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A B S T R A C T

Automated acoustic recorders can collect long-term soundscape data containing species-specific signals in re-
mote environments. Ecologists have increasingly used them for studying diverse fauna around the globe. Deep
learning methods have gained recent attention for automating the process of species identification in soundscape
recordings. We present an end-to-end pipeline for training a convolutional neural network (CNN) for multi-
species multi-label classification of soundscape recordings, starting from raw, unlabeled audio. Training data for
species-specific signals are collected using a semi-automated procedure consisting of an efficient template-based
signal detection algorithm and a graphical user interface for rapid detection validation. A CNN is then trained
based on mel-spectrograms of sound to predict the set of species present in a recording. Transfer learning of a
pre-trained model is employed to reduce the necessary training data and time. Furthermore, we define a loss
function that allows for using true and false template-based detections to train a multi-class multi-label audio
classifier. This approach leverages relevant absence (negative) information in training, and reduces the effort in
creating multi-label training data by allowing weak labels. We evaluated the pipeline using a set of soundscape
recordings collected across 749 sites in Puerto Rico. A CNN model was trained to identify 24 regional species of
birds and frogs. The semi-automated training data collection process greatly reduced the manual effort required
for training. The model was evaluated on an excluded set of 1000 randomly sampled 1-min soundscapes from 17
sites in the El Yunque National Forest. The test recordings contained an average of ~3 present target species per
recording, and a maximum of 8. The test set also showed a large class imbalance with most species being present
in less than 5% of recordings, and others present in> 25%. The model achieved a mean-average-precision of
0.893 across the 24 species. Across all predictions, the total average-precision was 0.975.

1. Introduction

Acoustic monitoring has gained widespread interest as an ecological
tool for wildlife population assessment, conservation, and biodiversity
research. Many species emit regular vocalizations or other acoustic
signals that are species-specific, which enables monitoring via sound
recognition. Advances in automated acoustic recorders have reduced
prices and enabled data collection for months at a time. This has re-
sulted in enormous data sets; however, like the evolution of many data-
driven approaches, including camera traps and eDNA, methods for data
collection are progressing faster than those for effective analysis and
interpretation. In many cases, acoustic analyses are done manually, and

this often limits the analyses to a subset of the complete datasets
(Potamitis et al., 2014; Priyadarshani et al., 2018; Swiston and Mennill,
2009). To enable analysis of entire datasets, accurate, automated sound
recognition methods are paramount.

Efforts to automate species identification in audio recordings have
spanned diverse fauna such as birds, amphibians, bats, insects, fish and
marine mammals (e.g. Ganchev, 2017). Recently, machine learning
approaches have been successfully applied to acoustic data for identi-
fying multiple species (Priyadarshani et al., 2018). Deep learning
models such as convolutional neural networks (CNNs) have achieved
remarkable performance (Florentin et al., 2020; Kahl et al., 2019; Ruff
et al., 2019). Deep learning models have the advantage of incorporating
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feature learning in the training process, which eliminates or reduces the
manual feature selection required. They are also often capable of
scaling to a high number of classes. For example, in the 2016 BirdCLEF
challenge, models were trained to recognize 999 bird species and
evaluated on both omnidirectional soundscapes (i.e. ambient field re-
cordings) containing multiple species and monodirectional recordings
targeting single species (Goëau et al., 2016). CNNs achieved a sig-
nificant performance increase in the challenge, compared to other
methods that were mostly based on nearest neighbors or decision trees
(Goëau et al., 2016; Sprengel et al., 2016). CNNs are a type of deep
neural network that have achieved state-of-the-art performance on
many image-recognition tasks (Aloysius and Geetha, 2017). Their net-
work structure is characterized by layers designed for spatially-in-
variant image feature extraction. CNNs have also been successfully
applied to many other sound recognition tasks, including bioacoustic
recognition for taxonomic groups other than birds, and human voice
recognition (Colonna et al., 2016; Kao et al., 2018). For sound re-
cognition, CNNs typically use audio spectrograms as input, whereas
mel-frequency cepstral coefficients (MFCCs) and other spectral statistics
are common for other sound recognition models (Priyadarshani et al.,
2018). Single CNNs can model many classes, as demonstrated in Bird-
CLEF and benchmark image recognition tasks (e.g. ImageNet, Deng
et al., 2009) (Goëau et al., 2016; He et al., 2015). This is of particular
interest for biodiversity monitoring efforts with many target species.
These points highlight the potential of CNNs as an important tool for
the ecological community.

