
Transitioning
from Intel to

Apple Silicon

A developer’s handbook



70%
more tips



Universal binaries

What
runs

natively
on

M1?





CI/CD tools

2

At its Worldwide Developers Conference (WWDC) in June 2020,
Apple announced a major shift in their Mac hardware architecture
– namely, that a new ARM-based Apple silicon processor is
replacing the Intel chip that macOS has been running on for nearly
the past two decades.

By November, Apple had announced its first Apple silicon chip for
the Mac, the M1, and introduced a new MacBook Pro, MacBook
Air, and Mac mini powered by the M1 chip. By moving it off of Intel,
Apple is aligning the Mac with its other products like the iPhone,
iPad, and Apple Watch, all of which are based on Apple’s “system
on a chip (SoC)” processors.

Most importantly, as part of these announcements, Apple set
a two-year timeline for migrating their fleet from Intel to Apple
silicon, calling the transition “the biggest leap ever for the Mac.”

Rosetta 2 enables an Apple silicon-based Mac to run applications
built for an Intel Mac, and the latest versions of Xcode include
Apple silicon native compilers, editors, and debugging tools.
However, as most developers know (or are finding out), a
transition of this scale is not always as smooth sailing as one may
hope.

We are excited about Apple silicon, and MacStadium was the
first cloud provider to offer M1 minis in our data centers. Having
worked with Mac development teams for over a decade, we
understand the challenges that migrating from Intel to Apple
silicon could present, and we want to help make the transition a
little smoother.

In this eBook, we’ll look at what this change in architecture means
from both users’ and developers’ perspectives. We’ll look at a
variety of different paths to developing and delivering software
on Apple silicon that teams may take as they transition to this
new architecture. Finally, we’ll help navigate your transition
by identifying core factors related to your codebase, its
dependencies, and the specific Apple platform you are targeting
that may provide guidance to which path to take on your journey
from Intel to Apple silicon.

ContentsIntroduction

“With its powerful
features and industry-
leading performance,
Apple silicon will make
the Mac stronger and
more capable than ever.”

Tim Cook, Apple CEO

Introduction	 2

In a state of transition	 3
 Why the shift from Intel to
 ARM-based architecture?	 3

 What from the Intel world runs
 on Apple silicon?	 3

 Core Apple developer resources	 4

 CI/CD tools	 4

What is the motivation for running
builds and tests on Apple silicon?	 5
 Mac app builders	 5

 iOS app builders	 5

How will converting to Apple
silicon impact development?	 6
 Impacts specific to macOS
 development	 6

 Universal binaries for macOS	 6

 Impacts to development for
 other Apple platforms	 7

 Codebases that interact with
 low-level architecture features	 7

What implications will Apple
silicon have for CI/CD pipelines?	 7
 Adding Apple silicon build
 infrastructure efficiently 	 7

 Building on Intel and M1 with
 Orka 2.0	 8

 Maintaining or updating your
 CI runner	 9

Planning the transition to Apple
silicon	 10

https://www.macstadium.com
https://www.apple.com/newsroom/2020/06/apple-announces-mac-transition-to-apple-silicon/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/

3

When Apple first announced the shift to ARM-based Apple silicon architecture in June of 2020, they unveiled a
two-year transition plan to ease the shift for Apple’s developer community. Now that roughly half of that window of
time has elapsed, the landscape is looking quite a bit different for teams looking to make the transition than it did a
year ago.

Most notably, the macOS and iOS-focused developer community has been diligently converting macOS-based
development tools and their various dependencies to run natively on Apple silicon. This means that your path
to conversion is likely becoming incrementally shorter, as one of the most common blockers for teams making
the transition is the fact that they often have to wait for upstream dependencies to be converted first because
all included code – both that which your team writes and any dependencies included in the project – must be
compiled for Apple silicon.

Why the shift from Intel to ARM-based architecture?

ARM architecture is not entirely new. In fact, iOS has been running on ARM-based architecture since its inception
in 2007. It has traditionally been very attractive for mobile devices because of its excellent efficiency in terms of
energy consumption and processing speed. In that sense, Apple’s M1 chip design represents the uniting of two
different worlds in an effort to bring this same energy efficiency and processing speed to Mac. And, because of
this coming together of worlds in a hardware sense, we are also seeing software features follow suit, such as iOS
applications now being able to run natively on Mac hardware.

