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A B S T R A C T

The rapidly developing field of ecoacoustics offers methods that can advance multi-taxa animal surveys at
policy-relevant extents. While the field is promising, there remain foundational assumptions that need to be
tested across different biomes before the methods can be applied widely. Here we test two of these assumptions
in the Amazon: 1) that acoustic indices can be used to predict soundscapes of different habitat types, and 2) that
acoustic indices are related to vegetation structure. We recorded soundscapes and collected vegetation data in
143 sites spanning six natural and two human-modified habitats in Viruá National Park, Roraima, Brazil. We
grouped the eight habitats into three categories based on vegetative characteristics and flooding regime: open
habitats, flooded-forests, and non-flooded forests. Thirteen acoustic indices were calculated from 92,283 one-
minute recordings to describe the soundscapes of the habitats. We found that each habitat type had unique and
predictable soundscapes. Random forest models were 74% accurate at predicting the eight habitats types and
87% accurate at predicting the three broader habitats categories. The most important acoustic indices to dis-
tinguish habitats were the third quartile and centroid. Canopy cover significantly affected 11 of 13 acoustic
indices, and while other vegetation variables (e.g., shrub cover and number of trees) appeared in top models for
some indices, their effects were not significant. The best indices linking soundscapes to vegetation structure were
the acoustic evenness index and skewness, with canopy cover explaining 81% and 52% of the variance in these
indices, respectively. These results expand our knowledge regarding which acoustic indices best connect changes
in habitats to changes in soundscapes. These findings are particularly important for diverse ecosystems, like the
Amazon, which are known to have complex soundscapes with sound-producing animals that are difficult to
detect with traditional survey methods (e.g., visual transects). Ultimately, our results suggest that soundscapes
are able to track changes in biodiversity levels across major habitat types of the Amazon.

1. Introduction

The rapidly developing field of ecoacoustics offers tools to extract
information quickly from large audio datasets and serves as a cost-ef-
fective way to monitor biodiversity and environmental change (Krause
and Farina, 2016; Farina et al., 2017; Pijanowski et al., 2011a;
Rappaport et al., 2020). The field focuses on the investigation of natural
and anthropogenic sounds (i.e., soundscapes) and their relationship
with the environment over multiple spatial and temporal scales (Farina
et al., 2017). Soundscapes have been used in a variety of studies on
topics ranging from describing biotic homogenization (Burivalova
et al., 2019) to the impacts of mining and wildfire on ecological com-
munities (Duarte et al., 2015; Gasc et al., 2018). While ecoacoustic
methods are promising for ecological monitoring, several lingering

knowledge gaps limit its widespread utility (Farina et al., 2017;
Pijanowski et al., 2011b). For example, more studies are needed to
determine the ability of acoustic indices to differentiate habitat types in
different biomes (Farina et al., 2017; Pijanowski et al., 2011b). Another
point that remains largely unaddressed is how acoustic indices relate to
vegetative habitat structure (Farina et al., 2017; Pijanowski et al.,
2011b). The need to fill these gaps in knowledge is particularly pressing
for tropical areas, where ecoacoustic monitoring holds great potential
for species conservation, yet whose soundscapes are largely under-
studied (Scarpelli et al., 2020).

An almost overwhelming 60 acoustic indices have been created to
describe soundscapes and represent faunal richness (Buxton, et al.,
2018; Sueur et al., 2014). Acoustic indices are calculated using different
patterns of soundscapes such as pitch, saturation and amplitude
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(Buxton et al., 2018; Sueur et al., 2014). The theoretical underpinning
of the application of acoustic indices for ecological monitoring is that
acoustic diversity is positively associated with faunal species richness
(Farina et al., 2017; Gage et al., 2001; Pijanowski et al., 2011ab). This
positive relationship has been demonstrated through both empirical
tests and computer simulations (Aide et al., 2017; Bradfer-Lawrence
et al., 2020; Depraetere et al., 2012; Harris et al., 2016; Sueur et al.,
2008a; Zhao et al., 2019), but in some cases no relationship was found
(Gasc et al., 2015; Moreno-Gómez et al., 2019). As thousands of hours
of soundscape recordings continue to accumulate globally, new indices
continue to be developed that translate these data into ecological
monitoring information, although often without sufficient tests for their
ability to do so (Colonna et al., 2020; Gibb et al., 2019; Tuneu-Corral
et al., 2020; Santiago et al., 2020).