Sprengel et al. (2016) used a six-layer single-label CNN trained on
audio spectrograms to classify audio recordings targeting foreground
bird species. They used data augmentation techniques such as com-
bining same-class audio samples and samples of noise. Ruff et al. (2019)
collected training samples directly from soundscape recordings and
implemented a six-layer convolutional neural network for detection and
classification of six owl species, incorporating a noise class to account
for audio containing no target species. Florentin et al (2019) repurposed
several popular pre-trained CNN image classifiers for the detection and
classification of birds in soundscape recordings. They also used a noise
class and, notably, found that including previously-identified false de-
tections of target signals in the noise class improved performance. They
also found that deeper network architectures generally performed the
best on field (soundscape) data. Incze et al. (2018) repurposed a pre-
trained MobileNet CNN (Howard et al., 2017) for single-species clas-
sification of bird audio recordings, and found that mapping grayscale
input spectrograms to a color scheme improved performance (Incze
et al., 2018). Other studies have found that combining various types of
spectrograms into 3-channel images have improved performance for
CNNs pre-trained for image classification (Sevilla et al., 2017; Xie et al.,
2018; Xie et al., 2019). Sevilla et al. (2017) achieved relatively high-
performance classification of single-species recordings and soundscapes
by using an Inception-type CNN architecture (Szegedy et al., 2015) with
time and time-frequency attention mechanisms. These studies have
used single-label models for classification, and aggregated predictions
over segments of soundscape recordings to make multi-label predic-
tions. However, other studies have reported improved performance in
soundscape classification with multi-label prediction models (Kahl
et al., 2017; Zhang et al., 2016). As soundscape recordings can contain
simultaneous occurrences of different target signals, multi-label pre-
diction is a natural choice. However, the number of multi-label
soundscape classification studies is limited due to the increased diffi-
culty of acquiring multi-label training data. The best-performing team
of the 2019 BirdCLEF challenge, which focused on soundscape re-
cordings containing multiple species, used pre-trained ResNet (He et al.,
2015) and Inception-type CNN models repurposed for classification of
mel-scaled spectrograms of audio clips, and achieved the best perfor-
mance with ensembled single-label and multi-label models (Kahl et al.,
2019). Various data augmentation techniques were also found to sig-
nificantly improve performance, such as time and frequency shifting

and stretching of target signals, and adding Gaussian noise or noise
from soundscapes (Koh et al., 2019; Lasseck, 2019). This competition's
training data consisted primarily of recordings targeting single fore-
ground species, but also a smaller validation set of annotated sounds-
capes like those in the test set. Results from this challenge showed a
significant increase in performance for submissions that incorporated
the validation soundscape data in training (Kahl et al., 2019). Specifi-
cally, Lasseck (2019) found that adding background noise from the
validation soundscapes to training samples significantly improved
performance on the test soundscapes. This indicates that acoustic
monitoring systems can benefit significantly from location-specific
training data.

Several challenges remain to be addressed for effective application
of deep learning in acoustic monitoring. First, CNNs often require many
training samples for each class. Large-scale species recognition efforts,
such as for the BirdCLEF challenge, often use crowd-sourced public
training data from various geographic sources (e.g. Xeno-Canto dataset,
Vellinga, 2020;), and thus far these public datasets focus on birds and
consist mainly of recordings targeting single foreground species.
However, as mentioned above, geographic variation in soundscapes
could require training data collected at a local or regional scale for high
performance. This, however, would greatly increase the data labeling
effort. Second, the non-directional nature of soundscape recordings
demands accurate detection as well as classification for species re-
cognition. Existing studies have demonstrated the difficulty of species
recognition in soundscapes, compared to recordings that target a single
foreground signal (Goëau et al., 2015; Goëau et al., 2016; Goëau et al.,
2017; Goëau et al., 2018; Kahl et al., 2019). While many studies have
evaluated models for classification of prior signal detections, methods
that integrate both detection and classification of multiple species in
noisy soundscapes are scarcer (Priyadarshani et al., 2018). Soundscape
recordings often contain multiple species with calls overlapping in time
and frequency, and a variety of environmental noises. Thus, models are
challenged with achieving accurate multi-label recognition of simulta-
neous sounds, and a low false detection rate despite a variety of input
noise. Third, although multi-label prediction is naturally desired for
soundscapes containing different target signals that frequently overlap
in time, collection of multi-label training data is typically more difficult
than single-label data due to the demand of fully-labeling all target
signals in each sample. Furthermore, class imbalance can be an issue for
multi-label data because the number of positive instances of each class
is more difficult to control than single-label data.

Considering these challenges, methods that mitigate region-specific
training data collection effort and optimize model precision (mini-
mizing false positives) in soundscape recordings are desired. To address
this, we developed a pipeline for training CNNs for multi-species multi-
label classification of soundscape recordings using single-label true and
false-positive detections of each species. For the purpose of training
data collection, we created an efficient implementation of a template-
based sound detector and a graphical user interface for post-detection
validation. A custom training loss was used to enable multi-label
learning from single-label training data, and incorporate false-positive
detections into training, which improved model precision in the pre-
sence of simultaneous and frequency-overlapping call types. This ap-
proach to model building: 1) mitigates the manual effort in collecting
multi-label training data directly from soundscapes, 2) incorporates
relevant absence information for each class by using false-positives, and
3) allows for controlling the number of positive and negative examples
of each class in multi-label learning. In a related study (Zhong et al.,
2020), we evaluated several CNN architectures and training methods
using 2-s single-labeled audio clips for classification. In this paper, we
apply the best-performing method to multi-label classification of
soundscape recordings, and describe an end-to-end pipeline for model
creation, starting from unlabeled soundscapes. The template-based
detection and validation tools were used to generate the CNN training
dataset in a semi-automated fashion, and greatly reduced the manual
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effort required. ResNet50 transfer learning was applied to reduce the
necessary training data and time. High precision and recall were
achieved in predicting the presence of 24 tropical bird and frog species
from 1-min soundscape recordings in the El Yunque National Forest.
The presented pipeline is highly generic and expected to be applicable
to many call types from diverse habitats.

