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Abstract: Cross-stream cutters are widely used in the mining and resources industry to obtain
representative samples of particulate flows. Discrete element modelling (DEM) and analysis can
be used to investigate influences of operational parameters, sampler design and material physical
properties in the generation of the Increment Extraction Error (IEE), which when present, results
in a frequently biased, non-representative sample. The study investigates the practicality of the
rules and recommendations proposed by Dr. Pierre Gy that were developed and established as
principles for the correct extraction of samples in industrial sampling equipment. Results validate
Pierre Gy’s sampling theory using DEM in a cross-stream cutter of a sulphide gold plant. Importantly,
the outcomes indicate that careful consideration must be given to physical ore properties and,
consequently, that sampling systems should be developed specifically to each application.

Keywords: sampling; discrete element modelling; processing; gold plant

1. Introduction

AngloGold Ashanti is a mining company and the third biggest gold producer in the
world. In Brazil, AngloGold has business units in the states of Minas Gerais and Goias
(Figure 1). The Corrego do Sitio Complex (CDS) is located in the city of Santa Bárbara in
the state of Minas Gerais and has extracted gold from underground and open pit mines
for over 187 years. The gold extracted from underground mines is mainly associated
with sulphides, representing 75% of total production. The processing plant is composed
of a comminution circuit, concentration by flotation, pre-treatment of the concentrate in
autoclave, concentrate leaching and gold recovery by electrowinning.

The process of sampling is important in industrial circuits and is essential to obtain
representative samples of grades, moisture, or size distribution of a lot. The theory of
sampling (TOS), developed by the French chemical engineer Pierre Gy in the second half
of the twentieth century, covers a range of mathematical and statistical principles, besides
empirical and practical parameters [1]. This theory is highly used for modern studies in
the field of gold sampling and reconciliation [2].

Based on Pierre Gy’s TOS, the process of gold grade estimation is divided basically
into three main stages: (1) the primary sampling of a given lot, (2) the secondary sampling
or preparation of the sample, and (3) the chemical analysis. Each stage generates errors,
characterized by their variance, which can be added, resulting in the overall estimation
error (OEE). Of these errors, the Increment Extraction Error (IEE) presents one of the biggest
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sources of sampling biases [3] and is directly influenced by material properties and cutter
design [4].
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From the work of Pierre Gy, a set of parameters are proposed as a guide for correct
design of sampling equipment. Parameters for cutter aperture, angle and velocity are the
most used in new or Greenfield projects and cover a set of specifications for best practice.
However, Brownfield projects with layout or structural constraints present a challenge for
designing equipment which can incorporate all of the recommended parameters.

Due to the high variability between material physical properties, the recommended
parameters to design samplers need to be used carefully and cannot be taken as universal
truths [5]. For this, a detailed study of the physical properties of the material to design
custom equipment specific for each application is necessary. Based on the physical material
properties obtained through characterization of the materials to be sampled and discrete
element modelling (DEM) simulation, it is possible to evaluate sampling theory parameters
and determine the optimal design and operational configurations.

The availability of experimental or industrial test work is often restricted, which leads
to the search for appropriate computational methods to simulate the performance and
behavior of the granular flows in samplers, allowing for evaluation of sampling theory
parameters that determine the best design and operational configurations.

The discrete element method (DEM) has quickly grown as a tool to perform such a
task. It calculates the motion of each individual particle within a simulation domain and
their interaction using contact models. Model parameters include restitution and friction
coefficients. One of the first applications of DEM in modeling samplers and cutters have
dealt with cross-stream cutters, cross-belt and rotative samplers (vezin type) [6–9].

According to Cleary and Robinson [9], the use of DEM simulations to investigate
samplers present an advantage over experimental procedures as simulations allow for
the use of a reference sample that can be precisely the same as a sample of the stream
of material, thus eliminating a significant part of variability and allowing for obtaining
representative samples with fewer replicates.

Subsequently, a range of works were developed in the field of simulation for evaluat-
ing bias in different types of samplers for different particulate materials and plant pulp
streams [6–8,10,11]. Unfortunately, aside from these studies, the investigation of sampling
systems using DEM in academic literature is rather limited.

