
Author: Sara Bobo, Developer Productivity and Infrastructure Expert

DevOps
Capacity
Planning
How to determine what hardware you need
to drive maximum DevOps efficiency and
faster deployments.

Acc
oun

t fo
r S

ea
so

na
l/

Eve
nt

Work

Scale
Vertically

M
ax

im
iz

e
of

f-
ho

ur
s

w

ith
 s

ch
ed

ul
in

g

Identify Patterns

Scale Horizontally
Evaluate Risk Tolerance

Implem
ent Easy C

hanges

Know Your Roadmap

WHITE
PAPER

Introduction

What is capacity planning?

Understand your current system utilization

Identify usage and performance patterns

	 Maximize off-hours with scheduling

	 Implement easy process changes

Predict your future capacity needs

	 Know your roadmaps

	 Account for seasonal or event-driven activity

	 Plan your targeted resource growth

	 Evaluate your organization’s risk tolerance for each system

	 Calculate the benefits of horizontal scaling

	 Calculate the benefits of vertical scaling

Summary

2

3

5

5

6

7

8

8

9

10

10

11

12

13

DevOps Capacity Planning 1

Table of Contents

Resource demand in systems is rarely static across time; as a system’s usage grows through increased
volume, new features, or more intensive requests, eventually the existing compute resources will no longer
be sufficient to support that application or service. The consequences of failing to keep up with growing
demand may include performance degradations or even full outage of the service, which can be costly to
resolve and harmful to the business or organization.

This white paper serves as an overview of capacity planning for organizations that manage hardware
resources for the purposes of running applications or services, both external user-facing and in the
developer productivity space.

We’ll take a look at assessing and optimizing current utilization, gathering information needed to
confidently forecast future needs, and calculating the amount of additional resources that will be required
to meet those needs.

Many of the concepts and best practices discussed in this white paper can be applied to hardware capacity
planning in a general sense, but here we are focusing specifically on infrastructure for developer productivity
tooling, such as Continuous Integration (CI) systems.

2

Introduction

Failure to keep up with a growing DevOps demand
may result in performance degradations, long queues,

or even full outage of the service, which all result in
slower product and feature releases to customers.

“

“

DevOps Capacity Planning

Capacity planning is the process of determining the amount of resources needed to keep a system healthy
looking forward. In the context of software, this frequently means determining the appropriate number and
configuration of servers or other compute resources to handle an increase in usage. Because of the ever-
changing demand on these resources, capacity planning should be done on a regular cadence, alongside other
product and operational planning processes.

In a world with infinite budgets, capacity planning would be easy: throw as many high-powered machines
at the problem as possible. In reality, budgets are finite, so it is important to carefully determine how many
machines, and of what hardware configuration, to balance addressing the business risks resulting from
under-provisioning with addressing the unnecessary expense resulting from grossly over-provisioning.

Capacity planning is of enormous importance when an organization is working with on-premise hardware, but it
is necessary in cloud environments as well. In platforms such as AWS or GCP, it is possible to scale a system up
and down on demand, but eventually even in these environments engineering teams may find themselves boxed
in without adequate forethought. Additionally, Apple’s EULA mandates that hosted macOS machines and Mac
compute may be leased for no less than 24 hours at a time, which prevents vendors from providing the minute-by-
minute, on-demand scaling offered in other cloud compute environments. Without full flexibility to conjure up the
exact resources required at any given moment, or the ability to scale down once they are no longer needed, teams
need to be able to anticipate future needs and estimate what resources will be required.

3

What is
capacity planning?

Capacity planning is of enormous importance
when an organization is working with

on-premise hardware, but it is necessary in cloud
environments as well.

“

“

DevOps Capacity Planning

4

ALEX
Senior DevOps Engineer

JavaScript PythonJava Swift

DevOps Capacity Planning

In each of the following sections, we’ll be returning to an
example scenario to explore how the concepts and best
practices more concretely:

Alex leads a team that owns a CI system that includes
a Jenkins instance and a cloud kubernetes cluster used
for deploying worker agents that handle test and build
workloads, on-demand. The system is beginning to
show signs of strain every afternoon, and even more so
right before the weekly release. Developers are already
complaining about the long wait times before the weekly
release, which are forcing them to submit changes earlier
and earlier to avoid getting stuck in the queue. Alex realizes
that the current system likely won’t be sufficient to handle
demand in the coming year, and without scaling there are
likely to be long CI queue times or even complete outages
for internal customer teams. They want to get their director
onboard with a procurement request for approval of
additional capacity, but they want to be sure they’re not
asking for too many (or too few) machines. They also know
they should provide justification for their request in the form
of metrics or other data.

