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Summary

1. Conservation of threatened species relies on predictions about their spatial distribution; however, it is often

difficult to detect species in the wild. The combination of acoustic monitoring to improve species detectability

and statistical methods to account for false-negative detections can improve species distribution estimates.

2. Here, we combine a novel automated species-specific identification approach with occupancy models that

account for imperfect detectability to provide a more accurate species distribution map of the ElfinWoodsWar-

bler Setophaga angelae, a rare, elusive and threatened bird species. We also compared three automated species

identification/validation approaches to determinewhich approach provided occupancy estimates similar toman-

ual validation of all recordings. Acoustic data were collected along three elevational gradients (95–1074 m a.s.l)

in El YunqueNational Forest, Puerto Rico. The detection matrices acquired through automated species-specific

identificationmodels andmanual validations of all recordings were used to create occupancymodels.

3. Although this species has a wider distribution than previously reported, it depends on Palo Colorado forest

cover and itmainly occurs between 600 and 900 m a.s.l. Unbiased and precise occupancymodels were developed

by using automated species identificationmodels and onlymanually validating 4%of the recordings.

4. Our approach draws on the strength of two active areas of ecological research: acoustic monitoring and occu-

pancymodelling. Ourmethods provide an effective and efficient way to translate the enormous amount of acous-

tic information collected with passive acoustic monitoring devices into meaningful ecological data that can be

applied to understand andmap the distribution of rare, elusive and threatened species.

Key-words: automated species identification models, elusive, passive acoustic monitoring, portable

recorders, rare, species distribution

Introduction

Imperfect detection of threatened species remains a challenge

for wildlife conservation (MacKenzie et al. 2005, 2006). This is

because many threatened species have small population sizes

and occur in few sites (Manne & Pimm 2001) and they are

often elusive, resulting in low number of observations regard-

less of their abundance and distribution (Chad!es et al. 2008).

Consequently, the population status of many threatened spe-

cies is unknown, making it essential for conservation biologists

to develop new approaches to improve detectability of threat-

ened species.

One solution is passive acoustic monitoring (PAM), which

has been successfully used to monitor threatened species. For

instance, PAM devices were used to search for the presum-

ably extinct Ivory-Billed Woodpecker (Fitzpatrick et al.

2005) and to monitor populations of threatened and rare

species such as the Little Spotted Kiwi (Digby et al. 2013)

and endangered Blue Whales (Miller et al. 2015). PAM

devices have also been used to increase the number of obser-

vations of bats (Bader et al. 2015), nocturnal birds (Sberze,

Cohn-Haft & Ferraz 2010) and marine cetaceans (Moore

et al. 2006) that are particularly difficult to detect with tradi-

tional sampling techniques. Other advantages of passive

acoustic techniques include monitoring populations 24 h a

day, for years, at multiple locations simultaneously, and all

acoustic information can be permanently stored (Brandes

2008; Celis-murillo, Deppe & Ward 2012). Furthermore,

recordings can function as ‘museum specimens’ providing a

permanent record and permitting future analyses. Neverthe-

less, PAM can require substantial expert effort to extract use-

ful information from the recordings, and this is why many

researchers have developed algorithms to automate species

identification (Aide et al. 2013; Kalan et al. 2015). For exam-

ple, automated species identification methods have been used

to identify vocalizations of insects (Chesmore 2004), birds

(Briggs et al. 2012), bats (Walters et al. 2012), primates

(Kalan et al. 2015), whales (Murray, Mercado & Roitblat

1998) and amphibians (Ospina et al. 2013).
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Along with technological advances to better sample animal

populations in the wild, there has been a dramatic increase in

development and application of occupancy models that take

into account species detectability (Bailey, MacKenzie &

Nichols 2014). These models provide useful tools to assess the

population status of threatened species because they assign a

probability that a species occurs in a sample unit taking into

account that a species may be present in a site even though it

was not detected. This is important, because ignoring imperfect

detectability can underestimate occupancy estimates and bias

inferences on the relationship between species occurrence and

habitat variables (MacKenzie et al. 2006). Occupancy models

have been successfully used to monitor population dynamics

of the threatened Northern Spotted Owls Strix occidentalis

caurina (Olson et al. 2005), to assess impact of cattle grazing

on occupancy of the cryptic California Black Rail Laterallus

jamaicensis coturniculus (Richmond, Tecklin & Beissinger

2012) and to identify and monitor Tiger Panthera tigris popu-

lations at the landscape level in India (Karanth et al. 2011).