It is essential that the design of the sampling system is correct to extract accurate
increments. Based on Pierre Gy’s TOS and on studies carried out by Pitard [5], Figure 2
shows the recommendations for a correct sampler design to mitigate the IEE.
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It should be noted that these recommendations are based on the principles of the
sampling theory to avoid high errors, but it is also worth noting that these parameters do
not take into consideration the physical properties of the material to be sampled.

The work in this article aims to validate and recommend new parameters for the
Pierre Gy sampling theory for a sulphide gold ore, using calibrated DEM simulations and
analysis of a feed cross-stream cutter of a sulphide gold plant. The simulations will provide
information to evaluate the increment extraction in the feed sampler at the plant.

2. Configuration of the Sampler and Simulations

The DEM is a computational tool that involves the resolution of momentum equations
for many particles. Initial concepts were developed in the field of rock mechanics in
the mid-seventies for studies related to movement of rock masses [12]. Recently, in this
burgeoning field, many different studies for a range of applications including transfer
chutes [13], silos [14], feeders [15], sampling systems [6–11], blending and mixing [16],
conveyor belts [17,18] and screens [19] have been undertaken.

The simulation consists of a numerical algorithm that resolves the movement and
interactions between independent particles, calculating their position individually (particle
per particle) in each time interval. One of the most widely used software programs is
Rocky 4.3, provided by Engineering Simulation and Scientific Software (ESSS Company,
Florianópolis, Brazil) [20], which has a user-friendly interface and several available par-
ticle interaction models, such as those used to calcite contact outcomes. In general, the
simulations are based on the calculations of both normal and tangential forces originating
from both particle and boundary interactions. In this work, the contact model used in the
simulations was the hysteretic linear spring with rolling friction type C. Additionally, due
to the characteristic cohesive behavior of the sample, a particle-to-particle adhesion model
was used, which is calculated according to the distance between particles and a force of
attraction that is dependent on the mass of the contacting particles [21,22]. Both models are
implemented in Rocky 4.3.

The plant feed cross-stream cutter is constituted by a belt that receives crushed ore
from a silo. The ore is fed in the sampler by a flap that orientates the ore for the cutter.
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The flow into the equipment is controlled by the grinding throughput and the cutter is
triggered at 10-min intervals. Figure 3 shows the equipment design and the cutter at the
time of sampling.
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The sampler follows the specifications given below:

• Movement direction: perpendicular to the flow;
• Cutter aperture (A): 60 mm;
• Cutter edge angle (γ): 70◦;
• Cutter angle (α): 60◦;
• Cutter velocity (Vmax): 45 cm/s;
• Solids feed rate: 73 t/h.

To perform the DEM simulations, a proper set of material and contact parameters
must be specified [23] for both particles and the surfaces present in the simulated system.
Based on DEM studies to detect bias in sampling equipment [9] and our own for particulate
flows [13,21,22], the following modelling premises were used:

• The Young’s Modulus (or Loading Stiffness) for particles was 1 × 107 N/m2, and for
boundaries, 1 × 1011 N/m2;

• The constant adhesive model was used, and the adhesive distance was based on
1/2 particle diameter of the smallest group of particles;

• The restitution coefficient for all particles and all types of interactions was 0.3;
• The friction coefficient for particle/belt interactions was 0.7;
• The friction coefficient for particle/boundary interactions was 0.5.
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The modelling between particle/particle interactions was obtained based on the cali-
bration of the coefficient of sliding friction, rolling friction and attractive force, representing
the physical parameters obtained in the laboratory tests.

3. Materials and Methods

The methodology applied included three major steps: (1) characterization of physical
properties of the ore in the laboratory; (2) calibration of the particle/particle interactions
model in Rocky 4.3 (ESSS), and (3) simulation and analysis.

The parameters from ore characterization include:

• Bulk density;
• Particle density;
• Size distribution;
• Gold analysis by size;
• Internal friction angle;
• Repose angle;
• Moisture.

Approximately 100 kg of crushed ore in the plant feed sampler was collected for
testing and calibration. Aiming for a challenging condition of sampling, the ore was
collected during production at a time that moisture is considerably high (2–3% w.b.).