2. Methods

2.1. Data acquisition

Soundscape recordings previously collected throughout Puerto Rico
for other projects were used to create training and test datasets.
AudioMoth recorders (Hill et al., 2018) were used to collect acoustic
data. Recorders were placed on trees at the height of 1.5 m and pro-
grammed to record 1 min of audio every 10 min for a total of 144
recordings per day at a sampling rate of 48 kHz. A small portion
(~10%) of recordings were sampled at 44.1 kHz. All recordings were
stored in the ARBIMON web-based platform (Aide et al., 2013). In total,
97,900 1-min soundscape recordings were weakly or fully annotated
with species-specific time-frequency bounding boxes as detailed in the
next section. These recordings came from 749 sites across the island,
however, 49% of recordings with annotations came from 152 sites
throughout the El Yunque National Forest (Fig. 1). Recordings from
other sites and older years were searched to increase the training
sample size for certain species. 78% of recordings were collected in
2019, 11% in 2018, and 11% collected between 2015 and 2018. Most
recordings were collected in the months March and April, a period of
high acoustic activity.

One thousand recordings collected in April 2019 were randomly
selected from 17 sites in the El Yunque National Forest, and used as a
test set. The 17 sites were selected to cover species-rich habitats, and
various elevations and monitoring transects throughout the forest.

2.2. Training data collection

Twenty-four species of bird and amphibian were chosen to be in-
cluded in the CNN sound recognition model (Table 1). The species in
this study included species of “Great Conservation Need” according to

the State Wildlife Action Plan (Puerto Rico State Wildlife Action Plan,
2015) and regionally common species (e.g., Eleutherodactylus coqui,
Margarops fuscatus, Turdus plumbeus, Patagioenas squamosa). For each
species, examples of the one or two most common call types were
collected for the purpose of CNN training (Fig. 2). To collect CNN
training data for each species, we applied a template-based signal

Fig. 1. Spatial distribution of recordings used for training and testing. Circles represent recorder sites with diameter indicating the number of recordings used. Most
recordings came from El Yunque National Forest (large cluster in upper right) and the test recordings were sampled from this area.

Table 1
Numbers of true and false-positive template-based detections used for model
training.

Species Abbreviation Taxon True positives
(tp)

False positives
(fp)

Eleutherodactylus
unicolor

ELUN Frog 18,810 2209

Eleutherodactylus brittoni ELBR Frog 9369 6003
Eleutherodactylus

wightmanae
ELWI Frog 7690 10,222

Eleutherodactylus coqui ELCO Frog 6007 1966
Eleutherodactylus

hedricki
ELHE Frog 4687 10,318

Eleutherodactylus gryllus ELGR Frog 3682 8718
Eleutherodactylus

richmondi
ELRI Frog 3327 10,087

Eleutherodactylus
portoricensis

ELPO Frog 2550 4087

Eleutherodactylus
locustus

ELLO Frog 2492 2523

Eleutherodactylus
antillensis

ELAN Frog 1513 8685

Leptodactylus albilabris LEAL Frog 812 6505
Vireo altiloquus VIAL Bird 7745 9942
Loxigilla portoricensis LOPO Bird 3391 15,804
Patagioenas squamosa PASQ Bird 2162 2276
Spindalis portoricensis SPPO Bird 2024 10,080
Nesospingus speculiferus NEES Bird 1771 9226
Megascops nudipes MENU Bird 1634 3100
Margarops fuscatus MAFU Bird 1576 8054
Setophaga angelae SEAN Bird 1261 11,099
Turdus plumbeus TUPL Bird 976 7466
Melanerpes portoricensis MEPO Bird 932 26,290
Todus mexicanus TOME Bird 906 6143
Coereba flaveola COFL Bird 859 1748
Coccyzus vieilloti COVI Bird 476 6357
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detection algorithm. This process consisted of three primary steps:

2.2.1. Template creation
Based on prior knowledge of the target species' sound repertoires,

one or two of the most common call types were chosen as template
signals for each species. The ARBIMON Visualizer feature was used to
search audio spectrograms for a high signal-to-noise-ratio example of
each call type. Time-frequency bounding boxes were drawn around the
identified template calls and labeled by species and call-type. This
metadata was stored in the platform for later analyses.

2.2.2. Template match detection
Using the ARBIMON Pattern Matching feature, developed as part of

this study, each template was used to search through a playlist of re-
cordings for calls that matched the template. This procedure detects
time-localized signals with a correlation equal to or greater than a
threshold assigned by the user. The correlation is computed in the
spectrogram (time-frequency) domain.

The function spectrogram from the Python package SciPy is used for
spectrogram generation (Oliphant, 2007). Spectrograms are computed
from Hann-windowed 512-sample (~10 ms) segments of audio data,
with 50% overlap between segments, and 512 Fast Fourier Transform
(FFT) coefficients per segment. Time-frequency bin amplitudes are log-
scaled. Note that these spectrogram parameters used for template
match detection are different from those used to create the CNN inputs,
which are described below.

The stored time-frequency coordinates of the template are used to
extract it from its source recording. If necessary, playlist recordings are
re-sampled to the sampling rate of the template's source recording. For
each spectrogram in the playlist, frequency bins outside the template's
frequency range are discarded, resulting in an image height equal to
that of the template. For each remaining frequency bin, the median
intensity over time is subtracted. This “flattening” step reduces the
influence of acoustic processes that are approximately stationary
throughout the recording (e.g. some insects, rain) in the search for time-
localized signals (e.g. vocalizations).

