
CI Pipelines for iOS and macOS 

Which is right for your team?

      &
HYBRID

EPHEMERAL
STATIC

laurencabana
Sticky Note
Need ot update to match current branding



Contents
Developing at Scale 4

Real-World Implications: Static Builds 6

Real-World Implications: Ephemeral Builds 7

Real-World Implications: Extending Static CI with a  
Hybrid Approach 8

Team & Project Characteristics That May Guide  
Your Choice 9

Guiding Questions for Discovery 12

Hardware Selection 15



3

So, your team has decided it’s time to implement continuous 

integration (CI) into your development life-cycle – or maybe you 

have a system in place, and you’re looking at next steps. Either 

way, the following guide will shed light on the three distinct CI 

pipeline approaches available in the macOS ecosystem and 

offer some guidance as to which approach will likely be the 

best fit for your team.

CI for iOS and macOS presents the unique challenge of needing 

to be executed on certified Mac hardware in often Mac-specific 

ways. While we won’t delve deeply into any specific tooling, 

each of these approaches, when paired with MacStadium 

resources, is well proven in the often tricky space of iOS CI. 

This is made possible by MacStadium’s industry-leading work 

in Mac virtualization. Want to learn more? Our sales engineers 

are always standing by to answer your questions.

Let’s get started! 



4

Developing at Scale
If you are developing at scale, you will likely settle on a 

virtualization layer to manage your CI system’s compute 

resources (VMs that run the CI jobs). The alternative would be 

to develop on bare metal Mac minis, which can be a great fit 

for teams that don’t anticipate an overwhelming setup. The 

following assumes that you anticipate needing more CI build 

resources than you can reasonably wring out of bare metal 

minis, which by definition only support static systems. 

With MacStadium, your virtualization layer will likely be either 

Orka or VMware. Once you settle on one, you should consider 

the following question: Do you need absolute trust in your 

CI build and test results, or are you willing to accept a small 

chance of irregularities for the sake of keeping development 

costs (and potentially team size) down?

If you need absolute trust in your builds and tests, an 

ephemeral system is the best way to achieve that. If, on 

the other hand, the chance of some variance in your build 

environment over time is acceptable in exchange for keeping 

Virtualized CI Pipeline Approaches

Static
Use a virtual machine (VM) 
for more than one CI job.

Ephemeral
Create a new VM from a template 
or master for each CI job, and tear 
it down when finished.

Hybrid
Automate the creation and/or 
provisioning of static VMs.

laurencabana
Highlight

laurencabana
Sticky Note
Remove VMware mention



5

development costs and requisite expertise down, a static 

system may be just the ticket.

There’s also a hybrid approach, which can offer a similar 

degree of confidence that an ephemeral system can provide, 

but with a lower bar to entry. Hybrid systems are static 

systems extended to include automated deployment and/or 

provisioning of static build VMs with tools like Ansible, Puppet, 

or Chef. 

Extending a static system in this way keeps the overall 

complexity of the pipeline down, while still allowing it to scale 

to meet the growing demand from your team as development 

accelerates. And once the deployment and provisioning of 

static VMs are automated, an entire bank of build machines 

can be torn down and stood back up at will, or according to a 

pre-determined schedule. 



6

Real-World Implications:  
Static Builds
Because static VMs stay “up” for more than one CI job, there is 

a chance that somewhere along the way some small change 

may be introduced into your CI build environment, which could 

potentially interfere with your build process or test results. 

However, the relative simplicity of standing up a static pipeline 

makes it an excellent choice for a first working iteration. 

This relative simplicity stems from the fact that, in such a 

system, build machines can be set up manually because 

once they are up, they will stay up for whatever duration you 

choose.

Benefits: 
Far less work upfront, which means less time to production 

and less requisite team expertise in the area of automation.

Challenges: 
May be difficult to scale without some automation. Increased 

chance of environment drift. 



7

Real-World Implications:  
Ephemeral Builds
By definition, all processes in an ephemeral build need to be 

automated. Depending on your build requirements, this may be 

a major undertaking. Consider every process that will need to 

be executed on-demand – standing up the VM itself, installing 

and configuring any pipeline dependencies, preparing for any 

necessary interactions with external resources, and so on.

MacStadium offers a healthy bank of resources to get your 

team moving toward a fully automated, ephemeral system, but 

achieving this may require significant development time and 

expertise. Moreover, the inherent complexity of a system like 

this may well ratchet up your bottom line in terms of both the 

time it takes to get this running and the cost of building a team 

that can pull this off.

Benefits:
Bulletproof certainty that the build environment is always the 

same. 

Challenges:
Inherently complex. Team-readiness is essential to making this 

financially and temporally viable.