One area which needs further investigation is the ability of acoustic
indices to distinguish soundscapes of different habitat types (e.g., an-
thropogenic versus natural). This area of research can improve biodi-
versity monitoring because if habitats have unique acoustic signatures
we can use acoustic indices to monitor habitat change (Farina et al.,
2017; Pijanowski et al., 2011b). Further, identifying the indices that
correspond most closely with particular habitats across different eco-
systems could reduce the computing burden of calculating several in-
dices on large audio datasets (Bradfer-Lawrence et al., 2019; Buxton
et al., 2018; Eldridge et al., 2018). To the best of our knowledge, only
three studies have tested multiple acoustic indices to investigate ha-
bitat-specific soundscapes in terrestrial systems (Table 1). For example,
Bormpoudakis et al. (2013) tested eight acoustic indices and found that
the centroid index (CENT) performed best at distinguishing sounds-
capes of six habitat types in Greece, whereas Bradfer-Lawrence et al.
(2019) tested seven acoustic indices across six habitats in Panama and
found the acoustic complexity index (ACI) performed best. However,
differences in sample sizes, acoustic indices used, and study regions
limit the comparative and application value of these results in different
ecosystems (Table 1).

A second area of research in ecoacoustics that requires further
clarification is how vegetation structure influences acoustic indices
(Farina and Pieretti, 2014; Farina et al., 2017; Pijanowski et al., 2011b).
It is expected that habitats with greater vegetation structural com-
plexity have higher species diversity leading to greater acoustic di-
versity (Farina and Pieretti, 2014; Fuller et al., 2015; Pijanowski et al.,
2011b). Despite the centrality of this assumption, it has received lim-
ited empirical validation, likely due to the time-consuming task of
collecting both vegetation structure and soundscape data (Table 1).
This knowledge gap hinders our ability to build predictive models

linking changes in vegetation structure to acoustic diversity (Farina and
Pieretti, 2014; Farina et al., 2017; Pijanowski et al., 2011b). In the few
studies conducted on this topic, a relationship between vegetation
structure and four acoustic indices [acoustic diversity index (ADI),
acoustic evenness index (AEI), normalized difference soundscape index
(NDSI), and total entropy (H)] was found across five habitats in Aus-
tralia (Fuller et al., 2015; Ng et al., 2018), and between canopy cover
and the bioacoustic index (BIO) in two habitats in Madagascar (Rankin
and Axel, 2017). However, Tucker et al. (2014) suggested that land-
scape variables (e.g., patch size) were more important than vegetation
structure in driving differences in one acoustic index (relative sounds-
cape power; RSP) in Australia. Thus, it remains largely unknown if
relationships between vegetation and soundscapes are a widespread
phenomenon and which indices best connect vegetation structure to
soundscapes.

Here, we investigate habitat-specific soundscapes and the relation-
ships between vegetation structure and soundscapes in the Brazilian
Amazon. We collected vegetation data and recorded soundscapes at 143
sites across eight habitat types (natural and anthropogenic) re-
presenting the majority of habitat types found in the Amazon. We used
a total of 13 acoustic indices to describe the soundscapes. Our goals
were to test if acoustic indices can predict habitat type, and to test how
vegetation structure relates to acoustic indices. We then discuss the
implications of our findings for biodiversity assessments.

2. Methods

2.1. Study sites

We conducted this research in and around Viruá National Park
(VNP), Roraima, Brazil, in the north of the Brazilian Amazon (Fig. S1).
VNP was established in 1998 and is 240,000 ha (ICMBio, 2014). The
climate in VNP is warm and wet with mean annual temperature of 26 °C
and mean annual precipitation of ~ 2,000 mm (ICMBio, 2014). Rainfall
is mostly concentrated from May to September (ICMBio, 2014). VNP is
regulated by floods that create a vegetation mosaic ranging from dense
forests to grasslands, and representing most major habitats found across
the Amazon biome (ICMBio, 2014). These habitats share common
species, but also harbor unique fauna and flora (Table S1). Based on
vegetation characteristics and flooding regime, the eight habitats sur-
veyed can be grouped as open habitats (burned campina, campina, and
pastures), flooded forests (igapó, islands, and várzea), and non-flooded
forests (campinarana and terra-firme). In summary, open habitats have
lower species richness than forested habitats, and campiranana, igapó,