The normalized cross-correlation (NCC) is then computed between

the template T and the cropped, flattened spectrogram S, defined as
follows:
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where the sums are over t, f (time, frequency) under the window con-
taining the template T shifted by u time bins; Su is the mean of S under
the window containing the shifted template; and T is the mean of the
template. The normalization of each window of S and T to unit length
eliminates the correlation's dependence on acoustic amplitude. The
NCC is computed using the fast NCC algorithm, wherein the cross-
correlation is computed as a pointwise product in the Fourier domain
(Lewis, 1995). Note that the cross-correlation is computed along the
time axis only. The NCC is computed using the function match_template
from the python package scikit-image (van der Walt et al., 2014).

All local maxima in the resulting NCC vector are detected, and then
filtered based on given criteria. First, correlation peaks below a given
magnitude threshold are discarded. Peaks are then filtered based on a
minimum time-distance threshold. Detected peaks must be separated by
at least half the duration of the template. For this filtering step, all
correlation peaks are iterated over in order of descending magnitude.
For each peak visited, lower-magnitude peaks within the distance
threshold (to the left or right) are discarded from the set. Correlation
peaks are detected and filtered using the function find_peaks from the
python package SciPy (Oliphant, 2007). The time coordinates of the
correlation peaks satisfying the given criteria are returned as positive
detections.

For most template matching analyses in this study, the NCC
threshold was chosen to be low (i.e. 0.1). This resulted in a high number
of false positives (fp’s; we use lowercase notation for template match
errors to distinguish them from CNN prediction errors), though the
number of false negatives (fn’s) was considered negligible.

A parallelized and scalable cloud-based implementation of the
template matching algorithm was developed for the ARBIMON Pattern
Matching feature, available at (https://arbimon.sieve-analytics.com).
Input playlists are broken into batches with size determined by the

Fig. 2. Templates for each target species of frog (A) and bird (B). Species abbreviations are the same as in Table 1. The spectrograms show the pattern of acoustic
energy in time and frequency of each call type, with darker values indicating higher amplitude. The template position with respect to the vertical axis indicates the
frequency range of the call. The horizontal extent of the templates represents their time duration. The axes of the two plots are shown in proportion.
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playlist. Each batch is processed with a separate CPU with the ability to
launch 1000s of simultaneous CPUs. At typical sampling rates (44.1 or
48 kHz), more than 50,000 1-min recordings (~1 month of audio) can
be analyzed for detections in less than five minutes.

2.2.3. Template match validation
The resulting matches can be visually browsed in the ARBIMON

platform (Fig. 3). The matches are displayed as time-frequency bounded
spectrogram images with the same dimensions as the respective tem-
plate. Individual detections can also be reviewed with frequency-fil-
tered audio playback, and the source recordings can be easily accessed
for audio-visual analysis. The detections can then be validated by
checking each image as a true positive (tp) or fp. Preset queries such as
the best N matches per recording, site and/or day can accelerate the
assessment of the presence or absence of a species at a location.

Altogether, the ARBIMON Visualizer and Pattern Matching features
described above allow for highly efficient training data creation (Fig. 3,
4a). Compared to manual inspection and annotation of bounding boxes
in spectrograms, many potentially true-positive bounding boxes can be
generated automatically in little time, requiring only post-validation.

In total, 512,471 soundscape recordings were searched for call de-
tections using the above three steps. Different recording subsets were
searched for different species. This resulted in 86,652 tp and 188,908 fp
annotated time-frequency bounding boxes for 24 species. (Table 1).
Note that fp's of a given species A that contained the call of a different
target species B were not re-classified as tp's for B. For model training,
all fp's were simply used as examples of absence, as detailed in the next
section. These true and false detections were used to create the CNN
training samples as described below.

2.3. Model training

2.3.1. Training data preprocessing
The CNN model used in this study requires equally sized input

images. We chose a time-frequency input window size of 2 s as it is near
the mean and median template duration across target call types (Fig. 2).
Most call types have a duration below 1 s, and for those above 2 s,
important features can still be captured within 2 s. For the case of input

frequency bandwidth, we chose to use the entire range of 24 kHz. This
was chosen over a smaller, more focused bandwidth for several reasons.
Firstly, we approach training as a multi-label classification problem. In
other words, for each input audio segment, the model is trained to
predict the set of all species present, rather than a single foreground
class. This eliminates the need to focus on single target calls in the
input. Also, many species' calls highly overlap in frequency (Fig. 2). So,
while a focused bandwidth could separate several call types by fre-
quency and avoid their presence together in the same input, many calls
would still potentially be present together. A large bandwidth also re-
duces the number of predictions required to cover a 1-min recording.
Furthermore, it increases model generalizability because the optimal
bandwidth would likely be specific to the set of target species.