MacStadium 
Resources for 
Mac-based CI
MacStadium has created 
the following resources 
to support the Mac dev 
community:

Orka CI/CD Integrations 
Quickstart

Orka VM Clones

Jenkins Plugin Resources

GitHub Actions Integration 
Resources

GitLab CI/CD Integration 
Resources

Buildkite Integration 
Resources

Drone Integration 
Resources

laurencabana
Highlight

laurencabana
Sticky Note
I think these should be linked and may need to be updated



8

Real-World Implications:  
Extending Static CI with 
a Hybrid Approach
Most teams that employ static CI systems eventually 

progress to a hybrid approach in which the deployment and 

provisioning of a bank of static CI build VMs is automated. This 

sort of hybrid automation work is a perfect opportunity to use 

automation tools such as Ansible, Puppet, or Chef as they will 

allow you to provision any number of static machines with very 

little work. 

This approach will provide an increased degree of confidence 

that the build environment is as it should be. A common 

practice is to tear down the VMs and then redeploy and 

provision them at regular intervals with Bash scripts managed 

by Crontab or any other equivalent setup. 

Benefits:
Manage large banks of static VMs with ease. A very workable 

alternative to an ephemeral system for teams with limited in-

house ephemeral pipeline expertise.

Challenges:
Your team may need to learn one of the above-mentioned 

tools or an equivalent. Mitigated, but still possible chance of 

environment drift.

The ability to stand up a 
bank of machines from a 
base image is central to 
Orka’s offerings. Demo 
an Orka environment at 
tryorka.com.

laurencabana
Highlight

laurencabana
Sticky Note
confirm these are the most modern examples



9

Team & Project 
Characteristics That May 
Guide Your Choice
Team size/maturity
Generally speaking, smaller teams will begin with a static 

system and potentially graduate to either an ephemeral 

or hybrid system. The choice here depends on team size, 

skill sets, and automation maturity of security tokens, certs, 

etc. The largest reason for a hybrid set-up is that the initial 

“handshakes” are difficult to automate in a secure fashion. 

When this problem comes up, a common solution is the hybrid 

model, to make the manual inputs at least consistent.

While many teams will have this handshake problem solved 

and move to an ephemeral system, a large number of 

MacStadium customers prefer a “hot standby” model, where 

extra VMs are created before they are needed and sit idle until 

a job comes along.

Teams vary greatly depending on structure and usage. The 

smallest are “iOS deployment” teams – people who compile 

on macOS, perform basic testing, then submit to the Apple 

store for iOS and macOS. This team size could be two or three 

people. 

Mid-sized teams will build in a native macOS language, usually 

with Swift or Xcode, then handle all typical CI/CD functionality. 

This is a dedicated build team, with coders, testing, signing, and 

iOS Developer 
Survey
Curious to see how your 
team stacks up? Check 
out the results of the iOS 
Developer Survey:

Part 1: Where Are Your 
Macs?

Part 2: Languages, Tools 
and Processes

Part 3: Your Projects

laurencabana
Highlight

laurencabana
Sticky Note
This survey is so old now we should pull it out. Will need to brainstorm some replacement content.



10

QA. This team could be bigger, but will often own DevOps and 

infrastructure decisions. A team size like this will typically have 

a separate infrastructure or DevOps support.

Large teams will be multi-group. One group will typically 

manage DevOps pipelines, a separate group will maintain 

infrastructure, and there will be a separate coding group. This 

team is typical of a large enterprise company that primarily 

transacts through an app. 

Relative complexity of automating a given 
build
If your test suite depends on only a handful of resources – 

say Xcode and some API calls, it may not be too massive an 

undertaking to get that workflow embedded into an ephemeral 

system. Alternatively, if your test suite requires navigating 

multiple environments, and facilitating complex interactions 

with external entities, building a working ephemeral pipeline 

may be significantly more complex.

People generally want more features from apps, so customer 

requests can add up over time. These feature enhancements 

can add up to a lot of code, sometimes with rewrites, 

framework changes, etc. Often, maintaining a satisfied 

customer base requires a steady increase in the size of your 

product’s code base.

Also, the perceived complexity of a build tends to grow with 

app maturity. As an app or build exists longer, an increasing 

number of failure conditions will be discovered. Any healthy 

organization will write new tests to proactively handle those 



11

newly discovered conditions. As such, testing time tends to 

grow in parallel to the age of the app, and generally become 

the dominant time-sink in full builds.

Degree of existing automation
Once teams have a working pipeline iteration in place, they will 

begin the journey to full automation. This process generally 

begins by scripting or otherwise automating portions of the 

workflow. This effort generally leads teams to a sort of “critical 

mass” where the natural next step is full-scale automation.



12

Guiding Questions for Discovery
Try using this set of questions to guide internal conversations regarding the high-level direction 

of your Mac and iOS CI processes.

Do you have a current, 
working CI pipeline?

If you have a pipeline 
in place, are pipeline 
management and long 
build queues slowing  
down your team?