Table 1
Acoustic indices used to investigate habitat-specific soundscapes and the effect of vegetation structure on indices at different countries in comparison to this study
that investigated both topics. Total recording hours and the number of sites surveyed are indicated. Abbreviations: ACI = Acoustic complexity index, ADI = Acoustic
diversity index, AEI = Acoustic evenness index, BIO = Bioacoustics index, CENT = Centroid, D = Acoustic dissimilarity index, DF = Dominant frequency,
ESM = Entropy spectral maxima, ESV = Entropy spectral variance, FLAT = Spectral flatness, FQ = First quartile, H = Total entropy, KURT = Kurtosis, M = Mean
amplitude, MID = mid-band activity, NDSI = Normalized difference soundscape index, NP = Number of peaks, RSP = Relative soundscape power, SD = Standard
deviation, SKEW = Skewness, TQ = Third quartile, ZCR = Zero-crossing Rate, 1/F = Spearman correlation to 1/f noise.

Topic Study Acoustic indices Country Hours Sites

This study ACI, AEI, BIO, CENT, DF, FLAT, FQ, H, KURT, NDSI, SD, SKEW, TQ Brazil 1,538 143
Habitat-specific soundscapes

Bormpoudakis et al., (2013) CENT, FLAT, H, KURT, SD, SKEW, ZCR, 1/F Greece 2 32
Bradfer-Lawrence et al., (2019) ACI, ADI, AEI, BIO, H, M, NDSI Panama 26,000 117
Gómez et al., (2018) ACI, ADI, AEI, BIO, ESM, ESV, H, M, MID, NDSI, NP Colombia 905 8

Vegetation structure effects
Bradfer-Lawrence et al., (2020) ACI, ADI, AEI, BIO, H, M, NDSI Panama 84 43
Farina and Pieretti (2014) ACI Italy 520 20
Fuller et al., (2015) ACI, ADI, AEI, BIO, H, NDSI Australia 465 19
Myers et al., (2019) ACI, ADI, BIO Greece 132 22
Ng et al., (2018) ACI, ADI, AEI, BIO, D, H, NDSI, RSP Australia 378 9
Pekin et al., (2012) ADI Costa Rica 14 14
Rankin and Axel (2017) BIO Madagascar 3,504 6
Tucker et al., (2014) RSP Australia 272 10
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and island forests are not as diverse as terra-firme and várzea forests
(see Table S2 for additional information on habitats and Figs. S2–S9 for
photos).

2.2. Passive acoustic monitoring and index extraction

We used ARBIMON acoustic recorders (Campos-Cerqueira & Aide,
2016) to collect acoustic data from November 2016 to February 2017 in
the eight habitat types. We deployed recorders at 20 replicate sites in
each habitat, with the exception of pastures, which were limited to six
replicates because they comprised a small area in the VNP; and terra-
firme, which had 17 replicates because of recorder malfunctions. This
resulted in a total of 143 sites surveyed. Recorders were spaced over
500 m apart to minimize overlap in detections across recorders. Pre-
vious field tests conducted with ARBIMON recorders indicate that calls
of the majority of bird and frog species can be detected up to ~100 m
(Campos-Cerqueira et al., 2019). We attached recorders to trees or fixed
poles at the height of 1.5 m. Acoustic devices were programmed to
record 1 min of audio every 10 min for six days in each sampling site
(sample rate = 44.1 kHz; resolution = 16 bit; format = WAV). After
six days, the 20 recorders were moved to a different habitat type and
the method repeated (see Table S2 for sampling periods).

Acoustic data collection resulted in 96,726 one-minute recordings
(1612 h). For each one-minute recording, we calculated 13 acoustic
indices to summarize the soundscapes of the eight habitats studied
(Table 2). Two broad types of indices were used: indices that rely on
statistical features of recordings (as described in Bormpoudakis et al.,
2013; Mitrović et al., 2010); and signal complexity indices specifically
developed for biodiversity assessments and landscape investigation
(Sueur et al., 2014). We selected indices that were previously used to
describe habitats in peer-reviewed publications (Bormpoudakis et al.,
2013; Bradfer-Lawrence et al., 2019) and that could be calculated
through open-source software.