From each template-based detection, we extracted spectrogram
images representing two seconds of audio time-centered on the detec-
tion and spanning 24 kHz (Fig. 4a). If needed, audio files were re-
sampled to 48 kHz before spectrogram computation. Spectrograms
were computed from Hann-windowed 1024-sample (~20 ms) segments
of audio data, with 50% segment overlap, and 2048 FFT coefficients per
segment. Mel-scaling is a technique commonly applied in acoustic time-
frequency analysis. The mel scale refers to a perceptual scale of pitch
based on an empirical study of human hearing (Stevens et al., 1937).
The conversion from f Hertz to m “mels” is commonly approximated as:

= ⎛
⎝

+ ⎞
⎠

m
f

2595log 1
70010

Mel-scaling emphasizes lower frequencies while reducing high-fre-
quency resolution, similar to log-scaling the frequency axis. Many of
our target call types occupied a low-frequency band (< 6 kHz), which
motivated the use of the mel scale. The 1025 frequency bands in our
training samples were converted to 128 mel-scaled frequency bands,
using the Librosa Python package (McFee et al., 2015) (Fig. 4a).
Training sample spectrograms were mapped to a color space using the
Librosa function specshow.

2.3.2. Model architecture
We implemented the CNN using the Keras application programming

interface to the Tensorflow Python library (Abadi et al., 2016; Chollet,

Fig. 3. ARBIMON template match visualizer, allowing for sorting, filtering, and validation of detections, which can be used as CNN training data. In the example
screenshot, we show the best matches per day for a Nesospingus speculiferus template for three sites.
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2019). Code for the CNN training and prediction method described in
the paper are available at https://github.com/Sieve-Analytics/
arbimon2-cnn. The implementation described here builds on an eva-
luation of several CNN models for classification of 2-s true and false
positive detections of the same species (Zhong et al., 2020). In this case,
we choose the best-performing method and apply it to multi-label
classification of 1-min soundscape recordings using single-label training
data. The training data size and spectrogram parameters are also ad-
justed, and we did not include a pseudo-labeling step during training.
Deep neural networks with initially randomized weights typically re-
quire large amounts of training data and time to achieve adequate
performance. Improved performance is often obtained from transfer
learning, wherein a model already optimized for a similar dataset is re-
trained with new data. We used a ResNet50 model, pre-trained on the
ImageNet dataset, which contains over one million photo images across
1000 classes (Deng et al., 2009). Although ImageNet does not contain

spectrograms, models pre-trained with the dataset learn a variety of
image features that have been successfully tuned to spectrogram clas-
sification previously (Lasseck, 2019; Florentin et al., 2020). While
previous studies have found optimal performance using ensembles of
multiple CNN models (Kahl et al., 2017; Lasseck, 2019; Florentin et al.,
2020), in the interest of prediction efficiency and reasonable memory
requirements, we chose to evaluate a single ResNet50 model.

Our implementation only included the feature extraction layers of
ResNet50, excluding the remaining layers used for ImageNet classifi-
cation, referred to as the network “top”. The network top consists of
fully connected (FC) layers for learning a predictive model from the
input features. An FC layer consists of a set of nodes, each of which
takes a weighted sum of the input's values and passes it through a
transfer function. The weights of an FC layer are learnable. In our case,
we used two FC layers separated by a drop-out layer. The drop-out layer
causes nodes in the previous FC layer to be probabilistically ignored in

Fig. 4. (Color) Flowcharts for (A) training and (B) prediction portions of the species identification pipeline.
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each training iteration, such that a different subset of nodes is con-
nected to the final FC layer at each iteration. This emulates training a
group of different models and reduces the chance of overfitting. The
first FC layer consisted of 512 nodes and used the common “ReLU”
activation function, which simply converts negative inputs to 0. The
following drop-out layer was assigned a drop-out rate of 0.5, such that
each node was ignored with a 50% probability. The final layer consists
of 24 nodes, corresponding to the number of target species, and each
node was assigned a sigmoid activation function. The sigmoid function
S, defined below, maps the input to the range [0,1], and is commonly
used for the prediction of binary outcomes. In our case, an independent
output score within [0, 1] for each species was desired, to allow for
multi-species prediction of presence in audio segments. Thus, our model
outputs a vector of 24 scores, representing the predicted probability of
presence for each species.

=
+ −S x

e
( ) 1

1 x

2.3.3. Loss and optimization
A custom training loss function was defined to leverage both true

and false detection training data. Typically, for multi-label prediction,
the training target vectors consist of 0's and 1's indicating the presence
or absence of each class in the input. This assumes fully labeled training
data (i.e. all labels are known). In our case, each training sample is only
labeled for presence or absence of a single species, based on validation
of the associated detection as tp or fp. Therefore, each target vector
consisted of a 1 or 0 at the position of the species determined to be
present or absent, and unknown values represented by NaN (“Not a
Number”) for all other species. The custom loss for class c, given the
presence label yc and predicted score pc is defined

= ⎧
⎨⎩

− + − − ∈
=
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The total loss for a sample is simply the loss for the single labeled
species. This allows for multi-label learning based on single labels at a
time, but requires examples of both presence and absence for each class.
This training regime is therefore compatible with true and false-positive
detections from other detectors as training data.

The Adam optimization method was used with a learning rate of
1 × 10−4 and decay 1 × 10−7 (Kingma and Ba, 2017). The Adam
method allows for an adaptive learning rate during training and is
commonly used for deep neural network training. A 10% validation
split was used to compare the loss between training samples and unseen
samples during training. Based on comparing training and validation
loss at the end of each epoch, 5 epochs of training were applied.