Despite advances in automated species identifications and

occupancy models, few studies have combine these techniques

(Yates & Muzika 2006; Kalan et al. 2015), probably because

automated species identification models often include high

levels of false-positive detections (Waddle, Thigpen&Glorioso

2009; Zwart et al. 2014), which violates a major assumption of

most occupancy models (MacKenzie et al. 2006). Alterna-

tively, all recordings can be manually validated, but this would

be extremely time-consuming. To resolve this problem, there

are two potential solutions: (i) implement more complex occu-

pancy models that take into account both false-negative and

false-positive errors (Miller et al. 2011); or (ii) use automated

species identification models to reduce the size of the data set,

and then validate all positive identifications to eliminate any

false-positive detections.

The objectives of this study were to (i) determine the spatial

distribution of ElfinWoodsWarbler Setophaga angelae a rare,

elusive and threatened bird species across 60 sites along an ele-

vation gradient in one of its few remaining populations; and

(ii) compare three automated species identification/validation

approaches to determine which approach provides occupancy

estimates similar to the manual validation of all recordings. In

this study, we show that the use of automated species-specific

identification models can greatly reduce the amount of record-

ings that must be validated to develop unbiased and precise

occupancymodels.

Materials andmethods

STUDY SITE AND SPECIES DESCRIPT ION

The study was conducted in El Yunque National Forest (EYNF) in

north-eastern Puerto Rico (Fig. 1). The EYNF is the largest protected

area (115 km2) of primary forest in Puerto Rico (Lugo 1994) and com-

prises a series of mountain chains rising to an elevation of 1074 m a.s.l.

This elevation gradient has a strong effect on temperature, rain, humid-

ity and the distribution of plants and animals (Garcia-martino et al.

1996; Wang et al. 2003; Gonz"alez et al. 2007; Gould et al. 2008; Willig

et al. 2011; Brokaw et al. 2012). There are four main forest types along

the elevational gradient in EYNF:Tabonuco forest which is dominated

by Dacryodes excelsa and occurs between 150 and 600 m a.s.l., Palo

Colorado forest which is dominated by Cyrilla racemiflora, and occurs

between 600 and 950 m a.s.l, Elfin forest which is dominated by Tabe-

buia rigida and Eugenia boriquensis and occurs above 950 m a.s.l., and

Sierra Palm forest, which is dominated by Prestoea montana and can

occur anywhere along the elevational gradient. In addition to the four

major forest types, EYNFhas a considerable area in old secondary for-

est (>40 years) that occurs mostly at low elevations near the border of

the reserve.

Setophaga angelae is a small passerine bird, endemic to the main

island of Puerto Rico (Kepler & Parkes 1972). Currently, its distribu-

tion is restricted to two protected areas separated by 150 km: EYNF

and the Maricao Commonwealth Forest (MCF). The estimated popu-

lation size is 1800 mature individuals according to IUCN Red List

(BirdLife International 2012). Besides having a small population size

and a restricted geographical distribution, S. angelae is described as

rare and cryptic, which could explain its late discovery (Kepler &

Parkes 1972). At the time of its description, S. angelae was assumed to

be restricted to high elevation areas within the Elfin forest (above

950 m a.s.l), although individuals could be found as low as

250 m a.s.l., and in a variety of habitats including Palo Colorado for-

est, Podocarpus coriaceus forest, secondary forest, coffee plantation

and pasturelands (Gonz"alez 2008). Banding studies suggest that

S. angelae is monogamous and territorial throughout the year

(Delannoy-Juli"a 2009). The territory size was estimated to be approx-

imately one hectare per pair (Kepler & Parkes 1972). Vocalizations

include the territorial song (common song), an alarm call and a duet

song (https://arbimon.sieve-analytics.com/project/elevation).