If you have a working CI pipeline, is any portion of the pipeline 

already automated? If your team has not yet gotten a first 

iteration working, it may be in your best interest to get a static 

pipeline up and running as a first step. 

We find that most teams aim to have a static system in place 

before embarking on the journey to automating the process. 

However, this is by no means the only way to approach the 

problem.

A working iteration of a pipeline is a major milestone for teams 

just getting started, but if your bank of build VMs is getting 

too large to manage manually, and you aren’t experiencing 

environment drift also known as configuration drift, you may 

be able to sidestep the complexity of an ephemeral system by 

automating the creation and provision of your build VMs.

Environment Drift  
An unintended process by which a static build environment 
changes over the course of one or more builds.

This way, your entire bank of build VMs can be torn down 

and spun back up anew daily, or at any interval that makes 

the most sense for your team, which will mitigate the risk of 

environment drift without the technical overhead of a full 

ephemeral system.



13

Does your product 
target multiple versions/
platforms? (iOS, Google, 
Android)

If so, would you like to achieve parity between your team’s 

existing CI systems and this one while reducing tool sprawl 

across pipelines? If you plan early, it may well be possible 

to reuse a portion of your team’s existing tooling for your 

upcoming, virtualized macOS workflows, and thus reduce the 

total number of tools you need to employ.

What percentage of your 
overall revenue comes 
from iOS/macOS devices?

We see that teams generally achieve five times the revenue 

from iOS applications as compared to Android. This figure is 

compounded by the fact that iOS applications make up roughly 

10% of total installs across operating systems on average. 

In light of this, we find that teams who deem themselves 

ready generally opt for an ephemeral CI setup in pursuit of 

bulletproof application performance and for the sake of the 

absolute best UX possible in their most profitable product.

Do you have a dedicated 
DevOps team to put this 
plan into action?

If so, has this team, or a majority of it, built automated, 

production-tier pipelines in the past? If not, will an extended 

dev period for the pipeline interrupt your business operations? 

The question of team-readiness, in large part, boils down to 

this: Do you have the expertise in-house to pull this off in an 

affordable way, or will there be experience-driven pain points?  

This approach can materialize in any number of ways, but 

one such possibility would be layering in your Mac and iOS 

workflows into tools your team is already using, such as an 

existing Jenkins master.

Tool Sprawl
The accumulation of parallel or otherwise superfluous CI tooling, 
which results in increased costs for both the tools themselves 
and for the management of (often parallel) data that they output.



14

If an ephemeral system looks like it might be too tall an order, 

but you still need to mitigate environment drift and manage an 

ever-growing bank of static VMs, a hybrid pipeline may be what 

you’re after.

How complex will your 
pipeline need to be?

What kinds of peripheral interactions does your project 

need to make in order to build and test? The more steps that 

need to be completed in a given workflow translates into an 

equally long list of interactions to automate, which ultimately 

translates into increased time to production and the overall 

cost of developing an ephemeral pipeline. 

Finally, how hard will this really be? Seemingly minor 

interactions with external resources may still present 

challenges along the path to automation. Should they arise 

for you, rest assured that MacStadium’s dedicated customer 

success team will be there to help.

TL;DR  
Run through the interactive version of these questions to quickly 
find out what system is best for you!



15

Hardware Selection
Finally, once you’ve settled on a CI pipeline approach that 

makes the most sense for your organization, you can take the 

process a step further and wring as much value out of your 

unique pipeline as possible by building it on top of custom-

selected hardware. Different pipelines will benefit more in 

terms of time and cost per build from build-specific hardware 

considerations, such as the following:

2020 Mac mini (M1 chip): Low RAM, fastest for compiling 

Xcode and Swift.

2013 Mac Pro: Highest cores and RAM available to virtual 

machines. Better cost per core than the 2019 Mac Pro.

2019 Mac Pro: Highest number of cores available.

2018 Mac mini: About 20% faster than a similarly specced 

2013 Mac Pro. Generally a better value for code compiles. 

Talk to a Specialist
MacStadium offers a full range of macOS and iOS compatible 

CI compute resources. Not sure which choice is right for your 

team? We’re here to help. As the Mac experts, we know what 

it takes, whether you decide to go static or ephemeral. One 

of our sales engineers can help create the perfect static or 

ephemeral CI pipeline for your business. Interested in learning 

more? Reach out today to get started on your CI journey.

MacStadium provides 
genuine Apple hardware 
in secure data centers. 
Whether you need 
virtualization or bare 
metal, we can build a 
custom cloud environment 
to meet your needs.

laurencabana
Highlight

laurencabana
Highlight

laurencabana
Sticky Note
Models are changing so often that we should remove specific mention and just give a link to our site for the most current available models.

laurencabana
Sticky Note
Update this picture