The bulk density of the ore was determined by utilizing a 2-L beaker and digital scale,
based on internal standard procedure of AngloGold. For the particle density, a 100 mL
pycnometer was utilized, and the size distribution was made by dry screening in a Tyler
series of sieves between 15,000 and 74 µm. After separation of the fraction by screening,
the masses were sent to the chemical laboratory for gold grade analysis.

To approximate the internal friction angle, a slump plane or shear box test was
used [24]. The shear box is made of acrylic glass. The box has a length of 400 mm, a width
of 300 mm and a height of 400 mm. The right-hand wall is a flap that can be opened to
allow the bulk material to flow out of the box. As defined in [24], the internal friction
angle is indicated by the angle of the formed slope. The test was undertaken three times
for repeatability.

The angle of repose was obtained using a lifting cylinder test. The bulk material was
poured into a hollow 100 mm diameter and 300 mm height cylinder until it was com-
pletely filled. After filling, the cylinder was raised at a constant velocity of approximately
200 mm/s and the bulk material flowed out of the cylinder bottom to form a bulk material
pile. The repose angle is the angle measured between the cone and the plane. The test was
undertaken three times for repeatability.

As an alternative to direct measurement of contact parameters [23], calibration best
practices recommends that the DEM calibration is performed using different tests that
explain different material properties [23,25]. In addition to the shear box test and the
lifting cylinder test, a draw down [25] test was also performed. The apparatus length
is 400 mm, width is 300 mm, and depth is 100 mm for the upper box. For the lower
box the length is 450 mm, width is 350 mm, and depth is 150 mm. The upper box has
a rectangular opening at the bottom center, which can be suddenly opened via flaps to
allow the discharge of the bulk material sample. This aperture corresponds to 1/5 of the
upper box width and is designed to have a minimum of 3 times the diameter of the biggest
particle in the system [26]. The outflowing bulk material forms a pile in the lower box,
while the remaining bulk material forms two slopes in the upper box. After the discharge,
the measurements of the internal friction angle (angle of the slopes in upper box) and
repose angle (angle of the slope in the lower box) are taken. The test was undertaken three
times for repeatability.

All of the laboratory tests to obtain internal friction angle and repose angle are based
on procedures previously described by Roessler et al., 2019 [25].

The DEM calibration effectively results in obtaining a set of parameters that represent
the experimental laboratory tests results [27]. Similar to the application of DEM in practice,
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DEM calibration is also a topical and widely investigated field of research itself [23,28–31];
however, in this case it is not the focus of analysis. The main parameters for calibrating the
interactions between particles in Rocky 4.3 for the purposes of this study are:

• Sliding friction coefficient;
• Rolling friction coefficient;
• Attractive force;
• Particle size;
• Particle shape.

The particle size distribution used in the DEM simulations was exactly the same as
the particle size distribution of the physical bulk solid material tested in the laboratory and
handled in practice. Here, 5 groups of particles related to sizes 100%, 95%, 80%, 50%, and
25% mass passing (P100, P95, P80, P50, and P25) were defined. Due to computational time
required and computer processing capability, particles below 2.5 mm were not modelled.
Particle shape was considered spherical for all the simulations, both out of practicality to
reduce computation time and since the TOS is based on studies that considered perfect
spheres [3].

The sliding and rolling friction coefficients are the most impacting parameters in the
physical behavior of non-cohesive material [32]. However, cohesion and adhesion are
directly related to material moisture and the presence of fine particles [29,30].

To reduce the number of simulations for calibrating particle interactions, DoE (de-
sign of experiments) was used. The DoE is a statistical optimization method to deter-
mine relations between factors (variables). For this work, a full factorial design (FFD)
was chosen, which is the most indicative when the analysis includes three or more vari-
ables [33]. This approach builds on previous academic research on the use of DoE in DEM
calibration [34,35]. The experimental factorial analysis was generated and analyzed using
the Minitab17 statistical software [36].

High and low levels were defined, based on previous studies conducted by Ilic [21],
for each variable in analysis (sliding friction coefficient, rolling friction coefficient and
attractive force) as shown in Table 1.

Table 1. Definition of high and low levels for the parameters considered in the calibration.