SAMPLING DESIGN AND AUTONOMOUS RECORDINGS

Because elevation is a well-known proxy for habitat type, tempera-

ture and animal and plant communities (Brokaw et al. 2012; K"ery,

Gardner & Monnerat 2010), we collected acoustic data in 60 sites

in EYNF along three elevational transects (95–1074 m a.s.l; ~20
sampling sites per elevational transect) between March 27 and

May 6, 2015. The elevational transects took advantage of roads

and trails, but all recorders were placed more than 200 m from

any road. Along each elevational transect, two recorders, separated

by 200 m, were deployed at 100-m elevation interval (from 95 to

1074 m a.s.l). Recorders collected data at each site within a tran-

sect for approximately 1 week and were then moved to another

elevation transect. The study occurred during the breeding season

when song rate is highest (Arroyo-Vasquez 1992). Due to the small

home range of S. angelae (~1 ha, Kepler & Parkes 1972), we

believe that it is unlikely that birds from one territory would be

recorded by more than one recorder.

Recorders consist of one LG smartphone enclosed in a waterproof

case with an external connector linked to a Monoprice microphone.

The ARBIMON Touch application (https://play.google.com/store/

apps/details?id=touch.arbimon.com.arbimontouch&hl=en) was

used to schedule recording events. Recorders were placed on trees at a

height of 1!5 m and programmed to record 1 min of audio every

10 min for a total of 144 – 1-min recordings per day. We performed

field tests in our study area andwe have found that S. angelae vocaliza-

tions can be detected by our recorders up to ~50 m. Therefore, a site is

defined here as a three-dimensional hemisphere space with a radius of

approximately 50 m around the recorder.
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BIOACOUSTICS DATA PROCESSING AND MANAGEMENT

The spectrograms of all recordings (n = 38 255) were visually

inspected, and if the species appear to be present, we listened to the

recordings to make the final decision. This resulted in a detection/non-

detection matrix that was then used to fit occupancy models that

accounted for imperfect detectability (Fig. 2). The results of these anal-

yses were used as the ‘gold standard’ for comparing results based on

three different approaches that used a species identification model cre-

ated in the ARBIMON analytical platform (https://arbimon.sieve-ana

lytics.com). Below, we summarize the six steps used in creating a species

identificationmodel:

1. Create a template of the vocalization and validate a set of record-

ings: For the model, we used the territorial song because it is the most

distinct and most common vocalization. Fifteen examples of the terri-

torial song were selected to create the template, and 208 recordings

were used for the validation data set (i.e. recording were the song was

present or absent).

2. Create a correlation vector between the song template and the spec-

trogram. The song template was applied to each of the validated

recordings. In this step, the template traverses each spectrogram and

produces a vector of similarities for each recording (i.e. correlations

between the template and sections of the spectrogram). The correlation

was generated by the OpenCV function MatchTemplate (Bradski &

Kaehler 2008).

3. Extract features of the vectors from the 208 validated recordings. In

this step, 12 features of the correlation vector are extracted: mean,

median, minimum, maximum, standard deviation, maximum–mini-

mum, skewness, kurtosis, hyper-skewness, hyper-kurtosis, histogram

and cumulative frequency histogram.

4. Create aRandomForest (RF) classifier: the features of the validated

recordings (i.e. present or absent) are input into a RandomForest

Fig. 1. Map of El Yunque National Forest and its location in NE Puerto Rico. The black circles represent sites where Setophaga angelae was
detected and the white circles represent sites where the species was not detected. Different colors represent different probabilities of occupancy for S.
angelae according the top occupancymodel from the Full data set.
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Fig. 2. Workflow of the bioacoustics data processing and analyses.
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classifier (Breiman 2001). The goal was to train the RFmodel for a bin-

ary decision of presence or absence of the territorial song in a recording

based on the feature vectors. A confusion matrix is provided

(Table S1). Themodel was adjusted to reduce false positives.

5. Apply a Threshold approach: this is an alternative approach that is

based on manually setting the maximum similarity correlation level of

the vectors necessary to assign a recording as having a positive detec-

tion. A confusion matrix is provided (Table S1). The model was

adjusted to reduce false positives.

6 Classify all recordings: the RF model and Threshold model were

applied to all recordings. This resulted in a data set with a classification

of presence or absence based on the RF model and Threshold model

for each of the 38 255 recordings.