Calculations were performed in the R Environment (R Core Team,
2019). The function “specprop” from Seewave package (Sueur et al.,
2008b) was used to calculate the centroid (CENT), dominant frequency
(DF), first quartile (FQ), kurtosis (KURT), skewness (SKEW), spectral
flatness (FLAT), standard deviation (SD), and the third quartile (TQ)
with default parameters of the package. The Soundecology package
(Villanueva-Rivera and Pijanowski, 2018) was used to calculate the
acoustic complexity index (ACI; Pieretti et al., 2011), acoustic evenness
index (AEI; Villanueva-Rivera et al., 2011), bioacoustic index (BIO;

Boelman et al., 2007), total entropy (Sueur et al., 2008a), and the
normalized difference soundscape index (NDSI; Kasten et al., 2012).
Minimum frequency for ACI calculation was set to 500 Hz and max-
imum frequency to 12 kHz because the package did not have default
values for this index, and this range encompasses most of birds’, am-
phibians’, and non-flying-mammals’ sounds while also reducing pos-
sible microphone self-noise interference (Bradfer-Lawrence et al.,
2019). All other parameters used in the indices’ calculations were set to
default values provided in the package.

We inspected index calculations for outliers that could be linked to
file corruption, rain, or wind, and removed recordings containing these
anomalies because they affected indices values disproportionally as
observed in other studies (Bradfer-Lawrence et al., 2019; Depraetere
et al., 2012; Pieretti et al., 2015). This removal of 4443 files resulted in
92,283 one-minute recordings (1538 h) for subsequent analysis. Our
sites lacked significant anthropogenic sounds due their remoteness, but
studies in more urbanized locations should inspect recordings for this
source of sound because they may also affect indices values dis-
proportionally (Fairbrass et al., 2017).

2.3. Vegetation structure survey

Vegetation structure data were collected within a 20-m radius plot
from each acoustic recorder location (143 sites) after the devices were
moved to a different habitat type to avoid interference with the re-
cordings (similar to Rankin and Axel, 2017). We took two measure-
ments of percent canopy cover facing north and then south with a
densiometer at two points (5 m and 10 m from recorder’s original lo-
cation) in each cardinal direction for a total of eight locations and 16
measurements per plot. We measured canopy height by visually esti-
mating the height of the two largest trees in each plot. Two field as-
sistants along one of the researchers took independent measurements of
tree height to reduce possible bias in the field. We took two measure-
ments (spaced 1 m apart) of litter depth at two points (5 m and 10 m
from recorder original location) in each cardinal direction for a total of
eight locations and 16 measurements per site. We measured diameter at
breast height (DBH) of trees in four subplots 4 m from the recorder
location and stretching for 10 m in length and 8 m wide in each cardinal
direction. We counted all trees with DBH > 1 cm and divided them in
small (DBH > 1 cm to < 10 cm) and large (DBH > 10 cm) classes
for subsequent analysis. Finally, we used a 20-m tape to take two
measurements of shrub cover per site (along north and south directions

Table 2
Description of the eight statistical indices and five complexity indices used in this study.

Index type and name Description

Statistical indices
Centroid (CENT) Mean frequency of the spectrum.
Dominant frequency (DF) The frequency with the most energy in the spectrum.
First quartile (FQ) Median frequency of the lower half of the spectrum.
Kurtosis (KURT) Measures tailedness of signals in the spectrum. High values indicate outliers.
Skewness (SKEW) Measures symmetry of signals in the spectrum. High values indicate that signals are skewed towards the high or low end of the

spectrum.
Spectral flatness (FLAT) Ratio between geometric and arithmetic mean amplitudes. Noisy signals will tend towards one and pure tones to zero.
Standard deviation (SD) Spectral distribution of sounds.
Third quartile (TQ) Median frequency of the upper half of the spectrum.
Complexity indices
Acoustic Complexity Index (ACI) Based on differences in amplitude between one time step and the next within a frequency band. Filters out constant sounds