Parameters
Level

Low High

Sliding friction coefficient 0.1 0.9
Rolling friction coefficient 0.1 0.9

Attractive force 0.5 1.0

For each laboratory test, 16 tests were generated in the DoE matrix, resulting in
a total of 48 DEM simulations in the calibration of the parameters within the particle
interaction model. Following calibration, 75 DEM simulations were performed to evaluate
the following 5 parameters of sampling theory as presented in Figure 2:

• Cutter aperture (A);
• Cutter angle (α);
• Cutter edge angle (β);
• Cutter velocity (Vmax);
• Solids feed rate in the sampler.

For each of the above-mentioned variables, 5 levels, as shown in Table 2, were analyzed.
Additionally, all the simulations were performed in triplicate, including the original project
configuration (described previously in Section 2).
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Table 2. Determination of levels for each simulated parameter.

Levels
Cutter

Aperture
Cutter

Velocity
Cutter
Angle

Cutter Edge
Angle Solids Feed Rate

mm cm/s ◦ ◦ t/h

1 15 (1D) 45 20 1 60
2 22.5 (1.5D) 60 30 20 73
3 30 (2D) 75 40 35 90
4 45 (3D) 90 50 50 105
5 60 (4D) 105 60 70 120

An equation was used to quantify the ratio of extraction for each particle group. It
was defined as an initial mass group, the mass of particles in a specified diameter before
sampling. In addition, the final mass group was defined as a final mass of particles in a
specific diameter after sampling. The equation compares the percent of particle mass group
collected in the sample and the original percent mass group of the lot. The equation is
represented below.

Extraction (%) j = (Mfg/Mft)/(Mig/Mit) × 100, (1)

where:
j = Index of particle group;
Mig = Initial group mass (lot);
Mit = initial total mass (lot);
Mfg = Final group mass (sample);
Mft = Final total mass (sample).

All test simulations were performed in triplicate, with the results presented as the
average of the three tests.

4. Results
4.1. Physical Parameters Characterization

Figure 4 illustrates the laboratory tests to determine the internal friction angle and
repose angle, while Table 3 represents the summary of test results. The repose angle
test resulted in angles ranging from 26◦ up to 32◦, while the shear box test resulted in
internal friction angles of 57◦ up to 61◦ while presenting similar material profiles inside the
apparatus. Finally, the draw down tests resulted in similarly reposed angles as obtained
in the repose angle test, while the internal friction angle resulted in slightly higher angles
(66◦–70◦) when compared to those obtained in the shear box test.

Gold grade analysis in each screening fraction showed a progressive increase in the
concentration of gold with the decrease in the particle size (Table 4).

4.2. Particle Interactions Calibration

Based on particle size distribution, it is noted that 25% of the particles can be consid-
ered fines (<2.5 mm) for the DEM simulations. Simulating particles below 2.5 mm would
result in a large number of particles generated within the system, which may make the
performance of simulations unfeasible due to limited processing capacity and the long
time demanded. Consequently, the smallest particle size was limited to 2.5 mm. To reduce
the number of simulation tests and reduce the time required in the calibration steps even
further, the DoE factorial experiment was used.

The factorial experiment was created using a 16 tests matrix with two replicates.
The following equations show the regression obtained, which describes the relationship
between the response and the terms in the model for each physical parameter.

Repose angle (lifting cylinder test: R2 = 96.61%) = 8.39 + 9.84 × A − 7.03 × B + 5.5 × C +
32.81 × A × B + 2.5 × A × C + 16.25 × B × C − 37.5 × A × B × C,

(2)
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Internal friction angle (shear box test: R2 = 99.95%) = 20.79 + 8.98 × A + 13.36 × B + 6.42 × C
− 2.34 × A × B − 11.72 × A × C − 10.47 × B × C + 79.69 × A × B × C,

(3)

Repose angle (draw down test: R2 = 98.14%) = 26.5 − 6.88 × A + 0.62 × B − 5.91 × C +
12.5 × A × B + 9.38 × A × C + 11.88 × B × C + 6.2 × A × B × C,

(4)

Internal friction angle (draw down test: R2 = 98.83%) = 25.39 + 1.72 × A + 17.34 × B +
3.97 × C + 20.3 × A × B + 2.81 × A × C − 3.44 × B × C + 9.4 × A × B × C,

(5)

where:
A = Rolling friction coefficient (-);
B = Sliding friction coefficient (-);
C = Attractive force (-).
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The above regression equations describe the relationship between the response and
the terms in the model. The constants were obtained based on a linear model fitted to
this data set [37,38]. From the factorial experiment, it was possible to identify variable
combinations to optimize the response. In this study, the response optimization from
Minitab 17 was used to define a set of values that represents the results of the physical
material parameters obtained from the laboratory tests. This process of optimization is
based on the maximization of the composed desirability that represents a set of values
that predict the targets defined in the optimization most accurately. Tables 5 and 6 show,
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respectively, the targets to be attained in the optimization and the three possible sets of
parameters (Solutions) that best replicate the target values.

