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Abstract
We introduce a large-scale dataset of quantum-mechanically
calculated properties of crystalline materials for graph rep-
resentation learning that contains approximately 900k en-
tries (OQM9HK). This dataset is constructed on the basis
of the Open Quantum Materials Database (OQMD) v1.5
containing more than one million entries, and the succes-
sor to the OQMD v1.2 dataset containing approximately
600k entries (OQM6HK). We develop the graph creation
algorithm to produce a binary edge-labeled (BEL) graph
representing a crystalline material. The BEL graph has
higher representability of crystal structure than the edge-
unlabeled ones. In materials property prediction tasks, crys-
tal graph neural networks trained on the BEL graph dataset
perform better than ones on the other graph datasets. The
OQM9HK graph dataset is available at the Zenodo reposi-
tory, https://doi.org/10.5281/zenodo.7124330

1 Introduction
Graphs are widely used to represent relationships between
individuals, for examples, social and citation networks, etc.
The citation graphs, CORA, CITESEER, and PUBMED,
are used to evaluate node classification performances of ma-
chine learning models.1 Recently, collections of midium-
scale and large-scale graph datasets were developed for reli-
able benchmarking.2–4

We present a large-scale graph dataset of materials
science based on the Open Quantum Materials Database
(OQMD), which is a database of DFT calculated thermo-
dynamic and structural properties of more than one million
materials.5 Before the OQMD being established, the Mate-
rials Project (MP) had developed a similar database since
2011.6 The MP database contained approximately 30k ma-
terials as of Dec 2012. The current database (V2021.05.13)
contains approximately 145k ones. The uncertainties of the
OQMD and MP database for formation energy were esti-
mated to be ∼100 meV/atom in the mean absolute error
(MAE) by comparing calculated values with experimental
ones.5 Those databases have been used for high throughput
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screening of candidate materials.7 However, materials scien-
tists are frantically seeking for novel materials uncontained
in materials databases.

Machine learning methods have substantially expedited
researches in other scientific fields.8–13 Especially, artificial
intelligence caused a revolution in computational biology.
The state-of-the-art protein structure predictor, Alphafold,
was developed using a training dataset consisting of approxi-
mately 140k experimentally determined protein structures,9
and then has built a protein structure database containing
over 200 million entries.10 In the future, a similar success-
ful story could take place in materials science. Therefore,
machine learning methods would be able to be applied to
develop data mining systems that recommend new materi-
als having some desirable properties. The MP recently in-
troduced the machine learning benchmarking suite for ma-
terials science, named Matbench.14 Matbench consists of
13 small-medium size (≲ 100k) datasets for diverse tasks.
The input of each dataset is chemical composition or crystal
structure. Unfortunately, there is no structure prediction
task in Matbench.

We proposed the crystal graph neural networks (CGNN)
to predict the formation energy, unit cell volume, band
gap, and total magnetization of a crystalline material, and
showed that the CGNN models perform well on the graph
dataset consisting of approximately 600k entries constructed
on the basis of the OQMD v1.2 released in June 2018.15†

Hereafter, we call the OQMD v1.2 dataset OQM6HK. We
can elicit topological and spatial information from a crystal
structure. The topological information is present as a graph
expressing interatomic connections, that is, a crystal graph,
while the spatial information may be given by unit cell vol-
ume or interatomic distances. The OQM6HK dataset con-
tains the volume prediction task because the crystal graph
is independent on the unit cell volume. The volume pre-
diction task employs as the target the volume deviation,
whose definition appears later (Eq. 1 in §2), instead of the
unit cell volume. We estimated the database uncertainty by
comparing every structurally matched pair of OQMD and
MP database’s entries. The MAEs of the ensemble mod-
els for the prediction of formation energy, volume deviation,
band gap of insulator, and total magnetization of magnet

†The OQMD v1.2 or OQM6HK graph dataset is available at
https://doi.org/10.5281/zenodo.7118055
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Figure 1: Histograms of formation energy, volume deviation, band gap, and total magnetization in the OQM6HK (orange) and OQM9HK (blue)
dataset, whose bin widths are 0.1 eV/atom, 0.0125, 0.1 eV, and 0.02 µB/atom, respectively. No values of band gap and total magnetization
less than 0.01 eV and µB/atom, respectively, are included in the histograms.

are 36%, 57%, 163%, and 36% of the corresponding database
MAE, respectively. Thus, only for band gap the leading er-
ror comes from the prediction, and for other cases from the
database. The worse predictions for band gaps of insulat-
ing materials are due to the high occupancy (95%) of metal
materials in the OQM6HK dataset.

