FYI see links below for article on tube compensation

Adjustable Expiratory Trigger

Adjusted by observing


- * Patient effort working to exhale
- I:E ratio

* Ventilator graphics

Patient expiratory effort

Late termination

Inability to trigger

Adjustable Expiratory Trigger

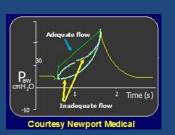
Ventilators with adjustable expiratory triggers

- * Hamilton ventilators
- * Puritan Bennett 840
- * Newport e360
- * Maquet Servoi
- * Drager ventilators
- * Engstrom Carestation

Adjustable Rise Time

Rise time: time required to reach PIP

> Purposes


- * Improve patient comfort * Decrease inspiratory WOB
- > Adjusted by observing
 - * Patient inspiratory effort
 - * Ventilator graphics

Adjustable Rise Time

> Rise time adjustment: observe pressure waveform

Linear or bowed upward rise in pressure after trigger on the pressure wave

Slow rise in pressure, concave shape of the pressure wave

Evidence for Ventilation Modes

- > Pressure control with volume guarantee decreased PIP
- > Pressure support with volume guarantee no evidence
- > Automatic tube compensation increased tolerance of SBT

FYI see links below for article on emerging ventilator modes & evidence for new modes

Evidence for Ventilation Modes

- Proportional assist ventilation better sleep, no improvement over PSV in duration of ventilation, mortality
- > NAVA no RCTs, no evidence
- APRV improved hemodynamics, shorter duration of ventilation, ICU stay
- > HFOV no differences in duration of ventilation or mortality

Developments in Mechanical Ventilation That Will Outlast the Next Decade (Kacmarek)

- > Noninvasive PPV
- > Lung protective strategies
- > Combined pressure-volume

Developments in Mechanical Ventilation That Will Outlast the Next Decade (Kacmarek)

- > Noninvasive PPV
- > Lung protective strategies
- > Combined pressure-volume targeted modes
- > Prone positioning
- > Tracheal gas insufflation

Summary & Review

- Volume & pressure-targeted ventilation each have advantages & disadvantages
- > Dual control modes developed to combine volume & pressure modes

Summary & Review

Dual control - within breath, or breath-to-breath
 Pressure control with volume guarantee
 Pressure support with volume guarantee

2/21/2018

Summary & Review

Modes tailored to patient

- * Adaptive support ventilation
- * Proportional assist ventilation
- * Maquet NAVA

Summary & Review

- > Additional ventilator adjustments
 - * Expiratory trigger
 - $\boldsymbol{\ast}$ Inspiratory rise time
 - * Compensation for tube resistance
- > Evidence for newer modes
- > Kacmarek's ventilation strategies through the next decade

References

- Frawly PM. Airway pressure release ventilation: theory and practice. AACN clinical issues 2001;12:234.
- > Iotti G (Ed). Closed-loop control mechanical ventilation. Respiratory Clinics of North America 2001;7(3).
- > Branson RD. Techniques for automated feedback control of mechanical ventilation. The clinical and management quarterly newsletter NAMDRC 2001;25(3).
- > Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants (Cochrane Review). In: The Cochrane Library, 4, 2001. Oxford: Update Software.

References

Kacmarek RM. Which developments in mechanical ventilation will outlast the next decade? http://www.chestnet.org/education/pccu/vol14/lesson1.html