We then compared the results of the manual validation process with

the results from the RF and Threshold approaches. This procedure

resulted in four data sets: the manual validation, Threshold, Ran-

domForest and Combined (Table 1). The Threshold, RandomForest

and Combined data sets were constructed by manually verifying all the

positive detections from the automated species identification models

and converting any false-positive detections to true negatives. False-

negative detections were assumed to be true-negative detections. We

chose not to change false-negative detections because occupancy mod-

els can account for this type of error. The Combined data set only

included recordings with positive detection in both the RandomForest

and Threshold models. Although it is possible to confuse the vocaliza-

tions of the Bananaquit Coereba flaveola and Elfin Woods Warbler in

the field, we are confident that we do not have any false positives in our

data sets because the spectrogram analyses allowed us to visualize and

compare the vocalizations, making it easy to distinguish the species.

The analyses were based on recordings between 05:00 and 19:00, but

to simplify the detection matrix, we summarize detections in two-hour

intervals. This simplification resulted in seven sampling occasions per

day, where each sampling occasion included 12 recordings in each two-

hour interval. Therefore, our most basic sample unit is defined here as

one interval with 12 1-min recordings.

OCCUPANCY MODELL ING

We used the detection/non-detection matrix generated after the valida-

tion of the classified data to fit single-season occupancy models using

the package Unmarked in R (Fiske & Chandler 2011). The occupancy

probability of each sampling site was estimated taking into account

imperfect detection, following a standard maximum-likelihood hierar-

chical approach (MacKenzie et al. 2002). Our models include a sam-

pling level describing the probability of detection conditioned on

occupancy (p), and a biological level describing the probability (w) that

a site is occupied. Both p and w are allowed to vary according habitats

characteristics. Because both elevation and forest type are expected to

influence S. angelae occurrence (Kepler & Parkes 1972; Anad"on-Iri-

zarry 2006; Arendt, Qian & Mineard 2013), we chose to include these

variables in our occupancy models. We included three continuous and

standardized variables representing the effect of elevation on both

occupancy and detection parameters: ‘Elevation’, ‘Elevation2’ and ‘Ele-

vation3’, which provides a first-, second- and third-order polynomial

function of the elevation data, respectively (K"ery et al. 2010). Addi-

tionally, we included the effect of per cent cover of five forest types

(Tabonuco forest, Secondary forest, Palo Colorado forest, Sierra Palm

forest, Elfin forest and Riparian forest) and forest cover in the occu-

pancy and detection parameters. The per cent cover of each forest type

was estimated within a buffer with a radius of 100 m centred on the

location of each recorder. Forest type classification was based on vege-

tation classification maps developed by USDA Forest Service (Gould

et al. 2008). Lastly, we included a variable ‘Hour’, coded as 1–7 for

each of the 7 2-h sampling periods. This variable was included in the

detection parameter, because it is a good predictor of bird vocal activity

(Catchpole & Slater 2003). We also included a second (‘Hour2’)- and

third-order (‘Hour3’) polynomial function of the hour data.

The most parsimonious model was chosen by calculating the Akaike

Information Criterion (AIC, Burnham &Anderson 2002). We chose a

2-step approach to select the most parsimonious model as proposed by

MacKenzie (2006): first, we kept the occurrence part of the model con-

stant (intercept-only) and tested the effect of each variable (e.g. eleva-

tion, forest type, hour) separately in the detection parameter. Having

identified the most parsimonious model structure for the detection part

of the model (Hour + Hour2), we kept this constant and tested the

effect of each variable separately in the occupancy parameter. Because

the four major forest types in EYNF are associated with an elevation

gradient (Gould et al. 2008), we did not include these two type of vari-

ables (e.g. elevation and forest type) in the samemodel. As a result, with

the exception of the null model, all other models included at least three

variables: one or two variables in the occupancy parameter (e.g. eleva-

tion or forest type), and always two variables in the detection parame-

ter (Hour + Hour2). The same model selection approach was applied

to the four different data sets. We used the parametric bootstrap proce-

dure ofMacKenzie & Bailey (2004) for assessing goodness-of-fit of our

best model. We found no indication of lack of fit for our best model

(P > 0!05).
To create a distribution map for the species in EYNF, we added a

grid of 4032 – 3!1 ha hexagons polygons over a map of EYNF and

extracted the per cent of vegetation cover of each forest type. We used

the function ‘predict’ from the Unmarked package to estimate the

probability of occupancy from each hexagon polygon. We used QGIS

(QGIS Development Team 2015) to graph the expected probability of

occupancy across EYNF.