Table 3. Summary of Laboratory test results.

Parameters Unit Value Std.

Moisture (w.b.) % 2.30 0.16
Bulk density g/cm3 1.70 0.10

Particles density g/cm3 2.83 0.01
Repose angle (lifting cylinder test) ◦ 29 1.91

Internal friction angle (shear box test) ◦ 59 2.08
Repose angle (draw down test) ◦ 28 2.80

Internal friction angle (draw down test) ◦ 67 2.56

Table 4. Summary of size distribution and gold grade based on particle group.

Group
n◦

Passing
%

Size
mm

Mass Distribution
%

Gold Grade
g/t

1 100 15.0 5% 1.98
2 95 13.3 15% 2.23
3 80 10.0 30% 2.77
4 50 6.3 25% 2.47
5 25 2.5 25% 3.54

Table 5. Definition of targets to response optimization.

Response Low Value Target High Value

Repose angle (lifting cylinder test) 12◦ 29◦ 34◦

Internal friction angle (shear box test) 25◦ 59◦ 90◦

Repose angle (draw down test) 22◦ 28◦ 50◦

Internal friction angle (draw down test) 28◦ 67◦ 70◦

Table 6. Optimization solutions.

Solution

Variables
Composed

DesirabilityRolling Friction
Coefficient

Sliding Friction
Coefficient Attractive Force

1 0.89 0.61 0.72 0.79
2 0.69 0.90 0.58 0.78
3 0.62 0.90 0.60 0.76

From the list containing the best three solution candidates in Table 6 obtained from
Equations (2)–(5), Solution 2 presents the best fit for the target values in Rocky simulations.
Assuming high values of rolling friction and attractive force as proposed by Solution 1, the
material did not flow in the draw down test, blocking the apparatus. DEM simulations of
the three laboratory experiments were then performed using the three solution candidates.
The comparison of the target values and the simulated values are presented in Table 7 and
illustrated in Figure 5.

Table 7. Simulated parameters, including the best fit given by Solution 2.

Response Target Solution 1 Solution 2 Solution 3

Repose angle (lifting cylinder test) 29 32 30 40
Internal friction angle (shear box test) 59 61 60 58

Repose angle (draw down test) 28 Material
didn’t flow

28 36
Internal friction angle (draw down test) 67 66 65
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ters (Solution 2): (a) Lifting cylinder test, (b) Shear box test, and (c) Draw down test.

When comparing the simulation using the Solution 2 parameter set to the images of
the experiments, one can notice that the calibrated DEM simulations were able to describe,
with good accuracy, the material profile for each experiment, in particular for the tests that
involved larger sample volumes as in the shear box and draw down tests.

4.3. Simulations

The simulations were performed varying one parameter per time based on the original
project configuration of the sampler.

4.3.1. Cutter Aperture

The sampling theory parametrized the cutter aperture for a minimum of 3 times the
size of the largest particle (or d95) of a lot. Figure 6 shows the simulation results varying
the cutter aperture for the cross-stream cutter.
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Figure 6. Extraction in cross-stream cutter as function of the cutter aperture.

It should be noted that a reduction in the extraction occurs as the aperture approximates
the size of the coarsest group of particles. The coarsest group presents 42.9% extraction for
cutter aperture equal to its diameter, represented by Simulation 1 (1D). The other point
observed in Simulation 1 is the cutter’s obstruction for such a small aperture, as showed in
Figure 7b. In addition, the reduction of the flow velocity due to the blockage of the cutter
for narrowed apertures was also observed (Figure 7).
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Figure 7. Close up view of the cutter in operation in two diferent DEM simulations. Particles’ velocity in cutter’s top: dark
blue low velocity and light blue high velocity. (a) Simulation 05: 4D; (b) Simulation 01: 1D.