In a state of transition

What from the Intel world runs on Apple silicon?

Interestingly, most macOS software built for Intel – especially
software that Apple produces directly – will “just work” on Apple
silicon with the help of emulation via Rosetta 2. Rosetta 2 is
essentially an interpreter that reads binary intended to be read by
Intel machines and translates it to the variety of instructions Apple
silicon is anticipating. This generally allows the software to run quite
well. In fact, the enormous increase in processing power that the
Apple silicon provides often allows emulated applications to run
faster on Apple silicon than they did on Intel-based machines.

However, because emulation requires an additional layer of
processing in order to execute this translation of instructions, it
incurs a penalty in terms of memory usage and top-end processing
speed. This is particularly true in the case of virtualized macOS, as is
commonly used in modern CI/CD pipelines for iOS and macOS.

For a detailed breakdown of
what currently runs natively
on Apple silicon, MacStadium
is a proud sponsor of
isapplesiliconready.com,
an actively maintained list
of macOS products and
tools that have already been
converted, as well as those
slated for conversion.

What tools are
Apple silicon
ready?

https://www.macstadium.com
https://isapplesiliconready.com/

4

Core Apple developer resources

The following table highlights the massive amount of work that the macOS dev community has put into facilitating
this transition in architectures. As you can see, core Apple developer resources are unlikely to be a blocker for
your team as you make this transition.

CI/CD tools

In addition to the core resources above, you’ll also want to consider whether or not your CI runner has been
converted to run natively on Apple silicon.

Product Runs natively on Apple silicon Runs in Rosetta 2 on Apple silicon

macOS 11+  

Xcode 12+  

Homebrew  

CocoaPods  

Fastlane  

Product Runs natively on Apple silicon Runs in Rosetta 2 on Apple silicon

Jenkins  

GitHub Actions  

GitLab Runner  

Buildkite  

Azure DevOps  

Bamboo  

(.NET 6.0 requirement released)

(.NET 6.0 requirement released)

as of December 13, 2021

https://www.macstadium.com

5

There are essentially two different perspectives about migrating
software development to Apple silicon. And each of these camps
has a different set of motivating factors for both when and why
they will ultimately execute the change.

Mac app builders

The first group is the most obvious. Teams that are building
applications specifically for macOS will need to build their code
on Apple silicon in order for their end-users to be able to run that
same code on their local M1 Mac. Ultimately, as Apple migrates all
of its Macs to Apple silicon and away from Intel, apps will need to
be built for Apple silicon. And even during the two-year transition,
arguably macOS apps will perform better if they do not rely on
Rosetta 2.

iOS app builders

Conversely, teams that are targeting other platforms, such as iOS,
will have more peripheral motivations for making the change. In
the near term, these include the opportunity to benefit from Apple
silicon’s massive increase in processing speed and power. This will
allow builds and tests to run much faster, which in turn means that
development teams will lose less time waiting for the execution of
CI/CD workflows.

However, these same iOS dev teams will soon have a more
pressing motivation for building and testing their software on
Apple silicon. Namely, as part of Apple’s transition process, new
Xcode releases will require Apple silicon. This means that in order
to continue to produce new and exciting applications that take
advantage of the latest available user enhancements and security
features, teams will need to convert their development and CI/CD
to target Apple silicon.

What is the motivation for
running builds and tests on
Apple silicon?

macOS



https://www.macstadium.com

6

Regardless of the platform that you are targeting – macOS, iOS, or anything else – all upstream dependencies
required by your Xcode project must first be built for Apple silicon. Until that has been done, the best you will be
able to achieve is emulation with Rosetta 2.

Beyond that requirement, which platform you are targeting becomes important. There are different considerations
when building apps for macOS itself versus building for any of the other platforms that require macOS for
development but not directly for delivery of an end product (iOS, watchOS, etc.).

How will converting to Apple silicon impact
development?

Impacts specific to macOS development

Developing for macOS, in particular, presents the unique
challenge of delivering an end product for a user-base that
is spread across two distinct architectures – Intel and Apple
silicon. In the near term, the majority of Mac users will be
on existing Intel machines, but as new M1 hardware is made
available, a steadily increasing percentage of users will
move to Apple silicon.