Results

AUTOMATED SPECIES-SPECIF IC IDENTIF ICATION

MODELS

The confusion matrix of the RandomForest (RF) model had

1% of false positives and 2% of false negatives, while the

Threshold model (TH) had 0!4% of false positives and 39!4%
of false negatives. Thesemodels were then applied to all 38 255

1-min recordings. The RF model classified 1603 recordings

with positive detections, the TH model classified 437 record-

ings with positive detections, and the two models agreed in 67

Table 1. The four data sets used in the occupancymodels

Data set Recordings
Classification
presence

Manually
confirmed presence

Full 38 255 – 888
RandomForest 38 255 1603 194
Threshold 38 255 437 62
Combined 38 255 67 51

All 38 255 recordings were manually inspected for the Full data set.
For the RandomForest and Threshold data sets, all recordings were
classified using the species model and the recordings that were classified
as present were manually inspected. The Combined data set only
included recordings where both the RandomForest and Threshold
models agreed, and these recordings were alsomanually inspected.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution

4 M. Campos-Cerqueira & T. M. Aide



recordings with positive detections. Following the manual

inspection of all positive detections to eliminate any false posi-

tives, we were left with 194 recordings from 20 sites with the

RFmodel, 67 recordings from 12 sites with the THmodel and

51 recordings from 14 sites RF/TH combined approach

(Table 1). False-positive detections were mainly associated

with the vocalization of BananaquitCoereba flaveola, the most

common and widespread bird species in the study area

(Wunderle &Arendt 2011).

OCCUPANCY MODELS

Contrary to our expectations, the per cent of Elfin forest cover

was not a positive predictor of S. angelae occurrence in EYNF

in any of the four data sets. The best-fitting occupancy model

for each data set presented the same structure and included the

effect of Palo Colorado forest cover in the occupancy parame-

ter and the quadratic effect of hour in the detection parameter

(Table S2). The best-fitting occupancy model for all data sets

had high Akaike weights (AIC weight > 0!76), suggesting that
the per cent of Palo Colorado forest cover is a good predictor

of S. angelae distribution. Models that included a second-

order polynomial function of elevation performed better than

models that did not include this covariate (DAIC < 10) and

were always the second-ranked model for all data sets

(Table 2).

As the per cent of Palo Colorado forest cover increases,

the probability of occupancy of S. angelae increases in all

data sets (b > 0!04, SE < 0!10). Nevertheless, the predicted

relationship between per cent of Palo Colorado forest cover

and probability of occupancy for S. angelae in EYNF varied

across data sets (Fig. 3). The RandomForest and Full data

sets had a similar relationship between Palo Colorado forest

and species occurrence, and gave more precise occupancy

probabilities (i.e. narrow SEs) than the other two data sets.

Sites with 50% cover of Palo Colorado forest had 0!53
(SE " 0!10) and 0!60 (SE " 0!11) probabilities of occupancy
in the top model from RandomForest and Full data sets,

respectively.

Although the best-fitting model for all data sets included a

quadratic effect of hour in the detection parameter, we found

different relationships between time of day and detection

probabilities across data sets (Fig. 4). In the Full data set,

detection probabilities were higher early in the morning (5–8
am) and decrease during the day. In contrast, in the Thresh-

old and Combined data sets detection probabilities were

higher between 9 am and 1 pm, while detection probabilities

from RandomForest data set were higher between 11 am and

4 pm.

Even though our best-fittingmodel did not include the effect

of elevation on occupancy, we chose to visually represent this

scenario using the second-ranked model for the Full data set,

given the strong correlation between elevation and the distribu-

tion of Palo Colorado forest (Weaver & Gould 2013; Fig. S1).

Not surprisingly, the second-ranked model shows a higher

probability of occupancy at intermediate elevations (between

600 and 900 m a.s.l), which coincides with the Palo Colorado

forest zone (Fig. 5).