In this case, extractions above 90% were only observed when the cutter aperture
simulated was 4 times the size of the largest particle (Simulation 5). This observation is
directly comparable to the principles of mass flow geometry in bins and silos [39]. That
is, to prevent a mechanical arch from forming, the opening dimension should be at least
4 times the maximum particle or lump size.

4.3.2. Cutter Angle

In these simulations, the main problem observed was the blockage of the cutter for
cutter angles below 50◦ due to the reduction of the flow velocity (Figure 8). According
to the experimental results, the internal angle of friction (draw down) and internal angle
of friction (shear box) were both above 59 degrees. Therefore, these results show that the
criteria for selecting the cutter angle could indeed be related to the internal angle of friction
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of the bulk material handled. This is an important finding that could be integrated within
Pierre Gy’s theory of sampling recommendations, shown previously in Figure 2. This
finding is also analogous to the design of minimum chute inclinations including dribble or
fines chutes in the field of transfer chute design [13]. Figure 9 summarizes the calculated
extraction ratio for these simulations.

Minerals 2021, 11, x 13 of 19 
 

 

criteria for selecting the cutter angle could indeed be related to the internal angle of 
friction of the bulk material handled. This is an important finding that could be integrated 
within Pierre Gy’s theory of sampling recommendations, shown previously in Figure 2. 
This finding is also analogous to the design of minimum chute inclinations including 
dribble or fines chutes in the field of transfer chute design [13]. Figure 9 summarizes the 
calculated extraction ratio for these simulations. 

 
Figure 8. Top view of the system showing particles inside the cutter. Particles are colored according to their velocity being: 
dark blue low velocity and light blue high velocity. (a) Simulation 05: 60°, (b) Simulation 04: 50°, (c) Simulation 03: 40°, (d) 
Simulation 02: 30°, (e) Simulation 01: 20°. 

 
Figure 9. Extraction in cross-stream cutter as function of the cutter angle. 

4.3.3. Cutter Edge Angle 
Despite significant variations in the extraction ratio for size classes between 2.5 and 

13.3 mm not being observed, a drop in the extraction ratio was observed for particles of 
the coarsest size group (15 mm), as can be seen in Figure 10. With the reduction of the 
cutter edge angle below 50°, an accumulation of fine material on the main sloping surface 
was also observed (Figure 11), showing an inadequate sampling condition in the 
simulation 3. This result compares well with discussion made in Section 4.3.2, which show 
that also the cutter edge angle could indeed be related to the internal angle of friction. Due 
to an increase in extraction of fines, low extraction ratios in the coarsest size were noted. 

0%
20%
40%
60%
80%

100%
120%
140%

2.5 6.3 10 13.3 15

Ex
tr

ac
tio

n 
ra

tio

Particle size (mm)

Simulation 01: 20° Simulation 02: 30° Simulation 03: 40°

Simulation 04: 50° Simulation 05: 60° Target
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(d) Simulation 02: 30◦, (e) Simulation 01: 20◦.
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Figure 9. Extraction in cross-stream cutter as function of the cutter angle.

4.3.3. Cutter Edge Angle

Despite significant variations in the extraction ratio for size classes between 2.5 and
13.3 mm not being observed, a drop in the extraction ratio was observed for particles of the
coarsest size group (15 mm), as can be seen in Figure 10. With the reduction of the cutter
edge angle below 50◦, an accumulation of fine material on the main sloping surface was
also observed (Figure 11), showing an inadequate sampling condition in the simulation 3.
This result compares well with discussion made in Section 4.3.2, which show that also
the cutter edge angle could indeed be related to the internal angle of friction. Due to an
increase in extraction of fines, low extraction ratios in the coarsest size were noted.
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Figure 10. Extraction in cross-stream cutter as function of the cutter edge angle.
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Figure 11. Snapshots of the DEM simulation of the case 03 (35◦) showing the fines stuck in the slope of the cutter, red
represents 2.5 mm particles and yellow represents 6.3 mm particles.