The core takeaway here is that macOS apps need to
be built for both platforms because your end-users are
currently working on both types of machines. The building
of macOS apps for Intel-based and Apple silicon can be
achieved in one of two ways: either target both Intel-based
Macs and Apple silicon separately when compiling binaries
or target something called a universal binary.

Universal binaries for macOS

Universal binaries contain executable code
for both Apple silicon and Intel-based
architectures. This means that when a user
goes to download your application from the
internet if you provide a universal binary,
he or she won’t need to select the correct
version in order to successfully install the
application. Instead, the user will simply
download the supplied .dmg file and when it
runs on the user’s machine, it will determine
which architecture it is running on, and it will
execute the correct binary accordingly.

A universal binary runs natively
on both Apple silicon and Intel-
based Mac computers, because it
contains executable code for both
architectures.

https://www.macstadium.com

7

Impacts to development for other Apple
platforms

Production builds for iOS – and other non-Mac Apple platforms
– will result in the same binary because the physical hardware
these products run on (and thus the binary they can interpret) is
fundamentally unchanged by this update.

However, because most iOS development workflows involve Xcode
simulators, non-production build artifacts will only run on the
simulator associated with the architecture the build was executed
on. That is, to use the Xcode simulator on an Apple silicon machine,
the build must be executed on an Apple silicon machine as well, and
vice versa.

Codebases that interact with low-level
architecture features

If you’re interacting with low-level APIs, like the Metal API for
example, there will likely be specific changes that will need to be
made to your codebase. Apple has specifically documented such
required changes.

In addition to any changes you’ll need to make directly to your codebase, you’ll also need to update your build
infrastructure to include Apple silicon hardware. You may also want to consider selecting a CI runner that runs
natively on Apple silicon if your current solution hasn’t yet been converted.

Adding Apple silicon build infrastructure efficiently

This transition to Apple silicon is proving to be an opportunity for many teams targeting iOS and macOS builds
to rethink where their macOS compute resources live. In particular, many teams are looking to the cloud for the
sake of simplifying and reducing the cost of buying and managing a bank of Apple silicon servers. A hybrid cloud
environment is particularly appealing because these Apple silicon servers can run alongside existing Intel-based
machines in the near term, ultimately replacing the existing Intel-based servers entirely.

What implications will Apple silicon have for
CI/CD pipelines?


continuous integration

https://www.macstadium.com
https://developer.apple.com/documentation/apple-silicon/porting-your-metal-code-to-apple-silicon
https://developer.apple.com/documentation/apple-silicon/porting-your-metal-code-to-apple-silicon

8

Building on Intel and M1 with Orka 2.0

MacStadium’s Orka offers a unique opportunity to run fully
ephemeral CI/CD processes on mixed clusters consisting of
both Intel-based and M1 Macs. This means that you can spin up
single-use macOS VMs based on either architecture type from
within your CI/CD pipeline. From the same Orka environment,
you can run both Intel-based Mac and Apple silicon builds,
helping developers transition from one architecture to the other.

And once dev teams have completed the transition to Apple
silicon, converting an entire Orka cluster to M1 will be as simple
as opening a ticket with MacStadium. For teams targeting
macOS, a mixed cluster in Orka is an excellent option for
delivering an installation-friendly universal binary, as shown
below.

Orka is ideal for facilitating an extended transition period from
Intel-based to Apple silicon servers. Because you can have a
mixed Orka cluster that contains both Intel and Apple silicon-
based nodes, you can maintain the integrity of your CI/CD
processes for Intel while also beginning to run parallel builds
targeting Apple silicon.

Transition from
Intel to M1 on Orka
MacStadium solution engineers
can help guide you through
transitioning from Intel to M1.
From bare metal to Orka
virtualization, we have a solution
for your dev team. Contact us
now for more info or to get
started. Contact us now for more
info or to get started.

Mixed Orka Cluster

Apple Silicon (M1)

Intel-based Mac

ShipTuneDebugDevelop

https://www.macstadium.com
https://www.macstadium.com/contact-sales

9

Maintaining or updating your CI runner

Depending on the CI runner you are currently utilizing in your
pipeline, you may want to consider upgrading to one that runs
natively on Apple silicon, or wait to transition to Apple silicon until
your CI runner’s scheduled update, as most tools have established
timelines if they aren’t already running natively.