Discussion

SETOPHAGA ANGELAE DISTRIBUTION

Contrary to our expectations, Palo Colorado forest and not

Elfin forest was the best predictor of S. angelae distribution

in the EYNF. The most parsimonious model, for all data

sets, included a positive effect of Palo Colorado forest on

warbler occupancy. In contrast, there was no support for the

model that included an effect of Elfin forest cover on warbler

occupancy. Although in the species description suggests a

strong association with Elfin forest (Kepler & Parkes 1972),

our results corroborate more recent studies that documented

a positive relationship between Palo Colorado forest and the

distribution of S. angelae in EYNF (Anad"on-Irizarry 2006;

Arendt, Qian & Mineard 2013). The occupancy estimates

from the Full data set suggest that S. angelae may occur in

17% of EYNF, which is much larger than previously

thought (Fig. 1). The differences between historical and mod-

ern studies may represent a real habitat/elevational shift in

response to habitat disturbance (e.g. climate change, hurri-

canes, habitat loss) or are due to sampling artefact related

with imperfect detection (e.g. different detectability by differ-

ent sampling techniques).

The occupancy models also showed that S. angelae has

higher probability of occupancy (Ψ > 0!50) in sites between

600 and 900 m a.s.l, which coincides with the Palo Colorado

forest zone. Similarly, in the only other known population in

the Maricao Commonwealth Forest, the number of detections

Table 2. The first three ranked model according to AIC for each data
set

Data set #Parameters AIC DAIC
AIC
weight

Threshold
Ψ (palo colorado)
p (hour2)

5 399!98 0!00 0!91

Ψ (elevation2) p (hour2) 6 405!5 5!53 0!06
Ψ (elevation3) p (hour2) 7 406!77 6!79 0!03

Combined
Ψ (palo colorado)
p (hour2)

5 394!4 0!00 0!76

Ψ (elevation2) p (hour2) 6 397!99 3!59 0!13
Ψ (elavtion3) p (hour2) 7 398!17 3!77 0!12

RandomForest
Ψ (palo colorado)
p (hour2)

5 768!46 0!00 0!98

Ψ (elevation2) p (hour2) 6 776!94 8!48 0!01
Ψ (elevation3) p (hour2) 7 777!88 9!42 0!01

Full
Ψ (palo colorado)
p (hour2)

5 1403!8 0!00 0!99

Ψ (elevation2) p (hour2) 6 1413!63 9!83 0!01
Ψ (elevation3) p (hour2) 7 1414!04 10!24 0!01

The best model for all data set included the effect of Palo Colorado
cover on occupancy parameter (Ψ) and a quadratic effect of hour on
detection parameter (p).
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and the density of S. angelae were highest between 600 and

880 m a.s.l, which corresponds with the Podocarpus coriaceus

forest zone. The restricted elevational distribution of S. ange-

lae in two distant and isolated areas may indicate that other

variables related to elevation (e.g. temperature, humidity, prey

availability, or forest structure) are the main drivers of the spe-

cies distribution.

AUTOMATED SPECIES IDENTIF ICATION AND

OCCUPANCY MODELS

Regardless of the amount of recordings that were

inspected after the classification process, the distribution

of S. angelae was always described as a function of the

per cent cover of Palo Colorado forest. Furthermore, the
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results show that automated species identification models

can provide reliable data sets once false-positive detections

were removed.

Although an increase in per cent of Palo Colorado forest

cover always led to an increase in S. angelae occurrence, the

occupancy response curves varied among the four data sets.

Nevertheless, the RandomForest approach yielded occupancy

estimates and uncertainty measurements (e.g. standard error)

more similar with those obtained through the complete valida-

tion of all recordings, and this was achieved by only inspecting

~4% of the entire data set (1603 recordings). Given that we

were able to manually inspect ~3000 recordings per day, the

combination of the RandomForest model and post-classifica-

tion inspection can save a substantial amount of time without

sacrificing the quality of the results. The Threshold (437

recordings) and Combined (67 recordings) approaches could

also reduce time, but the occupancy estimates and uncertainty

measurements were not as precise as the RandomForest

approach given that they were based on a much smaller data

set, which included fewer sites.