In the next section, we introduce our new graph dataset
describing its detailed construction and explaining features
of new graphs by examples. We present experimental re-
sults in §3 and discuss significance of this graph dataset in
§4. In this paper, crystal graph generative models are not
discussed at all, although it can be considered as one of main
components in the data mining system.

Table 1: The OQM6HK and OQM9HK datasets.

OQM6HK OQM9HK

Materials 561,888 881,678
- Training 449,867 705,447
- Validation 56,289 87,618
- Testing 55,732 88,613

Formulas 338,135 498,146
- Training 270,527 398,536
- Validation 33,804 49,805
- Testing 33,804 49,805

Metals 531,520 779,354
94.6% 88.4%

Insulators 30,368 102,324
5.4% 11.6%

Nonmagnets 307,039 529,779
54.6% 60.1%

Magnets 254,849 351,899
45.4% 39.9%

2 The OQM9HK Graph Dataset
There are 913,045 distinct entries with the formation en-
ergy less than 5 eV in the OQMD v1.5. Although the entry’s
properties are calculated with the static configuration at the
optimized structure obtained by the relaxation calculation,
742 entries of them have the failed relaxation, and therefore
are excluded from the dataset. We regard as an abnormal
entry those having at least one huge stress component of
the relaxation (> 10 bar) or a large volume mismatch be-
tween the static and relaxed structure (> 1 Å3/atom). We
also found a few obviously abnormal entries. All the abnor-
mal entries are excluded from the dataset. 22,958 entries
completely lack records of the relaxation, but we consider
that almost all of them should be reliable, confirming the
equivalence or similarity between entries of the OQMD v1.2
and v1.5. All the unreliable entries are excluded from the
dataset. The PyMatGen’s structure matcher found 21,154
duplicates in the remaining data.16 All the duplicate en-
tries are excluded from the dataset. Finally, the OQM9HK
dataset is constructed from the 881,678 unique and normal
or reliable entries.

As shown in Table 1, the number of materials in the
OQM9HK dataset increases by 57% compared with one in
the OQM6HK dataset, while the number of reduced chem-
ical formulas (or chemical compositions) increases by 47%.
The increase ratios of the material and formula count dif-
fer by 10 points. Thus, there is an increase in the average
number of crystal polymorphs per chemical composition.

The number of atoms per unit cell of each material is
from 1 to 368 for the OQM6HK dataset. Its maximum de-
creases to 312 for the OQM9HK dataset due to improving
the reliability of entries, although OQMD v1.5’s one is 368.
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Figure 2: The crystal graphs of (a) the ice Ih and (b, c) the Li3Nd3(WO6)2 garnet. The solid and dotted or dashed arrows represent 1NN and
2NN directed edges, respectively. The dashed arrows depict 2NN edges from Li to O node in the panel (b), and from Nd to W node in the
panel (c). There are also 2NN directed edges opposite to those depicted in the panels (b) and (c).

Its median is 4 for both datasets, and its mean is 5.33 and
6.82 for the OQM6HK and OQM9HK dataset, respectively.
Thus, there is an increase in the average number of atoms
per unit cell. The atomic number is limited to a number
from 1 to 83, or from 89 to 94 in the OQMD, and thus there
are 89 chemical elements in both datasets. As a side note,
the 118 chemical elements have been identified as of 2022.
Thus, neither dataset includes 29 of radioactive elements
that have already been identified. The number of chemical
elements contained in each material is a number from 1 to 7
for the OQM6HK dataset. Its maximum increases to 10 for
the OQM9HK dataset. Its median is 3 for both datasets.
The ternary materials occupy 69% and 60% of the total for
the OQM6HK and OQM9HK dataset, respectively. Thus,
there is a decrease in the occupancy of ternary materials.

The histogram of formation energy in the OQM9HK
dataset, as shown in the top left panel of Fig. 1, differs so
much from one of the OQM6HK dataset. There is a large
increase in the range below 0 eV/atom, and no longer the
valley as the OQM6HK dataset has around -1 eV/atom.

As in the CGNN paper,15 instead of the unit cell vol-
ume we employ as the target property the volume deviation
defined as

δvol = 1 − Va

Vc
, (1)

where Va denotes the total atomic volume, and Vc the unit
cell volume. The volume deviation is less than unity by this
definition, but the unit cell volume less than a half of the
atomic volume gives the volume deviation less than negative
unity. The histogram of volume deviation (the top right
panel in Fig. 1) shows that the OQM9HK dataset contains
more entries with relatively large volume per atom than the
OQM6HK dataset.