(e.g., insect chorus), this may lead to low values in rich soundscapes.
Acoustic Evenness Index (AEI) Based on applying the Gini index to a specific number of frequency bands with signals above an amplitude threshold. High

values indicate sound intensity is restricted to few frequencies.
Bioacoustic Index (BIO) Based on the amplitude of a signal relative to the quietest frequency band within the 2–8 kHz range. High values indicate a

great difference between loudest and quietest bands.
Total entropy (H) Based on applying the Shannon index to a specific number of frequency bands and time steps. High values indicate sound

intensity is distributed through many frequencies and time steps.
Normalized Difference Soundscape Index

(NDSI)
Ratio between anthropogenic (1–2 kHz) and biological (2–11 kHz) sounds. High values indicate more biological sounds in the
upper frequencies.
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from the recorder location) using the line-intercept method (Floyd and
Anderson, 1987). For each vegetation structure variable, we used the
mean value per site for subsequent analysis. Similar methods have been
used in other studies to determine vegetation structure (Hill et al.,
2019; Rankin and Axel, 2017; Smith et al., 2018).

2.4. Statistics

All statistical tests and model diagnostics were run in the R en-
vironment (R Core Team, 2019). To test for the existence of habitat-
specific soundscapes, we used a random forest (RF) modeling approach
(Cutler et al., 2007) with the 13 acoustic indices calculated from the
recordings. We used RF because this approach allowed us to summarize
the importance of individual indices in the classification (as in
Bormpoudakis et al., 2013; Bradfer-Lawrence et al., 2019). We built
two RF models, one classifying soundscapes of the eight different ha-
bitats and another classifying soundscapes of the three broader habitat
types (open habitats, flooded forests, and non-flooded forests). In the
first RF model, we separated the data into training (80%) and testing
(20%) datasets. With the training dataset and the R package Random-
ForestSRC (Ishwaran et al., 2008), we built a random forest classifier
with default values. We used the 13 acoustic indices from each one-
minute recording to build the classifier to tentatively assign each one-
minute recording to one of the eight habitats. We then used the “pre-
dict” function in the Caret package (Kuhn, 2008) to measure the ac-
curacy of our model to predict the testing dataset. In the second RF
model, we used the same approach as the first RF model; the only
difference was that recordings were assigned to the three broader ha-
bitats instead of the eight finer-scale habitat types.

After visualizing the soundscapes and noticing distinct diel patterns

among the different habitats for each index (Fig. 1), we decided to
separate day and night data to better understand the RF outputs. We
averaged each one-minute recording made in the same time across all
replicates within a habitat and assigned each recording to day
(0600–1800 h) or night (1800–0600 h). We ran a permutational mul-
tivariate analysis of variance (PERMANOVA) with the Vegan package
(Oksanen et al., 2019) to test if diurnal soundscapes were different from
nocturnal soundscapes across habitats.

To determine whether acoustic indices relate to vegetation struc-
ture, we first calculated the mean value of each acoustic index per site
(143 total), averaged across the six days of data collection (as in Fuller
et al., 2015; Ng et al., 2018). Using the package nlme (Pinheiro et al.,
2019), we built linear mixed models (LMMs) with each of the 13
acoustic indices as dependent variables, six vegetation structure vari-
ables (canopy cover, canopy height, litter depth, number of large trees,
number of small trees, and shrub cover) as independent fixed effects,
and habitat type as a random effect. Independent fixed effects were
scaled (“scale” function in base R) to make their parameter estimates
comparable within models. We performed model selection using the
corrected Akaike information criteria (AICc; Burnham and Anderson,
2004). We selected the top four performing models based on ΔAICc and
considered models to be similar if ΔAICc < 2 (Burnham and Anderson,
2004). With the package car (Fox and Weisberg, 2019), we checked for
multicollinearity of predictors and removed canopy height from the
analysis. Residuals of the models were checked for linearity, homo-
scedasticity, independence, and normality with the package SjPlot
(Lüdecke, 2020). We consider a fixed effect to be significant at an alpha
level of < 0.05. With the package R2glmm (Jaeger, 2017), we cal-
culated the marginal and conditional R2 values (Nakagawa and
Schielzeth, 2013) to estimate the proportion of variance explained by

Fig. 1. Temporal trends of 13 acoustic indices across the eight habitats studied. Values of indices are the mean values calculated across all replicates within a habitat
for each one-minute recording. Graph starts at 0100 h. For simplicity only three days of data are showed because patterns were consistent across the six-day sampling
period.
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fixed and random effects.