Before considering future needs, it’s crucial to take stock of
the current state of the system. Talking directly with users
and determining their current pain points can be enormously
helpful in locating existing performance bottlenecks. It
is just as important to keep tabs on user experience for
internal customer teams (such as other developers within
the organization) as for external end users. Determining and
monitoring key metrics can help the owning team assess the
impact of their efforts.

Identify usage and performance patterns

Organizations should be monitoring usage metrics at the
individual service or app level, such as volume of requests,
or workload duration, to get an idea of usage demands and
patterns. For example, an organization with developers
concentrated within one or several adjacent time zones will
likely see a peak in CI traffic during the workday, with little
traffic after work hours and on the weekends. Understanding
how the app is currently being used and at what volume is
necessary for determining what resources may be needed in
the future as those metrics change and grow over time.

5

Understand your
current system utilization

Organizations should be
monitoring usage metrics at the
individual service or app level,
such as volume of requests, or
workload duration, to get an idea
of usage demands and patterns.

KEY POINT

DevOps Capacity Planning

Maximize off-hours with scheduling
Scheduled and automated workloads should be audited
to determine that all utilization is actually beneficial to the
organization; it is very common for teams to forget about
old jobs that continue to use resources on a daily basis.
Additionally, identifying scheduled jobs that are not time-
sensitive should be done to ensure that their schedules have
them run during hours when the system typically sees lower
utilization. Paring down on unnecessary utilization, generally
and during peak usage times, makes it possible to identify
actual resource needs and free up existing resources.

6

•	 Audit all scheduled jobs

•	 Eliminate old, unnecessary jobs

•	 Reschedule non-time-sensitive
jobs to low-usage hours

KEY POINT

DevOps Capacity Planning

7DevOps Capacity Planning

Engineers close to the system can
help identify unnecessary volume
and areas for improved workload
performance.

KEY POINTImplement easy process changes
To further optimize the use of current resources, consider
what other lower-effort or lower-cost steps may be available
to reduce capacity usage through eliminating unnecessary
volume, or by improving performance of workloads, which
reduces the duration of time a given machine is in use to
complete a task. Engineers close to the system likely have
a wish list of things that they would fix if they had the time
to do so; soliciting these ideas from the team may present
opportunities to make more efficient use of current resources.

Back to our example:
Alex has spent time analyzing current usage and auditing
the jobs handled by their CI system, removing unneeded
workloads and scheduling others off-peak. They are now
able to show with the metrics they’ve gathered that even
with these reductions, the size of their worker cluster is not
sufficient for handling all developer jobs during times of peak
traffic – which correspond with the slowdowns they noticed
in the afternoons and before release.

8

Predict your future
capacity needs

Know your roadmaps
After gaining a clear picture of actual current resource
utilization requirements, we can begin to think about future
needs. Building a capacity plan is necessarily a collaborative
process and should include consideration for the bandwidth
of the teams directly involved in any work on the system,
as well as the plans of the system’s users and any upstream
dependencies. A good place to start is becoming more
familiar with the organization’s roadmap and goals. For a
product team, this might look like staying on top of upcoming
feature launches. For teams with internal customers, find out
their projected headcount, project plans and the anticipated
demand on your systems.

•	 For a product team – stay
on top of upcoming feature
launches.

•	 For teams with internal
customers – monitor the
projected headcount and
project plan timelines.

KEY POINT

DevOps Capacity Planning

9

Account for seasonal or event-driven
activity

It can also be helpful to think about events outside of the
organization itself and how they may impact utilization. For
example, a news website might see an increase in traffic
during an annual global event, or an ecommerce company
may experience an annual peak during the holiday shopping
season. These events may bring about periods of high
developer activity as teams race to get features done in time.
Looking at historical data from previous such events can be
enormously helpful in predicting utilization for future cycles.

When talking with their customer organization, Alex
learns that the developer teams that use the CI system
are projected to grow by about 20% over the next year.
Additionally, one of the teams mentions that they’re planning
on introducing several new crucial test jobs that will run any
time an engineer updates their code review, increasing the
number of workers in use for each commit by 10%.

Using the information Alex has gathered about current
resource utilization, they are able to put together a prediction
of the number of additional worker machines they’ll need,
and they are able to point to the data they used to reach
that number. In this case, they are expecting to see demand
increase by about 32% at peak over the coming year – all
customers will be using 10% more workers to run tests on
each commit, multiplied by the increase in developers.

Look outside your organization
to identify the economic trends,
seasonal holidays, or other global
events that could impact your
team’s needs.

KEY POINT

DevOps Capacity Planning

10

Not all systems can be top priority.
Identify the business impact
of each system and plan your
capacity accordingly.

KEY POINT

DevOps Capacity Planning

Plan your targeted resource growth
Knowing the forecast for future utilization will help paint a
general sense of how resources might need to scale over
that same period, but by itself it doesn’t provide concrete
estimates on how many more machines may be required.