We regard as metals materials with the band gap less
than 0.01 eV, otherwise as insulators. The number of insu-
lating materials is 102k (12% of the total), which are greater
than one of the OQM6HK dataset, 30k (5% of the total).
The histogram of band gap (the bottom left panel of Fig.
1) increases entirely, but the increase ratio below 1.5 eV
exceeds one in the other range. The mean and standard
deviation of the whole data are 0.229449 and 0.841111 eV,
respectively, which are later used for calculating z-scores to
evaluate insulating probabilities.

We regard as nonmagnets materials with the total mag-

netization less than 0.01 µB/atom, otherwise as magnets.
The number of magnetic materials is 352k (40% of the to-
tal), which are greater than one of the OQM6HK dataset,
255k (45% of the total). The occupancy of magnetic mate-
rials however is less than one of the OQM6HK dataset. The
histogram of total magnetization (the bottom right panel of
Fig. 1) increases especially below about 1 µB/atom. The
mean and standard deviation of the whole data are 0.259047
and 0.486081 µB/atom, respectively, which are later used for
calculating z-scores to evaluate magnetic probabilities.

We use the same algorithm to construct crystal graphs
as described in the CGNN paper except for the extension
described below.15 The original graph construction uses the
2-MEANS clustering method to extract the nearest cluster
of neighbors. New one uses the 3-MEANS clustering method
to extract the first and second-nearest clusters of neighbors.
We call graphs created by the 2-MEANS and 3-MEANS
method, respectively, NC2 and NC3. These names stand for
the number of cluster centers. A binary edge-labeled (BEL)
graph is created from NC2 and NC3 graphs by the following
process. (1) All the NC2 edges are labeled as 1NN, and (2)
all the NC3 edges exceeding all the 1NN edges are labeled
as 2NN. Note that this processing is necessary because the
first-nearest cluster of the NC2 graph may differ from one
of the NC3 graph.

For example, the crystal graph of the ice Ih is shown in
Fig. 2(a). If the 2NN edges have disappeared, the crystal
graph would be represented as an ensemble of unconnected
sub-graphs representing individual H2O molecules. In this
case, the 2NN edges between H and O nodes apparently play
a role of hydrogen bonds in chemistry. Another example is
the Li3Nd3(WO6)2 garnet, whose crystal graph is shown in
Fig. 2(b) and (c). If the 2NN edges have disappeared, the
Li2Nd2 sub-graph would be unconnected to the WO6 sub-
graph. Therefore, one can consider 2NN edges indispensable
to make more materials representable in crystal graph.

3 Experiments
3.1 Experimental Setup
We use CGNN models to understand how graph neural net-
works work on the OQM9HK dataset. The CGNN architec-
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Figure 3: The CGNN architecture for binary edge-labeled graphs.
Every node vi has the 1NN and 2NN neighbor sets, N (1)

i and N (2)
i .

The embedding layer creates the embedding vector h0
i for each node

vi. The stacking layers of the 1NN and 2NN convolution block from
t = 0 to t = T are sequentially connected. All the hidden states are
fed into the pooling layer. The MLP predicts the graph property from
the graph-level hidden state made by the pooling.

Table 2: Formation energy prediction MAEs are
shown in eV/atom. The best MAEs for single and
ensemble models are represented in blue and red,
respectively. The corresponding database MAE is
0.0848 eV/atom.15

Graph dh Single Ensemble

NC2 96 0.05310 ± 6.6 × 10−5 0.04540
192 0.04926 ± 2.2 × 10−4 0.04264

NC3 96 0.04850 ± 2.2 × 10−4 0.04108
192 0.04561 ± 3.4 × 10−4 0.03898

BEL 96 0.04439 ± 3.8 × 10−4 0.03787
192 0.04249 ± 3.7 × 10−4 0.03658

Ens. 96 0.03903 ± 3.5 × 10−5 0.03583
192 0.03712 ± 1.3 × 10−4 0.03433

ture consists of an embedding layer, convolution blocks, a
gated pooling, and a multilayer perceptron (MLP). The con-
volution block has an edge-wise network that products two
hidden states of the edge’s ends, namely EdgeNet. For the
details of this architecture we refer to the CGNN paper.15

As shown in Fig. 3, the CGNN architecture is extended to
be applied to the BEL graphs. The original CGNN has only
four convolution blocks (T = 4), while the extended one
has four additional convolution blocks introduced by 2NN
edges. The softplus activation is applied to the output of
the CGNN model for non-negative targets, that is, the band
gap and total magnetization.