2.4. Prediction and evaluation

Performance evaluation was based on the ability to predict the set of
species present in each of 1000 randomly sampled 1-min test sounds-
cape recordings from 17 sites in the El Yunque National Forest. As
mentioned above, the test sites were selected to cover species-rich ha-
bitats, and a variety of elevations and monitoring transects in the forest.
To create present-species labels for the test recordings, we used the
template matching procedure described in Section 2.2. To do this, for
each test recording and each call type, the three highest-correlating
template matches were validated as tp or fp. Due to the low correlation
threshold of 0.1, fn’s were assumed to be negligible. Therefore, the tp
detections were used to create present species labels for the test re-
cordings to evaluate model predictions.

The test recordings showed a large class imbalance (Table 2). Fre-
quencies of call presence ranged from 0.3% of recordings (Melanerpes
portoricensis) to 92.3% of recordings (Eleutherodactylus coqui). More
than half of the species were in less than 5% of recordings and a quarter

were in greater than 20% of the recordings. The number of species in
test recordings ranged from 0 to 8, with a mode of 3. Only 1% of test
recordings contained no calls, demonstrating the high acoustic activity
in the study region.

2.4.1. Sliding window
Prediction was performed using a sliding window approach.

Predictions were made for every 2-s time-window of each audio re-
cording with a 1-s shift between windows (50% window overlap)
(Fig. 4b). Spectrograms of each audio window were computed in the
same way as for training data. For a species and recording, the highest
predicted score across audio windows was used to predict presence. We
also tested using the average of the two highest scores across windows
as the predictive score.

In practice, a threshold τ is applied to the model's predicted scores to
make a binary prediction of presence or absence. For a species and
recording with predicted score p, we predict presence if p ≥ τ, and
absence otherwise.

2.4.2. Evaluation metrics
Let TP ≡ TP(τ) represent number of true-positive CNN predictions

(i.e. correct predictions of species presence). Similarly, let TN represent
number of true negatives (i.e. correct predictions of absence), let FP be
number of false positives (i.e. incorrect predictions of presence), and let
FN be number of false negatives (i.e. incorrect predictions of absence).
All counts are dependent on the chosen threshold τ.

Performance was quantified by several metrics described below.
The precision P(τ) is the fraction of predictions of presence that are
correct.

=
′

=
+

P τ TP
N

TP
TP FP

( )
P

where NP′ is the number of predicted presences. Recall R(τ), also known
as sensitivity or true-positive rate, measures the fraction of presences
that are correctly identified.

= =
+

R τ TP
N

TP
TP FN

( )
P

where NP represents the number of true presences. A precision-recall
curve consists of the points in precision-recall space achieved at each
possible threshold. Recall is typically the horizontal axis and precision
the vertical axis. Based on the precision-recall curve we also measured
the average-precision (AP) of predictions. The AP is defined:

∑= −
=

−AP R τ R τ P τ( ( ) ( )) ( )
i

N

i i i
2

1

where (τ1,τ2,…,τN) are the different thresholds to be evaluated, sorted
in descending magnitude. Typically, the chosen thresholds (τ1,τ2,…,τN)
are the sorted predicted scores. The AP is the weighted sum of preci-
sions at each threshold, using the increase in recall from the previous
threshold as the weight. It approximates the integral of, or area under,
the precision-recall curve. The AP is independent of the chosen
threshold τ, so it is commonly used for model comparison. The mean-
average-precision (mAP) across classes is commonly used in multi-label
prediction evaluation.

∑=mAP
N

AP1
s s

s

where Ns is the number of target species. The false-positive rate
(FPR) is the fraction of true absences incorrectly predicted as presences.

= =
+

FPR τ FP
N

FP
FP TN

( )
A

where NA represents the number of true absences.
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2.4.3. Annotation review
Cases where the CNN-predicted score differed from the annotation

by 95% or greater were reviewed. For the annotations of presence, 16
cases were found (where the CNN-predicted score was ≤0.05) across
all species and recordings, of which only 1 was determined to be an
annotation error. For the annotations of absence, 294 errors were found
(where the CNN-predicted score was ≥0.95). Most errors (43%) were
caused by the template matching method confusing the target with
another call type with higher signal-to-noise-ratio (SNR), causing an fn.
In 21% of cases, no matches for the target template were found, typi-
cally due to low SNR. Other errors were manual annotation errors,
mostly based on difficulty validating noisy detections. The number of
annotation errors was seen to be positively correlated with difference
between annotation and prediction. Furthermore, 78% of all predicted
scores for the results shown were below 0.05 or greater than 0.95.
Therefore, most annotation errors were assumed to be accounted for.
These errors accounted for only 1.2% of annotations. The results pre-
sented are based on the revalidated annotation.

3. Results

The average-precision AP varied among the species from 1
(Melanerpes portoricensis) to 0.28 (Coccyzus Vielloti) (Fig. 5). The mean-
average-precision across species was 0.893. When computing precision
and recall over all species and recordings, the total average-precision
(APtotal) was 0.975 (Fig. 6, left). This indicates that the species with
more frequent calls tended to have higher scores, because each species'
contribution to the APtotal is proportional to its number of presences.
Only 3 of the 24 species had an AP below 0.80. Excluding these three
species, the mean-average-precision for the rest of the species is 0.955.
These results indicate that the model's predicted scores strongly dis-
tinguish cases of presence and absence for most species.