While the results from the species-specific identification

model can provide a good assessment for modelling species

occurrence, it is still essential to conduct a post-validation and

eliminate false-positive detections because if they were to

remain in the data set the models would overestimate species

occurrence and may make erroneous inferences of habitat

usage. Although false-positive detections are still a ubiquitous

characteristics of automated species-specific identification

models, our post-validation approach with the removal of

false-positive detections eliminated the need to use more com-

plex models that adjust for misclassification (Miller et al.

2011).

The best-fitting model from all data sets included a quadra-

tic effect of hour on the detection parameter, in which the Full

data set indicates higher detection probabilities early in the

morning, while the Threshold, RandomForest and Combined

data sets had higher detection probabilities from 9 am to 4 pm.

All recorders were identical, and there should be no systematic

variability in their ability to capture the species’ vocalization.

Consequently, the detection probability from the full data

means that birds are singing more and are more available for

detection early in the morning. In contrast, the variation in

detectability from the Threshold, RandomForest and Com-

bined data sets is associated with the performance of the auto-

mated species identifications, which appear to have higher

levels of detection during the middle of day when there is less

vocal activity from other bird species.

Difficulties in detecting S. angelae are not new, and this is

believed to have been the reason for the late discovery of this

species (Kepler & Parkes 1972). Low vocal activity and vocal

similarities with the co-occurring and highly abundant Bana-

naquit are probably the main factors leading to low acoustic

detection of S. angelae. Nevertheless, the use of autonomous

recorders greatly improved the detection probability of S. an-

gelae. In 34 sampling days, we confirmed 888 true-positive

detections, while a 17-year study in the same area was based on

1442 detections (Arendt, Qian & Mineard 2013). Another

advantage of the autonomous recorders is the ability to sample

many sites simultaneously. Furthermore, by increasing both

the number of sampling sites and number of observation

within a site, one can greatly improve the accuracy and preci-

sion of occupancymodels (MacKenzie et al. 2002).

CONSERVATION AND MANAGEMENT IMPLICATIONS

There are three major conservation implications for the high

occupancy of S. angelae in the Palo Colorado forest. First,

Palo Colorado forest covers a much larger area (3441 ha) than

the Elfin Woods forest (368 ha), which means there is almost

109 more potential habitat for this species. This suggests that

this species may be more widely distributed than previous sus-

pected. The second implication is that our occupancy estimates

were based on sampling that was conducted during the species

reproductive season, demonstrating the importance of Palo

Colorado forest for the species reproductive ecology. Indeed,

one of the three nests described for the species was constructed

in a Palo Colorado tree in the Marico Commonwealth Forest

(Rodriguez-Mojica 2004). The third implication, based on

future scenarios of climate change for EYNF (Scatena 1998),

is that the area of Palo Colorado forest will be reduced as

Tabonuco forests expands its distribution up the mountain,

which could negatively impact populations ofS. angelae.

Although S. angelae may have a wider distribution than

previously thought, our study shows that it still occurs in a lim-

ited number of habitats and it has a restricted elevational

range. In addition, this species is only known from two locali-

ties. This combination has been described as an important pre-

dictor of extinctions risk in birds (White & Bennett 2015). We

believe that these conditions, alongwith a documented popula-

tion decline in EYNF (Arendt, Qian&Mineard 2013), provide

enough evidence to include this species as vulnerable under the

Endangered Species Act (ESA).
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Previous surveys of S. angelae in others localities along the

Cordillera Central in Puerto Rico have failed to detect the spe-

cies (Anad"on-Irizarry 2006). Since this species has low

detectability, we highly recommend sampling in historical and

new sites, particularly in areas of quality habitat between 600

and 900 m a.s.l using autonomous portable recorders com-

bined with occupancy models. In this study, we demonstrate

that the combination of acoustic monitoring and occupancy

models can be a valuable tool to predict the distribution of a

threatened species. Our approach shows that species-specific

identification models combined with post-validation provided

occupancy estimates that were comparable with the manually

validation of all recordings. From a practical management per-

spective, this means much time and effort can be saved when

using autonomous species identification models to predict spe-

cies occurrence.
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