We employ the numerical library PyTorch v1.10 to train
CGNN models on this dataset,‡ and use an Nvidia T4 or
P100 GPU for GPU-accelerated computing. The hyperpa-
rameters are almost the same as in the CGNN paper. The
model is trained for 300 epochs by the ADAM optimizer with
the batch size of 512 and the weight decay of 1 × 10−6 in a
decoupled manner.17 We use the cosine annealing method
for the learning rate decay.18 The learning rate is initially
set to 1×10−3, and decayed to its minimum of 1×10−4. We
use the learning rate warmup dedicated to the ADAM op-
timizer, namely the untuned warmup.19 Really, to linearly
warmup the learning rate, the learning rate is multiplied by
the dampening factor during the warmup period of 2,000
steps. We employ the mean squared error as the training
loss, and use the MAE as the evaluation metric. The MAE
scores mainly interest us, but the root mean squared error
(RMSE) scores are presented in Appendix.

Every selected CGNN model is trained once for each
of three random seeds fixed through the experiments. The
score of the single model is calculated as the mean of three
sample scores. The three samples are members of the ensem-
ble model for every configuration. We call it trio-ensemble
in this paper. We also create an ensemble model composed
of three models trained on the NC2, NC3, and BEL graph
datasets, respectively. This graph-ensemble model is re-
garded as a single model in tables that show MAE values.
The full ensemble model is the ensemble of 9 models created

‡Our source code becomes publicly available at CGNN v1.1
(https://github.com/Tony-Y/cgnn).

by collecting 3 models for each graph dataset.
The insulating and magnetic probabilities of a material

are calculated as

p = σ(ζtrain(ytest)), (2)

where σ(·) is the sigmoid function, ytest a predicted value of
either band gap or total magnetization, and ζtrain(·) the z-
score function based on the training set. The ground-truth
label is false if the target value is less than 10−2 eV for
band gap and µB/atom for total magnetization, and true
otherwise. The area under the receiver operating character-
istic curve (ROC-AUC) is used as a metric for classification
problems with respect to insulating and magnetic materials.

3.2 Formation Energy
We use complete CGNN models for formation energy pre-
dictions. As shown in Table 2, the complete CGNN model
with the hidden dimension (dh) of 96 trained on the NC2
graph dataset gives an MAE of 53 meV/atom lower than the
database MAE (85 meV/atom). The MAE score decreases
by 5 and 9 meV/atom when this model is trained on the NC3
and BEL graph dataset, respectively. Upon increasing dh to
192, the MAE score for the NC2 graph dataset improves to
49 meV/atom, while the MAE decrease changes to 4 and 7
meV/atom for the NC3 and BEL graph dataset, respectively.
The best single model score of 42.5 meV/atom is given by
the model with dh of 192 trained on the BEL graph dataset.
The trio-ensemble model for the best configuration gives an
MAE of 36.6 meV/atom, while the graph-ensemble model
gives an MAE of 37.1 meV/atom. The full ensemble model
gives the best score of 34.3 meV/atom, which is 40% of the
corresponding database MAE.
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Table 3: Volume deviation prediction MAEs. The
best MAEs for single and ensemble models are rep-
resented in blue and red, respectively. The corre-
sponding database MAE is 0.0270.15

Graph dh Single Ensemble

NC2 192 0.01843 ± 7.6 × 10−5 0.01589
288 0.01795 ± 1.2 × 10−4 0.01558

NC3 192 0.01690 ± 1.6 × 10−5 0.01450
288 0.01644 ± 1.4 × 10−4 0.01424

BEL 192 0.01563 ± 1.9 × 10−4 0.01363
288 0.01496 ± 1.3 × 10−4 0.01331

Ens. 192 0.01383 ± 4.5 × 10−5 0.01281
288 0.01354 ± 4.4 × 10−5 0.01263

Table 4: Metal-insulator classification ROC-
AUCs. The best AUCs for single and ensem-
ble models are represented in blue and red, re-
spectively. The corresponding database AUC
is 0.9564.15