4.3.4. Cutter Velocity

With the increase in the cutter velocity, a projection of fine particles being dragged
to the sample was observed. This systematic error represents a bias in the sampling
process (shown in Figure 12) and must be mitigated to obtain an accurate sample. The bias
manifests in the results presented in Figure 13 by an extraction ratio exceeding 100% for
the finest particle group (2,5 mm). The results indicate that a cutter velocity of 45 cm/s
(Simulation 1) showed the most consistent results for the five particle groups considered.

Analyzing the proportions of mass collected by each group and comparing the grades
between the original lot and the sample, a bias in the gold content of +0.12% was identified,
resulting from the contamination of fine particles in the sample. The grades for each particle
group were obtained from laboratory tests as discussed in Section 4.1.

Based on historical data from the CDS site and confirmed by the gold grade analy-
sis, the gold tends to concentrate in fine particles, showing the importance of having a
representative sample for each particle group. Table 8 shows this comparison. Excellent
agreement can be observed.
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Table 8. Comparison between both grades lot x sample.

Parameter Lot Sample

Size (mm) 2.5 6.3 10.0 13.3 15.0 2.5 6.3 10.0 13.3 15.0
Size distribution (%) 25.0 25.0 30.0 15.0 5.0 25.3 24.8 29.8 15.5 4.6

Grade per group (g/t) 3.54 2.47 2.77 2.23 1.98 3.54 2.47 2.77 2.23 1.98
Total grade (g/t) 2.767 2.770

4.3.5. Solids Feed Rate

The solids feed rate is directly related to the velocity with which the particles enter
the cutter. The extraction for the solids feed rate is shown in Figure 14.
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Figure 14. Extraction in cross-stream cutter as function of solids feed rate.

Bias or significant variations were not observed in the extraction with the increase
or reduction of the solids’ feed rate, showing that the system was well dimensioned. The
main observation here is that, with the increase in the solids feed rate, the problem of fines
dragging into the sample tends to increase. However, the problem seems to be much more
influenced by the cutter speed (as discussed in the previous section).

5. Conclusions

The proposed methodology for simulating the cross-stream cutter was successfully
applied, validating all simulations by the quality of the particle interactions calibration in
DEM (Rocky 4.3 software provided by ESSS), obtaining values extremely close to those
obtained in laboratory tests. Further, as an aside outcome, use of DoE factorial analysis to
calibrate DEM parameters was also demonstrated.

The hybrid procedure for the parameter calibration of parameters used in DEM
simulations, which combined the use of literature parameters for the particle–surface
interactions with the experimental tests for the particle–particle interactions, showed itself
to be adequate, as the results obtained in the laboratory were reproduced in the DEM
environment with good accuracy in terms of repose and internal friction angles.

Based on the simulations and analysis carried out in this study, it is concluded that,
for a high moisture gold ore, the main sampling problem is related to obstruction of the
collectors and, therefore, a correctly dimensioned sampler is essential to ensure the mitiga-
tion of the IEE. The IEE is of great relevance to the overall sampling error, representing one
of the biggest sources of sampling biases and directly influenced by material properties
and cutter design.
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A systematic error was identified in the sampler with contamination of fines into the
sample, which generates a small bias. The bias found was +0.12%, reflecting a minimal
and negligible impact on the sample grade. This result compares well with historical site
data, corroborating with the gold concentration into fine particles, showing the importance
of having a representative sample for each particle size group.

It is also concluded that the design of samplers must take into consideration the
physical properties of the ore and, consequently, customized systems must be developed
for each application. Highlighted in this study is the influence of the maximum particle
size (or coarsest size fraction) and the internal angle of friction of the material handled. The
ideal parameters found through this work were:

• Cutter aperture (A): 4 times the diameter of the largest particle;
• Cutter angle (α): ≥50◦;
• Cutter edge angle (γ): ≥50◦;
• Cutter velocity (Vmax): ≤45 cm/s;
• Solids feed rate in the sampler: All the simulations presented acceptable results for

extraction ratio.

It should, however, be noted that this study was carried out for a particular gold ore
in Brazil and, therefore, its results may not be applicable to other types of gold ore. The
recommendations for designing samplers according to the TOS developed by Pierre Gy is,
in practice, a reference guide, but they must be used with caution and each new project
must be analyzed very carefully.
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