aiE - An AGI API

1 Engines, functions, and operations

1.1

1.2
1.3

Engines
1.1.1 Synthesis Engines
1.1.2 Analysis Engines
1.1.3 Lossless Transformations . .
Functions (flows)
Operations

2 Applications

2.0.1 A caseinsynthesis: leafengine L L L L L oL
2.0.2 A case in analysis: image recognition, harmonic analysis, physical weathering
2.0.3 Application cases: echo.state, Instagram, Facebook

3 Environments

4 Expressions

4.1
4.2
4.3
44
4.5

Verbal and non-verbal expressions .
Shape Shifting
Mass Synthesis
Semantic Syncing
Shape Shifting, Syncing, & Synthesis

aiE - An AGI API

ai expressions
An AGI API

Erick O. Oduniyi
Intelligent-Interfaces Group, USA

When we talk about ai expressions we must first talk
about engines, functions, and operations.

A process or sequence of functions that creates or adds
information’.

ES : fl — ... = fn S {Sn,Sl | H(Sn) > H(Sl)} (1)

A process or sequence of functions that removes or
subtracts information”.

FEy: f1 — ... — fn S {Sn,Sl |H(Sn) < H(Sl)} (2)

A process or sequence of functions that don’t add or
remove any information.

T:fi— .. &> fne{Sn,S1|H(S,) =H(S1)} ()

Any mathematical function.

A collection of unary, binary, and/or ternary opera-
tions.

'Engines with function names like generate, create, add, synthe-
size, build, compose, mutate are strong candidates for being syn-
thesis engines.

’Engines with function names like remove, subtract, decimate,
analysis, break, decompose, mutate are strong candidates for be-
ing analysis engines.

Once you have defined engines, functions, and oper-
ations we can begin to compose larger computational
structures. The most important composition of these
fundamental concepts is an application — a system
that utilizes both synthesis and analysis engines. Neces-
sarily, these engines are composed of functions and
operations within and over them.

The leaf.engine created by Erick Oduniyi is an exam-
ple of a synthesis engine: adds and formats files to
hyper-pages, which uses a function called generate()
— a mathematical function that takes as input a set of files
and outputs those files bounded to a hyper-page. As a re-
minder, hyper-page(s) are defined as:

4)

Where hy ¢rome (hyper-frame) and hyporger (hyper-
border) are rectangles and the operation +; is called
superimposed addition — objects are placed behind or
in-front of one another. And, in between the frame and
border is content, or hyper-content, hycontent

hl/Per'Pﬂge = hyframe +b hycontem‘, +b hybm’der

These cases (examples) are left to be imagined by the
reader’.

In the 21st Century, companies like Instagram and Face-
book develop and maintain applications (the most promi-
nent ones bearing the same name): adding, removing,
sharing stories. The echo.state’ system created by the
intelligent-interfaces Group (ii“) is also an example
of an application: echo.state makes use of both synthe-
sis and analysis engines. For example, the echo.state

*Hint: analysis engines remove information.
“Not to be confused with echo state networks

https://github.com/Intelligent-Interfaces
http://www.scholarpedia.org/article/Echo_state_network

aiE - An AGI API

application uses a function called mix() — a mathemat-
ical function that collects (transform), appends (synthesis),
or removes (analysis) sets of hyper-pages and/or book-
lets, booklet:

mix(Library) = hyper-page, ... {+, —,N, ...} ...
... hyper-page,, ... {+,—.,N, ..} ...
... booklety ... {4+, —,N,...} ...
... booklet,,

(5)

Where Library = {booklety, ... ,booklet,} (all of
the publicly available digital booklets on echo.state).
Furthermore, the mix function can perform any set or
logical operation over hyper-pages and booklets, and
thus is also an application. To be more precise, the mix
function is an application embedded in the echo.state
application! Moreover, echo.state also contains the li-
brary process, purchase process, and other engines to
make it possible for digital booklets produced with
the leaf.engine() to be interfaced with on both digital
and physical platforms.

Environments run applications. Unlike the previous
Computational structures, environments are not the-
oretical machines. We use ai expressions to describe
them, but in reality they are resource dependent sys-
tems. We will start by giving a few real-world exam-
ples of environments: Solar Systems, Planets, Continents
(climates/environments).

e Math
o Logic

e Program

Language

Body Movement

Not unlike the previous chapters and sections, this
chapter is about a tool. However, here we discuss per-
haps our lightest and most violent tool. Though, it is a
tool you've come to know intimately (consciously or
not). And while you may be familiar, there are aspects
that we believe are often taken for granted (including
by the authors). We want to highlight those aspects
here. From there, we move forward faster than ever
before.

Now, it is with great care, we discuss and deploy the
backbone of Al (ai expressions), semantic syncing:

e Semantic — relating to meaning in language or logic

e Syncing — the act of getting two elements into har-
mony

In Japanese "Ai” [/ay/] means love:

Assume Ai = “love” (6)
Let Ai = ai)
Let ai = Al 8)
©)
The future of artificial intelligence (AI):
Assume Al = "artificial intelligence” (10)
Then "love” = “artificial intelligence” (11)
Then "love” expressions = “artificial intelligence” expressions (12)

Then ai expressions = Al expressions (13)

“Love languages” was already taken.

	Engines, functions, and operations
	Engines
	Synthesis Engines
	Analysis Engines
	Lossless Transformations

	Functions (flows)
	Operations

	Applications
	A case in synthesis: leaf.engine
	A case in analysis: image recognition, harmonic analysis, physical weathering
	Application cases: echo.state, Instagram, Facebook

	Environments
	Expressions
	Verbal and non-verbal expressions
	Shape Shifting
	Mass Synthesis
	Semantic Syncing
	Shape Shifting, Syncing, & Synthesis