Evaluate your organization’s risk
tolerance for each system

Ultimately, the system in question exists to serve a business
function, and its reliability is key to performing that function
well. Depending on exactly what that system is, periods of
service degradation or complete outage present varying
levels of business risk. Tolerance for that specific risk (as well
as budget) should be used to guide the target percentage of
utilization at peak.

For example, if the system in question is necessary for the
operation of the core application, or in the critical path of
deploying changes, there may be low tolerance for hitting
100% capacity. In planning for that system, again using
historical data about the size of traffic spikes, the organization
could decide on a lower target utilization percentage, for
example 80% utilization at peak, with the remaining 20%
serving as buffer in the event of unusual spikes.

11

Calculate the benefits of horizontal scaling
Calculating the number of machines needed to scale
horizontally is relatively straightforward. If we are regularly
hitting capacity but need to target a lower percent utilization,
we’ll need to divide the current number of machines by the
target, then multiply by the forecasted increase in demand.

For example, a pool of 50 servers is regularly hitting 100%
capacity utilization, but the target utilization is 90%. To reach
that target, the pool would need to scale to 50 / .9, or 56
servers, rounded up. Then, if we expect demand to increase
by 25 percent in the coming year, the pool would need to
further scale to 56 * 1.25, or 70 servers to reliably support
business needs.

In platforms such as AWS or
GCP, it is possible to scale a
system up and down on demand,
but eventually even in these
environments engineering teams
may find themselves boxed in
without adequate forethought.
Additionally, Apple’s EULA
mandates that hosted macOS
machines and Mac compute may
be leased for no less than 24
hours at a time, which prevents
vendors from providing the
minute-by-minute, on-demand
scaling offered in other cloud
compute environments.

KEY POINT

DevOps Capacity Planning

Horizontal Scaling
Add more instances

Thinking about scaling vertically is a bit more involved.
Profiling workloads and looking at metrics for individual
machines, such as CPU, memory, disk IO, and network usage
can provide insight into resource bottlenecks and indicate
whether it might be appropriate to consider migrating to
more powerful hardware. If it is possible to gain access to
one or more machines of the configurations available to you,
running sample workloads many times across the different
hardware profiles will provide you with benchmarks to help
you evaluate what performance improvements you might
expect to see.

Faster workload run-times can translate into lower capacity
utilization in a couple of different ways. On more powerful
hardware, it may be possible to increase the number of
workloads that may be handled simultaneously by a single
machine. Additionally, reducing the amount of time each
machine is in use for each workload increases the overall
throughput of the system – more workloads may be run in a
given period of time.

When calculating the anticipated benefit from vertical
scaling, it’s important to also account for any overhead –
while tests may execute faster on the worker agent, any
surrounding infrastructure or external dependencies may
not see the same benefit. For example, consider a workload
with an initial average duration of 10 minutes, where only 8
of those minutes is spent executing tests, while the other
two are spent on setup and teardown overhead. While the
tests themselves may execute say 30% faster, this will only
translate to 24% improvement in overall runtime as the time
spent on overhead remains the same.

In our example, Alex has discovered that upgrading worker
machines to a more powerful machine shows a 33%
reduction in end-to-end job duration. Even though they
are expecting demand to increase by 32%, they may be
better served by upgrading their cluster rather than scaling
horizontally – their customer teams will certainly appreciate
the shorter wait.

12

Don’t forget about task overhead!
More powerful machines may
make quicker work of the task at
hand, but often won’t improve the
time spent on task overhead (e.g.,
setup and teardown of the task).

KEY POINT

DevOps Capacity Planning

Vertical Scaling
Increase size of instance [RAM, CPU, etc.]

Capacity planning is the process of determining the appropriate number and configuration of servers or
other compute resources to handle expected fluctuations in usage.

Understand your current system utilization.

•	 Identify usage and performance patterns.

•	 Maximize off-hours with scheduling.

•	 Implement easy process changes.

Predict your future capacity needs.

•	 Know your roadmaps.

•	 Account for seasonal or event-driven activity.

Plan your targeted resource growth.

•	 Evaluate your organization’s risk-tolerance for each system.

•	 Calculate the benefits of horizontal scaling.

•	 Calculate the benefits of vertical scaling.

Effectively planning and optimizing your DevOps process compute resources is critical to development team
satisfaction and overall business performance. And like the DevOps process itself, DevOps capacity planning
an ongoing process. Capacity planning should become a routine part of your organization’s overall quarterly
and annual planning process. Regularly assessing current and future utilization, organizations can scale their
available resources to keep up with upcoming demand and guard against business risk.

13

Summary

DevOps Capacity Planning