Graph Single Ensemble

NC2 0.95533 ± 4.1 × 10−3 0.96490

NC3 0.95158 ± 5.8 × 10−3 0.96159

BEL 0.96449 ± 9.1 × 10−4 0.97127

Ens. 0.97026 ± 1.1 × 10−3 0.97338

3.3 Unit Cell Volume
We use noEdgeNet CGNN models for volume deviation
predictions. As shown in Table 3, the noEdgeNet CGNN
model with dh of 192 trained on the NC2 graph dataset
gives an MAE of 1.84×10−2 lower than the database MAE
(2.70×10−2). The MAE score decreases by 0.15×10−2 and
0.28×10−2 when this model is trained on the NC3 and
BEL graph dataset, respectively. Upon increasing dh to
288, the MAE score for the NC2 graph dataset improves to
1.80×10−2, while the MAE decrease changes to 0.30×10−2

for the BEL graph dataset, but is almost the same for the
NC3 graph dataset. The best single model is obtained with
dh of 288 for the BEL graph dataset, which gives an MAE of
1.50×10−2. The trio-ensemble model for the best configura-
tion gives an MAE of 1.33×10−2, while the graph-ensemble
model gives an MAE of 1.35×10−2. The full ensemble model
gives the best score of 1.26×10−2, which is 47% of the cor-
responding database MAE.

3.4 Band Gap
We use complete CGNN models with dh of 192 for band gap
predictions. The model trained on the NC2 graph dataset
gives an MAE of 82.4 meV as shown in Table 5 (left). The
MAE score decreases by 8.4 and 7.1 meV when this model
is trained on the NC3 and BEL graph dataset, respectively.
The best single model is obtained for the NC3 graph dataset.
The trio-ensemble model for the best configuration gives an
MAE of 68.2 meV, while the graph-ensemble model gives an
MAE of 69.1 meV. The full ensemble model gives the best
score of 66.7 meV.

For evaluation on the metal subset, as shown in Table
5 (middle), the MAE scores (∼20 meV) are lower than the

database MAE (46.1 meV). The best MAE of 19.5 meV is
given by both single and trio-ensemble model for the NC3
graph dataset.

For evaluation on the insulator subset, as shown in Table
5 (right), the best single model becomes one trained on the
BEL graph dataset and its MAE is 0.489 eV. The best MAE
of 0.418 eV given by the full ensemble model is lower than
our previously obtained value on the OQM6HK dataset, but
is 122% of the corresponding database MAE (0.341 eV).
Therefore, the prediction uncertainty is still higher than the
database uncertainty.

The metal-insulator classification ROC-AUC of the
model trained on the BEL graph dataset is 96.4% as shown
in Table 4, which is higher than the database AUC (95.6%).
The trio-ensemble model for the best configuration gives an
AUC of 97.1%, while the graph-ensemble model gives an
AUC of 97.0%. The full ensemble model gives the best AUC
of 97.3%.

3.5 Total Magnetization
We use noEdgeNet CGNN models with dh of 288 for to-
tal magnetization predictions. The model trained on the
NC2 graph dataset gives an MAE of 60.9 mµB/atom as
shown in Table 6 (left). The MAE score decreases by
2.7 and 3.5 mµB/atom when this model is trained on the
NC3 and BEL graph dataset, respectively. The best single
model is obtained for the BEL graph dataset. The trio-
ensemble model for the best configuration gives an MAE of
53.2 mµB/atom, while the graph-ensemble model gives an
MAE of 52.7 mµB/atom. The full ensemble model gives the
best score of 50.7 mµB/atom.

For evaluation on the nonmagnet subset, as shown in Ta-

Table 5: Band gap prediction MAEs evaluated on (left) the whole dataset, (middle) the metal subset, and (right) the insulator subset are
shown in eV. The best MAEs for single and ensemble models are represented in blue and red, respectively. The corresponding database MAE
is 0.1806 eV for the whole data, 0.0461 eV for the metal subset, and 0.3412 eV for the insulator subset.15

Whole Metal Insulator

Graph Single Ensemble Single Ensemble Single Ensemble

NC2 0.08244 ± 6.0 × 10−4 0.07663 0.02230 ± 1.4 × 10−3 0.02230 0.54628 ± 7.5 × 10−3 0.49566

NC3 0.07405 ± 1.4 × 10−4 0.06825 0.01952 ± 8.4 × 10−4 0.01952 0.49463 ± 6.0 × 10−3 0.44404

BEL 0.07538 ± 2.0 × 10−4 0.06920 0.02173 ± 2.1 × 10−4 0.02173 0.48909 ± 2.1 × 10−3 0.43530

Ens. 0.06913 ± 6.7 × 10−5 0.06668 0.02118 ± 3.7 × 10−4 0.02118 0.43886 ± 3.2 × 10−3 0.41753
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Table 6: Total magnetization prediction MAEs evaluated on (left) the whole dataset, (middle) the nonmagnet subset, and (right) the magnet
subset are shown in µB/atom. The best MAEs for single and ensemble models are represented in blue and red, respectively. The corresponding
database MAE is 0.0938 µB/atom for the whole data, 0.0211 µB/atom for the nonmagnet subset, and 0.3274 µB/atom for the magnet subset.15