3. Results

3.1. Habitat-specific soundscape patterns

The first RF classifier separated all 13 acoustic indices in the
training dataset into the eight habitat classes. Internal error of the
classifier was 26% and the model accuracy when predicting on the
testing dataset was 74%. The habitat with the lowest internal error was
igapó (18%), and the habitat with the highest internal error was the
pasture (55%). Soundscapes from pastures were usually misclassified as
the other two open habitats (Table 3). The most important acoustic
indices to distinguish habitat types were TQ and CENT; if these vari-
ables were removed, the accuracy of the model would proportionally
drop 0.15 and 0.14, respectively. SD, NDSI, ACI, KURT, and SKEW also
performed well in the classification. The least important acoustic in-
dices were DF and FLAT (Fig. 2).

The second RF classifier built to distinguish the soundscapes of three
broader habitat types performed better than the first one. It had a lower

internal error, 13%, than the first classifier and accuracy of the model to
predict habitat types within the testing dataset increased to 87%
(Table 3). TQ and CENT were again the most important acoustic in-
dices, reflecting a proportional drop of 0.11 in the classification accu-
racy if either was removed. The least important indices were ACI and
BIO (Fig. 2).

The PERMANOVA revealed that diurnal and nocturnal soundscapes
were different across all habitats (F1,3447 = 2493.7, p < 0.001; Table
S3) and supported the RF classification because it showed a significant
effect of habitat type on acoustic indices (F7,3447 = 421.6, p < 0.001).
FLAT, H, SD, and TQ values were lower during the day and higher at
night for open habitats, while forested habitats had the opposite pat-
tern. BIO, DF, FQ, and NDSI were the only indices with consistent diel
patterns across habitats; they were lower during the day and higher at
night. Diel patterns of ACI, AEI, CENT, KURT, and SKEW were more
marked for open than forested habitats; values in open habitats were
higher during day than night, except for CENT that had the opposite
pattern (Fig. 1).

3.2. Relationships between vegetation structure and soundscapes

Across the top performing models (Table S4), 11 of 13 acoustic
indices were significantly associated with percent canopy cover (Fig. 3).
We found a positive relationship between canopy cover and BIO, CENT,
DF, FQ, H, NDSI, and TQ, and a negative relationship between canopy
cover and ACI, AEI, KURT, and SKEW (Fig. 3). Other vegetation vari-
ables appeared in some top performing models, but their effect was not
significant (Fig. 3). The only exception was the significant negative
association of ACI with the number of large trees, but this effect was
smaller than canopy cover (Fig. 3). A null model appeared between the
two top performing models for the index FLAT, therefore we did not
consider this index to be significantly related with vegetation structure
(Table S4). Conditional R2 of models with significant vegetation effects
ranged from 19% to 81% while marginal R2 of canopy cover ranged
from 5% to 81% (Table S5).

4. Discussion

Determining the ability of soundscapes to discriminate habitat types
and the response of acoustic indices to changes in vegetation structure
is critical for improving ecological monitoring using ecoacoustic
methods. In the present study, we found that eight habitat types in the
Amazon biome have unique and predictable soundscapes. We found
that, in general, acoustic indices that rely on statistical features of re-
cordings (Bormpoudakis et al., 2013; Mitrović et al., 2010) were better
at identifying habitat-specific soundscapes than acoustic indices based
on signal complexity (Sueur et al., 2014). We also found that canopy
cover was the primary vegetation variable explaining variance in
acoustic indices. These results expand our knowledge regarding which
acoustic indices best link changes in habitats to changes in soundscapes.
These findings are particularly important for diverse ecosystems, like
the Amazon, which are known to have complex soundscapes with
sound producing animals that are difficult to detect with traditional
survey methods (e.g., visual transects).