Species-specific performance did not have a clear association with
training sample size (Table 1, Fig. 5). Many classes with varying sample
sizes achieved a similar strong performance. Melanerpes portoricensis,
Leptodactylus albilabris, Coereba flaveola each had fewer than 1000 po-
sitive training samples and AP > 0.97. Thus, depending on the call

type and potentially confounding signals and noise in the environment,
strong performance is achievable with several hundreds of call ex-
amples.

A high predictive threshold greater than 0.90 was seen to yield an
optimal balance of precision and recall (Fig. 6). A balanced precision
and recall are desired if false positives and false negatives are equally
significant, though if false positives are more costly, precision has
greater importance. As the threshold neared 1, the recall began to drop
rapidly, particularly for species-average scores. Using the mean of the
two highest scores across audio windows to predict presence was seen
to provide minor improvements to species-average precision and recall
in some cases. However, simply using the highest-scoring window to
determine presence theoretically allows for time-localizing the calls,
though this was not evaluated. All results presented correspond to a
prediction based on the highest score across audio windows for a spe-
cies and recording.

For a selected prediction threshold of 0.99, the mean precision and
recall across species were 0.90 and 0.71, respectively (Table 2). How-
ever, the total precision and recall were 0.98 and 0.83, respectively,
further demonstrating that model performance is correlated with fre-
quency of species presence. This may be due in part to the slight cor-
relation between species frequency and training sample size, though
strong performance was achieved for some species without a large
sample size (eg. MEPO, LEAL, COFL). The association between perfor-
mance and frequency of presence could be further explained by the
higher balance between presences and absences. Rarer species with
relatively few presences require stronger robustness to noise to achieve
a low FPR and high precision. Comparing the average-precision scores
to the precision and recalls at the chosen threshold of 0.99, we find that
some species have a high AP but moderate P and R for the chosen
threshold, which suggests that performance could be further improved
with species-specific detection thresholds.

Three species with relatively poor scores (AP < 0.80) were further
investigated: Margarops fuscatus, Todus mexicanus, Coccyzus vieilloti. The
template call for Margarops fuscatus has an approximately two-second,
two-syllable structure, which resulted in CNN training samples with call
features only near the left and right borders of the image. The training

Table 2
Species-specific and summary evaluation scores for a selected prediction threshold of 0.99. The total scores are computed from all predictions across all species and
test recordings. The mean scores are computed for each species separately before averaging.

Presences Absences TP FP TN FN Precision Recall FPR

Eleutherodactylus richmondi 123 877 120 2 875 3 0.98 0.98 0.002
Eleutherodactylus coqui 923 77 843 0 77 80 1.00 0.91 0.000
Eleutherodactylus unicolor 474 526 418 1 525 56 1.00 0.88 0.002
Eleutherodactylus portoricensis 255 745 224 1 744 31 1.00 0.88 0.001
Eleutherodactylus locustus 44 956 44 2 954 0 0.96 1.00 0.002
Eleutherodactylus gryllus 113 887 96 1 886 17 0.99 0.85 0.001
Vireo altiloquus 149 851 119 0 851 30 1.00 0.80 0.000
Spindalis portoricensis 72 928 70 4 924 2 0.95 0.97 0.004
Coereba flaveola 213 787 164 0 787 49 1.00 0.77 0.000
Leptodactylus albilabris 44 956 33 0 956 11 1.00 0.75 0.000
Eleutherodactylus antillensis 46 954 34 0 954 12 1.00 0.74 0.000
Eleutherodactylus brittoni 204 796 152 1 795 52 0.99 0.75 0.001
Turdus plumbeus 6 994 4 0 994 2 1.00 0.67 0.000
Patagioenas squamosa 222 778 148 1 777 74 0.99 0.67 0.001
Eleutherodactylus wightmanae 18 982 13 1 981 5 0.93 0.72 0.001
Loxigilla portoricensis 26 974 15 0 974 11 1.00 0.58 0.000
Nesospingus speculiferus 23 977 13 0 977 10 1.00 0.57 0.000
Eleutherodactylus hedricki 53 947 33 2 945 20 0.94 0.62 0.002
Melanerpes portoricensis 3 997 1 0 997 2 1.00 0.33 0.000
Megascops nudipes 14 986 11 6 980 3 0.65 0.79 0.006
Todus mexicanus 17 983 9 6 977 8 0.60 0.53 0.006
Setophaga angelae 41 959 8 0 959 33 1.00 0.20 0.000
Margarops fuscatus 23 977 17 24 953 6 0.41 0.74 0.025
Coccyzus vieilloti 4 996 1 7 989 3 0.13 0.25 0.007
Total – – – – – – 0.98 0.83 0.003
Mean 129.6 870.4 – – – – 0.90 0.71 0.003
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samples for this species thus had a low signal-to-noise ratio. Similarly,
Todus mexicanus has a multi-syllable call with a variable number of
syllables, of which only one fits in a single CNN input. The multi-syl-
lable structure is a significant feature of the call, though since only a
single syllable is seen by the CNN at a time, this presumably impacts the
detectability and makes the call more easily confounded with other
signals. Coccyzus vielloti had clearer training sample features, but the
fewest positive training samples of any species (Table 1).