Whole Nonmagnet Magnet

Graph Single Ensemble Single Ensemble Single Ensemble

NC2 0.06087 ± 2.8 × 10−4 0.05553 0.01769 ± 1.9 × 10−4 0.01752 0.12574 ± 6.8 × 10−4 0.11262

NC3 0.05820 ± 3.0 × 10−4 0.05331 0.01684 ± 2.4 × 10−4 0.01667 0.12032 ± 3.8 × 10−4 0.10835

BEL 0.05735 ± 3.7 × 10−4 0.05322 0.01722 ± 7.1 × 10−5 0.01706 0.11762 ± 9.8 × 10−4 0.10754

Ens. 0.05272 ± 3.0 × 10−5 0.05073 0.01706 ± 2.9 × 10−5 0.01696 0.10629 ± 1.1 × 10−4 0.10147

ble 6 (middle), the model trained on the NC2 graph dataset
gives an MAE of 17.7 mµB/atom lower than the database
MAE (21.1 mµB/atom). The best single and ensemble MAE
of 16.8 and 16.7 mµB/atom, respectively, are given by the
single and trio-ensemble model for the NC3 graph dataset.

For evaluation on the magnet subset, as shown in Table 6
(right), the model trained on the NC2 graph dataset gives an
MAE of 0.126 µB/atom lower than the database MAE (0.327
µB/atom). The best single model becomes one trained on
the BEL graph dataset and its MAE is 0.118 µB/atom. The
trio-ensemble model for the best configuration gives an MAE
of 0.106 µB/atom, while the graph-ensemble model gives an
MAE of 0.108 µB/atom. The full ensemble model gives the
best score of 0.101 µB/atom, which is 31% of the correspond-
ing database MAE.

The magnet classification ROC-AUC of the model
trained on the NC2 graph dataset is 95.5% as shown in Ta-
ble 7, which is higher than the database AUC (86.9%). The
best single model is obtained for the BEL graph dataset and
its AUC is 95.9%. The trio-ensemble model for the best con-
figuration gives an AUC of 96.6%, while the graph-ensemble
model gives an AUC of 96.5%. The full ensemble model
gives the best AUC of 96.9%.

4 Discussions
Analyzing the error distributions of the trio-ensemble mod-
els trained on the NC2, NC3, and BEL graph dataset, we can
deduce that the use of NC3 graphs instead of NC2 graphs
reduces overpredictions of formation energy and volume de-
viation, while the use of BEL graphs reduces their underpre-
dictions in addition to the overprediction reduction. More-
over, we can find that the use of NC3 or BEL graphs re-
duces underpredictions of band gap but slightly increases
their overpredictions, while it reduces underpredictions of
total magnetization.

Materials scientists are often interested in thermodynam-

Table 7: Magnet classification ROC-AUCs. The best AUCs for single
and ensemble models are represented in blue and red, respectively. The
corresponding database AUC is 0.8688.15

Graph Single Ensemble

NC2 0.95510 ± 9.9 × 10−5 0.96196

NC3 0.95880 ± 3.9 × 10−4 0.96511

BEL 0.95927 ± 1.7 × 10−4 0.96537

Ens. 0.96583 ± 2.6 × 10−4 0.96857

ically stable polymorphs. It is desirable to precisely predict
the ranking in polymorphic stability. We employ the mean
of Kendall’s tau values to measure the ranking performance.
The tau scores of the trio-ensemble models trained on the
NC2, NC3, and BEL graph dataset are 0.789, 0.802, and
0.813, respectively. Thus, the use of BEL graphs slightly
improves the ranking performance.

The experimental results and additional analysis show
that the models trained on the BEL graph dataset out-
perform those trained on the NC2 or NC3 graph dataset.
Hence, we can conclude that BEL graphs are preferable to
NC2 or NC3 graphs as inputs of graph neural networks pre-
dicting the materials properties.

Although it contains the unit cell volume prediction task,
this graph dataset does not contain enough information on
crystal structures for structure prediction tasks. However,
one can easily retrieve the entire structural information of
each entry because each entry has the identification number
of the corresponding calculation entry in the OQMD v1.5.§
On the basis of the retrieved structural information, one can
invent a crystal structure prediction task.