4.1. Habitat-specific soundscape patterns

We evaluated the ability of 13 acoustic indices to distinguish
soundscapes of eight habitat types in the Amazon. In our study, TQ and
CENT were the best indices at distinguishing habitat-specific sounds-
capes (Fig. 2), similar to results reported from Greece (Bormpoudakis
et al., 2013). In both our first classification of eight habitat types and
second classification of three habitat groups, the top indices for variable
importance were statistical in nature and the majority of the indices
based on signal complexity were in the bottom half of variables.
Acoustic indices that rely on statistical features, like the TQ and CENT,

Table 3
Confusion matrices from random forest classification of eight different habitats
(first classification) and three broad habitat types (second classification) using
13 acoustic indices calculated from 73,827 one-minute recordings made in the
Viruá National Park, Roraima, Brazil. Accuracy was measured by predicting the
testing dataset (18,456 one-minute recordings). Abbreviations: B = burned
campina, C = campina, Ca = campinarana, Ig = igapó, Is = island,
P = pasture, T = terra-firme, V = várzea, O = open habitats (B + C + P),
F = flooded forests (Ig + Is + V), NF = non-flooded forests (Ca + T).

Fig. 2. Importance of acoustic indices at classifying eight habitat types (1st
classification) and three broader habitat types (2nd classification) grouping the
eight habitats. Graph shows the mean decline in accuracy of the models if a
variable is removed. Accuracy of the first classification was 74% while in the
second classification increased to 87%.
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indicate at which frequency the majority of species are producing
sounds, while signal complexity indices, like the AEI and H, measure
overall acoustic diversity over a pre-defined range (e.g., 0 – 1). While
one type of index performed better than the other, they all contributed
to the predictive power of the RF classifications, and because they re-
flect different aspects of soundscapes (Table 2), they can facilitate the
interpretation of patterns when analyzed together (Bradfer-Lawrence
et al., 2019, 2020).

One of the main soundscape features that separated habitat types
was the diel patterns of the indices (Fig. 1). Based on our field ob-
servations and listening to the original recordings, open habitats have
insect activity at nighttime but during the day were mostly devoid of
animal sounds. In contrast, the soundscapes of forested habitats have a
lot of animal sounds over 24-h periods, leading to the subtler differ-
ences between day and night. In addition, each of the habitats is known
to have a unique composition of bird species which can further help
explain the differences in soundscapes observed among the habitats
(Laranjeiras et al., 2014). To the best of our knowledge, indices based
on statistical features of recordings (DF, FQ, KURT, FLAT, SD, SKEW,
and TQ) have not had their diel patterns described (with the exception
of CENT; Eldridge et al., 2018), but they all showed differences between
nocturnal and diurnal soundscapes in our study. This feature likely
increased the ability of these indices to identify habitat-specific
soundscapes, and could make these indices useful in distinguishing
habitats in other regions. For the signal complexity indices that have
had their diel patterns previously described (ACI, AEI, BIO, H, and
NDSI), it seems that differences between the day and night are depen-
dent on the region, habitat type, and components of soundscapes due to
inconsistent reports in the literature (Bradfer-Lawrence et al., 2019;
Fuller et al., 2015; Gage et al., 2017; Ng et al., 2018; Pieretti et al.,
2015).

4.2. Vegetation structure and acoustic indices

In general, we found that the amount of tree cover, represented by
percent canopy cover and large trees, were the most important vari-
ables explaining soundscapes. For some acoustic indices, such as AEI
and SKEW, canopy cover substantially explained their variances (81%
and 52%, respectively), but for other indices, such as DF, even though
there was a significant relationship with canopy cover, only a small
percent of the variance was explained (5%). Besides canopy cover, the
other vegetation variables we measured did not appear important in

explaining acoustic indices despite their appearance in some top per-
forming models (Fig. 3).

Soundscapes rich in frequencies were linked to high canopy cover,
while soundscapes poor in frequencies were linked to low canopy cover.
This is similar to the effects of canopy cover on species richness across
different animal taxa (reviewed in Stein et al., 2014). In our study sites,
habitats with greater layer complexity (forested habitats) have greater
avian and insect richness than less complex habitats (open habitats)
(Table S1). These differences in species richness can help explain the
soundscape patterns observed, especially if we consider that insects are
a major driver of acoustic diversity in the tropical region (Aide et al.,
2017). The direction of the relationship between canopy cover and
acoustic indices was positive for seven indices and negative for four
indices (Fig. 3). Two indices, FLAT and SD, were not significant related
to any vegetative structure variable (Table S5). The four indices with
negative relationships reflect the way the indices are calculated and not
lower acoustic diversity in forested sites. For example, AEI is expected
to have lower values in sites with rich soundscapes (i.e., forested) be-
cause sound intensity does not vary greatly between frequency bands in
such sites (Bradfer-Lawrence et al., 2019).