This may be worth the effort or the wait because early efforts to
emulate CI runners with Rosetta 2 have proven to be non-trivial
affairs. In particular, when the CI runner is stood up in emulation,
the processes that it kicks off, such as calling xcodebuild, for
example, must then break out of emulation in order to successfully
execute a native build, which has proven to be a challenge for many
early adopters.

If your current CI tooling works natively on Apple silicon, then you
can clearly move forward with the transition. But if that is not the
case, and you don’t want to go to the trouble of changing your
CI stack, you may want to wait for a release of a natively-running
Apple silicon version.

Case Study: Delta Air Lines



M1

Delta’s iOS build and CI/CD pipeline was built on a fleet of bare metal
2012 Intel-based Mac minis housed in MacStadium’s data centers.
These machines were still performing well; however, Apple’s shift
from Intel to ARM-based Apple silicon meant that as newer versions
of macOS and Xcode were released, the older hardware would not be
supported.

The Fly Delta app team was faced with a decision: upgrade their Intel-
based machines to the latest 2018 version of the Mac mini, or switch to
Apple silicon M1 minis. Knowing that Apple had established a two-year
timeline for full migration from Intel to Apple silicon, the team decided
to “just take the plunge and go forward with the M1 machines.”

Read the full case study to learn how their transition to M1 resulted in
builds that are twice as fast as the legacy 2012 minis.

https://www.macstadium.com
https://www.macstadium.com/customers/delta
https://www.macstadium.com/customers/delta

10

Mac hardware architecture is undergoing a fundamental change
that will require some degree of accommodation on the part of
all developers in the Apple ecosphere. Teams building macOS
apps will need to compile their binary on Apple silicon directly
in order for end-users to be able to run their software natively
on their own Apple silicon Macs. Teams building for iOS and
other Apple platforms will need to make the transition as well,
as new Xcode versions – and the feature and security upgrades
that come with them – will only be available for Apple silicon.

Because this is such a fundamental and temporally-driven shift,
it is the perfect opportunity to explore how and where to host
your Mac build infrastructure, as your pool of available macOS
compute resources will first need to be augmented, and then
ultimately be replaced, with Apple silicon.

MacStadium is here to help. In addition to our virtualization
platform, Orka, we offer bare metal Apple silicon servers in
each of our data centers. Ready to discuss your migration plans
from Intel-based servers to the new Apple silicon? Contact
MacStadium’s sales engineers to discuss your particular use
case and to learn more about our Mac cloud solutions.

Planning the transition to
Apple silicon

Ready to move to
the cloud?
If you are running Mac build
machines in-house, now may be
the perfect time to move your
build infrastructure to cloud-
hosted Mac servers.

No large capital
expenditures to replace
aging Intel machines with
new M1 Macs

Easy development transition
with virtualization solutions
like Orka that support both
architectures

Predictable monthly costs,
fast and easy scalability,
and 24/7 remote hands
support take the stress out
of managing Mac hardware







www.macstadium.com
www.macstadium.com/orka

sales@macstadium.com

https://www.macstadium.com
https://www.macstadium.com/contact-sales
https://www.macstadium.com/contact-sales
https://www.macstadium.com
https://www.macstadium.com
https://www.macstadium.com/orka
mailto:sales%40macstadium.com?subject=Migration%20to%20M1

	Introduction
	In a state of transition
	Why the shift from Intel to ARM-based architecture?
	What from the Intel world runs on Apple silicon?
	Core Apple developer resources
	CI/CD tools

	What is the motivation for running builds and tests on Apple silicon?
	Mac app builders
	iOS app builders

	How will converting to Apple silicon impact development?
	Impacts specific to macOS development
	Universal binaries for macOS
	Impacts to development for other Apple platforms
	Codebases that interact with low-level architecture features

	What implications will Apple silicon have for CI/CD pipelines?
	Adding Apple silicon build infrastructure efficiently
	Building on Intel and M1 with Orka 2.0
	Maintaining or updating your CI runner

	Planning the transition to Apple silicon