As shown in the experiments and discussions above, this
graph dataset has the decided advantages against the pre-
vious one. Therefore, the OQM9HK graph dataset would
facilitate studies on graph representation learning in mate-
rials science.

References
[1] Zhilin Yang, William W. Cohen, and Ruslan Salakhut-

dinov. Revisiting semi-supervised learning with graph
embeddings. In Proceedings of the 33rd Interna-
tional Conference on International Conference on Ma-
chine Learning - Volume 48, ICML’16, page 40–48.
JMLR.org, 2016.

[2] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan
Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks,
2020. https://github.com/graphdeeplearning/
benchmarking-gnns.

§We can see a calculation entry through the official online database
instead of fetching it from an OQMD v1.5 database installed on a Linux
server. For example, the first entry in this graph dataset has the cal-
culation ID of 1299782, and then its calculation entry’s URL becomes
the following one: https://oqmd.org/analysis/calculation/1299782

6



[3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao
Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets
for machine learning on graphs, 2020. https://ogb.
stanford.edu.

[4] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata,
Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A large-scale
challenge for machine learning on graphs, 2021.

[5] James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce
Meredig, and C. Wolverton. Materials design and dis-
covery with high-throughput density functional theory:
The open quantum materials database (oqmd). JOM,
65(11):1501–1509, Nov 2013.

[6] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier,
Wei Chen, William Davidson Richards, Stephen Dacek,
Shreyas Cholia, Dan Gunter, David Skinner, Ger-
brand Ceder, and Kristin A. Persson. Commentary:
The materials project: A materials genome approach
to accelerating materials innovation. APL Materials,
1(1):011002, 2013.

[7] Muratahan Aykol, Soo Kim, Vinay I. Hegde, Scott
Kirklin, and Chris Wolverton. Computational evalu-
ation of new lithium-3 garnets for lithium-ion battery
applications as anodes, cathodes, and solid-state elec-
trolytes. Phys. Rev. Materials, 3:025402, Feb 2019.

[8] Christopher J. Shallue and Andrew Vanderburg. Iden-
tifying exoplanets with deep learning: A five-planet
resonant chain around kepler-80 and an eighth planet
around kepler-90. The Astronomical Journal, 155(2):94,
Jan 2018.

[9] John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
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don, Augustin Ž́ıdek, Tim Green, Kathryn Tunyasu-
vunakool, Stig Petersen, John Jumper, Ellen Clancy,
Richard Green, Ankur Vora, Mira Lutfi, Michael
Figurnov, Andrew Cowie, Nicole Hobbs, Pushmeet
Kohli, Gerard Kleywegt, Ewan Birney, Demis Hassabis,
and Sameer Velankar. AlphaFold Protein Structure
Database: massively expanding the structural coverage

of protein-sequence space with high-accuracy models.
Nucleic Acids Research, 50(D1):D439–D444, 11 2021.
https://alphafold.ebi.ac.uk.

[11] James Kirkpatrick, Brendan McMorrow, David H. P.
Turban, Alexander L. Gaunt, James S. Spencer,
Alexander G. D. G. Matthews, Annette Obika, Louis
Thiry, Meire Fortunato, David Pfau, Lara Román
Castellanos, Stig Petersen, Alexander W. R. Nelson,
Pushmeet Kohli, Paula Mori-Sánchez, Demis Hassabis,
and Aron J. Cohen. Pushing the frontiers of density
functionals by solving the fractional electron problem.
Science, 374(6573):1385–1389, 2021.

[12] Amir Masoud Rahmani, Efat Yousefpoor, Moham-
mad Sadegh Yousefpoor, Zahid Mehmood, Amir
Haider, Mehdi Hosseinzadeh, and Rizwan Ali Naqvi.
Machine learning (ml) in medicine: Review, applica-
tions, and challenges. Mathematics, 9(22):2970, Nov
2021.

[13] Chunming Xu and Scott A. Jackson. Machine learning
and complex biological data. Genome Biology, 20:76,
Apr 2019.

[14] Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp,
and Anubhav Jain. Benchmarking materials property
prediction methods: the matbench test set and au-
tomatminer reference algorithm. npj Computational
Materials, 6(1):138, September 2020.

[15] Takenori Yamamoto. Crystal graph neural networks
for data mining in materials science. Technical re-
port, Research Institute for Mathematical and Com-
putational Sciences, LLC, Yokohama, Japan, 2019.
https://github.com/Tony-Y/cgnn.