Our findings partially agree with past research on this topic
(Table 1). For example, two independent studies in Australia found that
AEI, H, and NDSI were associated with vegetation structure (Fuller
et al., 2015; Ng et al., 2018), but unlike our study, they found no re-
lationship with ACI or BIO. But, in Madagascar, it was found that the
BIO was associated with vegetation structure (Rankin and Axel 2017).
Also, vegetation structure seems to be an important predictor of ACI in
Greece, Italy, and Panama, similar to our study (Bradfer-Lawrence
et al., 2020; Farina and Pieretti, 2014; Myers et al., 2019). Our results
expand the number of acoustic indices linking vegetation to sounds-
capes and ultimately contribute to the body of research suggesting that
relationships between vegetation and soundscapes may be a widespread
phenomenon across regions and ecosystems. These results further in-
dicate that vegetation structural characteristics (especially canopy
cover) may be used with acoustic indices to predict changes in habitats
across large spatial scales (see Pekin et al., 2012, for a first spatial
forecast attempt).

4.3. Limitations

One limitation of this study was that we could not sample all ha-
bitats simultaneously due to logistical constraints. However, we do not

Fig. 3. Results of linear mixed models for 12
acoustic indices showing the effects of five vegeta-
tion variables on the indices. Dots are the normal-
ized coefficients’ values and lines represent the
95% confidence intervals. Coefficients were nor-
malized by subtracting raw values by the mean and
dividing by the standard deviation. Index FLAT is
not shown because top performing model included
a null model.
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think this significantly biased our data because we collected data within
a short period of time (~2 months) (Table S2), in similar weather
conditions (dry season), and with many replications in each habitat
type that showed minimal variability. In addition, by performing the RF
classification that grouped the eight habitats into broader classes, this
temporal constraint was addressed because habitats were sampled
randomly (Table S2). Similarly, by using habitat type as a random effect
in the LMMs this issue is partially addressed. Another limitation is that
we did not identify individual species in the recordings, which limits
our interpretation of specific soundscape components. However, this
was beyond the scope of this research.

5. Implications for biodiversity assessments

Acoustic indices have been proposed as proxies to monitor biodi-
versity and environmental change (Buxton et al., 2018; Krause and
Farina, 2016; Sueur et al., 2014). Our findings suggest that scientists
and practitioners can differentiate and predict soundscapes of different
habitats by using acoustic indices. In particular, our study highlights
that acoustic indices (especially TQ and CENT) are able to classify ha-
bitats, even among those that are structurally similar or share similar
fauna (Table S2). For example, soundscapes of grasslands burned nine
months prior to data collection were different than those of intact
grasslands (campina), suggesting that acoustic indices can be used to
track the impacts of wildfire, an increasing threat to tropical ecosystems
(Staver et al., 2020). Similarly, soundscapes of várzea forests were
different than islands forests, and because islands have species in jeo-
pardy due plans of dam construction (Naka et al., 2020), acoustic in-
dices could serve as a cost-effective way to monitor such species.

A second important implication of our findings for biodiversity as-
sessments is the ability to build predictive models linking fine-scale
changes in vegetation structure to acoustic diversity. While TQ and
CENT indices worked best to differentiate habitats, the acoustic indices
that were best linked to changes in vegetation structure (canopy cover)
were AEI and SKEW. The reason that some indices might be better at
some tasks than others should be explored in future studies. AEI and
SKEW could be used together with vegetation remote sensing tools,
such as LiDAR, to predict how habitat degradation (e.g., canopy loss
due to deforestation) affects animal diversity. This synergetic approach
between two scalable remote sensing methods, ecoacoustic and air-
borne surveys, may offer an alternative for multi-taxa animal surveys at
policy-relevant extents (Bush et al., 2017; Pekin et al., 2012; Rappaport
et al., 2020).
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