4. Discussion

Soundscape recordings, which capture omnidirectional ambient
sound in an area, are widely used for ecological research. While
soundscape data is often used to analyze long-term changes in
soundscape composition and richness, another interest is to document
species-specific site occupancy over time, thus providing quantitative
information for species conservation and management decisions.
However, due to the non-directional nature of soundscape recordings,
species-specific detection methods are often plagued by high false po-
sitive rates. Furthermore, multi-species detection models have required
high complexity, and thus a high number of training samples to achieve
adequate performance.

The work presented here addresses the challenge of acquiring multi-

species detections from raw soundscape recordings and demonstrates a
high model precision for the study species. Although only bird and frog
taxa are considered here, our approach is expected to generalize well to
other target signals. No model parameters are specific to the target call
types aside from the CNN input width (2 s). The input spans a large
frequency bandwidth from 0 to 24 kHz, which can account for many
call types. Considering the high variation in the time-frequency extents
and characteristics of the target call types in this study, we expect that
many vocalizations or other transient signal types (i.e. up to several
seconds) within the range of 24 kHz frequency would be appropriate for
the pipeline.

The manual effort in training data creation was reduced to template
creation and validation of template-based detections in a graphical user
interface (Fig. 3). This addresses an important need for more accessible
training data from study sites to leverage deep learning for acoustic
monitoring. Our evaluation demonstrates that strong classification
performance can be achieved using data collected from the study re-
gion, without relying on crowd-sourced public datasets. The pipeline
thus increases the potential for region-optimized acoustic monitoring
systems. Furthermore, the training data collection pipeline could ac-
celerate the collection of data for rare species.

Our training scheme allowed for multi-label learning from single-
label training data by defining a custom training loss and including
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Fig. 5. Average-precision (AP) scores for all species.

Fig. 6. (Color) (A) Precision-recall curve for all pre-
dictions across all species and test recordings. Total
precision and recall (i.e. Ptotal and Rtotal) were com-
puted for thresholds from 0 to 1 with an increment of
2.5 × 10−4. (B) Precision-recall curve where preci-
sion and recall are averaged across species at each
tested threshold. Mean precision and mean recall
were computed for each threshold from 0 to 0.998
with an increment of 0.002. Higher threshold values
are not shown in this case because with higher
thresholds, all predictions become negative for some
species (no presence predicted) and their precision
becomes undefined.
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both positive and negative examples for each species in training.
Instead of using random ambient noise for the absence training sam-
ples, we used false template-based detections (fp’s). Because fp’s were
detected based on correlation with the template, this method forces the
model to learn to distinguish each call type from similar-looking noise
(i.e. unknown) signals as well as from the other target signals. This
improved the accuracy compared to tests with a standard approach, in
which training was based only on positive examples of each call (Zhong
et al., 2020). This is also supported by previous research that reported
improved soundscape classification performance when false-positives
identified from previous trials were included in the training data for a
noise class (Florentin et al., 2020). This method also enables control
over the number of positive and negative instances of each class in
multi-label learning. Furthermore, this method allows for using the
CNN to filter fp s from subsequent template-based detections. In gen-
eral, the CNN can be trained to distinguish positive and negative de-
tections for multiple classes, making it compatible for use in combi-
nation with other detectors.

Our mean-average-precision of 0.893 for the 24 species compares
favorably to other CNN classification studies. A recent study of CNNs
applied to acoustic recognition of six avian species achieved a mean-
average-precision of 0.541 (Ruff et al., 2019). The latest BirdCLEF
challenge (2019) yielded a maximum mAP of 0.407 for soundscape
recordings in North America and 0.293 for soundscape recordings from
Colombia, though in this case models were trained to identify> 600
species (Kahl et al., 2019). Notably, though, the results in this case were
from multi-CNN ensembles, while our results are from a single CNN.

To expand this approach to the broader community, we have
identified three important challenges for future research. First, future
developments should account for the large variability in the size of
target calls (i.e. templates). Introducing recurrent connections in the
CNN, or other architecture modifications could potentially reduce the
negative effects of window size. Second, previous studies have found
data augmentation to significantly improve performance (Kahl et al.,
2019). In these cases, training data was mainly based on monodirec-
tional recordings of single species, and data augmentation (i.e. noise
addition) apparently helped to emulate the conditions of soundscape
recordings. The effect may be reduced for training data collected di-
rectly from soundscapes, as in this study. Still, data augmentation may
be necessary to increase the training data size for rare species. Thus,
future efforts should investigate optimal data augmentation methods
for bioacoustic recognition. Third, an important challenge will be to
maintain high accuracy while increasing the efficiency of prediction.
This will require increasing the prediction speed and decreasing the
memory footprint of the model by investigating other network archi-
tectures and reducing the number of parameters.

5. Conclusions

The presented pipeline enables training convolutional neural net-
works for multi-species multi-label classification of soundscape re-
cordings, starting from raw unlabeled recordings. A high-accuracy
model for 24 species in the El Yunque National Forest was obtained
using training data collected from the study area, without relying on
public, labeled bioacoustic datasets. Semi-automated training data
collection improves the potential for creating region-specific CNNs for
large-scale biodiversity monitoring. We show that single-label true and
false-positive detections from a more rudimentary sound detector can
be effectively used to train a CNN model for multi-class multi-label
sound recognition. False detections, which contain examples of poten-
tially confounding signals from each target, were found to improve
performance when incorporated in the training process. Based on our
evaluation of the model with 1000, 1-min soundscape recordings, CNNs
are a viable solution for automated acoustic monitoring of many species
using a single model.
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