[16] Shyue Ping Ong, William Davidson Richards, Anubhav
Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cho-
lia, Dan Gunter, Vincent L. Chevrier, Kristin A. Pers-
son, and Gerbrand Ceder. Python materials genomics
(pymatgen): A robust, open-source python library for
materials analysis. Computational Materials Science,
68:314–319, 2013.

[17] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, 2019.

[18] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic
gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

[19] Jerry Ma and Denis Yarats. On the adequacy of un-
tuned warmup for adaptive optimization. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
35(10):8828–8836, May 2021.

7



A Additional Information

Table A.1: Formation energy prediction RMSEs are shown in eV/atom. The best RMSEs are represented in blue and red for single and ensemble
models, respectively. The corresponding database RMSE is 0.1242 eV/atom.15

Graph dh Single Ensemble

NC2 96 0.10812 ± 2.5 × 10−4 0.09866
192 0.10363 ± 1.0 × 10−3 0.09593

NC3 96 0.10141 ± 4.3 × 10−4 0.09180
192 0.09745 ± 3.2 × 10−4 0.08947

BEL 96 0.09281 ± 8.3 × 10−4 0.08480
192 0.09109 ± 4.9 × 10−4 0.08392

Ens. 96 0.08563 ± 1.1 × 10−4 0.08214
192 0.08375 ± 4.0 × 10−4 0.08083

Table A.2: Volume deviation prediction RMSEs. The best RMSEs are represented in blue and red for single and ensemble models, respectively.
The corresponding database RMSE is 0.0421.15

Graph dh Single Ensemble

NC2 192 0.03576 ± 3.2 × 10−4 0.03261
288 0.03549 ± 6.3 × 10−4 0.03253

NC3 192 0.03298 ± 1.0 × 10−4 0.03021
288 0.03250 ± 3.8 × 10−4 0.03009

BEL 192 0.03071 ± 3.7 × 10−4 0.02840
288 0.02983 ± 2.7 × 10−4 0.02810

Ens. 192 0.02844 ± 5.2 × 10−5 0.02739
288 0.02832 ± 8.6 × 10−5 0.02743

Table A.3: Band gap prediction RMSEs evaluated on (left) the whole dataset, (middle) the metal subset, and (right) the insulator subset are
shown in eV. The best RMSEs for single and ensemble models are represented in blue and red, respectively. The corresponding database RMSE
is 0.5288 eV for the whole data, 0.3568 eV for the metal subset, and 0.6794 eV for the insulator subset.15

Whole Metal Insulator

Graph Single Ensemble Single Ensemble Single Ensemble

NC2 0.39881 ± 3.6 × 10−3 0.36846 0.21713 ± 1.4 × 10−2 0.19286 1.01004 ± 3.7 × 10−2 0.94653

NC3 0.35293 ± 7.5 × 10−3 0.32223 0.19267 ± 9.4 × 10−3 0.17068 0.89354 ± 2.4 × 10−2 0.82458

BEL 0.35588 ± 5.5 × 10−3 0.32260 0.21228 ± 5.0 × 10−3 0.19001 0.86942 ± 1.0 × 10−2 0.79261

Ens. 0.31839 ± 7.3 × 10−4 0.30734 0.17623 ± 2.6 × 10−3 0.16811 0.80227 ± 2.3 × 10−3 0.77779

Table A.4: Total magnetization prediction RMSEs evaluated on (left) the whole dataset, (middle) the nonmagnet subset, and (right) the
magnet subset are shown in µB/atom. The best RMSEs for single and ensemble models are represented in blue and red, respectively. The
corresponding database RMSE is 0.4003 µB/atom for the whole data, 0.1399 µB/atom for the nonmagnet subset, and 0.7824 µB/atom for the
magnet subset.15

Whole Nonmagnet Magnet

Graph Single Ensemble Single Ensemble Single Ensemble

NC2 0.18581 ± 1.8 × 10−3 0.17451 0.10130 ± 2.1 × 10−3 0.09602 0.26640 ± 2.2 × 10−3 0.24970

NC3 0.18494 ± 9.5 × 10−4 0.17424 0.09841 ± 7.9 × 10−4 0.09318 0.26653 ± 1.3 × 10−3 0.25083

BEL 0.18328 ± 1.9 × 10−3 0.17406 0.09997 ± 1.1 × 10−4 0.09520 0.26275 ± 3.3 × 10−3 0.24938

Ens. 0.16945 ± 1.3 × 10−3 0.16564 0.09221 ± 1.5 × 10−4 0.09034 0.24305 ± 2.2 × 10−3 0.23747
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