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The Course, Learning Resources &  

Your Responsibility 
 

The Course, Continuum Mechanics, has been moved from a Post-Graduate level, and now meets 

you at 300 Level. This is the second set at the University of Lagos to be taught this way. There 

may not be many universities starting this course at such a low undergraduate class. You are the 

second set at Unilag to have this opportunity at 300 level. In that sense you are lucky. This year, 

in some departments, we are also introducing other courses that accompany the package: 3D 

Solid Modeling in Fusion 360, Data Structures and Algorithms in Python.  

Continuum Mechanics can be thought of as the grand unifying theory of engineering science. 

Many of the courses taught in an engineering curriculum are closely related and can be obtained 

as special cases of the general framework of continuum mechanics. The balance laws of mass, 

momentum and energy that are derived in the context of specific material constitutions are 

natural and are independent of these contexts. This fact is easily lost on most undergraduate and 

even some graduate students. 

This connection is not trivial. Separating the natural laws from constitutive functional 

relationships helps you to see the connection between the wide variety of courses that you 

encounter in your different departments of Systems, Mechanical, Chemical, Biomedical and 

Materials Engineering. Between 70 to 90% of what you need to cover in these courses are given 

the theoretical foundations in the study of Continuum Mechanics. The subjects we have in mind 

include: 

• Mechanics of Fluids (Hydrodynamics, Aerodynamics, Hypersonic Flow, Rheology, Flows 

in arteries and other biological pipes, etc.) 

• Elasticity (Hyperelesticity, Hypolelasticity, Rubber Technology, Soft materials, Tissue 

Mechanics, Cadiovascular Solid Mechanics, Viscoelasticity, etc.) 

• Plasticity ( Elasto-plastic loading, viscoplasticity, incremental theories, etc.) 

• BioMechanics (Human and Animal Tissues, Flows in Prosthetics, Sports Enhancement 

products, etc.) 
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• Heat Transfer (Visco-Thermal Flows, Thermal stresses, etc ) 

• Thermal Mechanics (Thermodynamics of Materials, Material Behavior, etc.) 

All these feed into the Multi-Physics of Engineering Analysis, Design, Material Optimization 

product prototyping and manufacturing). 

Some courses in Systems and Mechanical Engineering emphasize Operations Research, 

Statistics and Data Analysis. Some of these, in the modern context lead to Machine Learning, 

Artificial Intelligence, Data Mining and Software Development.  

Our group, including Drs Adewumi, George and others will be involved directly in pursuing the 

foundational building blocks for all these in the three courses of 1. Vector and Tensor Analysis – 

taught in Introduction to Continuum Mechanics; 2. 3D Solid Modeling and Engineering Graphics 

– using Fusion 360 and its Applications Development Interface; 3. Data Structures and 

Algorithms using Python for Object-Oriented Programming and Introduction to Functional 

Programming using Mathematica. 

The following schematics helps to illustrate the connection we want you to constantly keep in 

your mind: 
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From the picture above, you will see that many of the other things you will learn on your road to 

becoming an engineer are rooted in Continuum Mechanics. If you look carefully, you will see that 

these things are not written on a clean sheet of paper. A blank mind cannot absorb them. The 

language it speaks is called Tensor Analysis, you need Software to practice and engage more 

challenging problems; then Simulation will help you deploy the knowledge gained to design 

visually and virtually in order to save prototyping costs. In this set of courses, we take you through 

all these stages to enrich your knowledge. The approach here is to optimize your time so to learn 

things the shortest way and remain focused on doing engineering with your knowledge. 

Engineering is the application of Science to create technology products and services. It is rooted 

in theory. If you do not organize the learning of theory very well, you end up with full heads and 

no products as we have been doing. If you leave theory and simply do “practicals”, you end up 

with half-baked crafts trade – again, no serious products. We are offering you an approach to 

avoid both extremes and learn, in order to do engineering correctly.  

What you will learn here will alter your view about some of the other courses you will take on 

your way to a degree in engineering. If you do your part, you will be given skills, tools and 

knowledge that are directed at making you productive people that can change the narrative of 

dependency and hopelessness that has been Africa’s story.  

Year 2016 was my last year as dean of this faculty, I had the privilege to welcome your seniors 

when they started their program here. I quote from that welcome address: 

“I want you to be ambitious. One of the biggest problems of the African mind is the absence of serious 

ambition. Once a Naija man can be a little better than his neighbor, he appears satisfied! If there is no 

electricity, and you get a small noise maker that helps you to watch Manchester United, you are already in 

heaven! You seem to forget that the same electricity is available to young people in Singapore 24 hours a 

day! And that there is absolutely no reason why Enyimba, the people’s Elephant, cannot be more popular 

than Manchester United! What do they have? Football grass fields, one ball, 22 men and hundreds of 

thousands of passionate fans! With some clever marketing, this nets them more money than crude oil in its 

most comfortable price regimes, can get Nigeria. More depressing is that the City State of Singapore, smaller 

in population and size than Lagos, can actually consume over 60% of Nigeria’s oil! That is the meaning of 

industrialization! It is lack of ambition that will cause a Minister of Aviation to steal two jeeps! Two jeeps! 

Even for all their rapacity, our thieves are not sufficiently ambitious! Why, for example, cannot the Minister 

of Aviation ensure than Nigeria can buy 100 of the latest wide body jets such as A380 or B777 and then steal 

http://oafak.com/2016/01/welcome-address-to-the-set-of-2020/
http://oafak.com/2012/06/against-manchester-united/
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two of them at the cost of nearly 1 billion dollars each! But once they can drive two jeeps in a convoy and 

use sirens to chase others from the road, even if they cannot comfortably get to where they are going, they 

are already satisfied!”  

This first chapter is an attempt, not just to remind you what you already know in vector analysis; 

it is designed to make you deepen your understanding of this most basic of tools in learning 

continuum mechanics and prepare the way for tensor theory. Ordinarily, this chapter should not 

be necessary if we are to assume you already know the things you were taught in your lower-

level courses. Our experience compels us to start here because vector algebra and calculus are 

key to the development of tensor theory. In fact, if you understand vector algebra deeply, armed 

with calculus and some geometry, tensors should be easy to teach. However, our experience tells 

us that your difficulty often arises from the cramming of things you did noy fully grasp in lower 

level courses and you continue to pay for this mediocrity in poor grades and the reality that a lot 

of things are scattered in your mind when they could be well arranged theoretical basis of later 

knowledge. The vector analysis introduction will be brief, well directed and designed to lead you 

gently into tensor theory. If you struggled with this subject previously, here is your opportunity 

to remedy that deficiency. If you got good grades in it, do not therefore be complacent. You may 

be in for a surprise that there are still matters in vector analysis that you have not yet mastered. 

If you are hardworking and patient, you will not only advance your vector analysis, you will also 

find that your knowledge makes learning tensors quite enjoyable and logical. Do yourselves a 

favor: pay attention to the material on vector analysis. 

If you understand vectors deeply, you have no problem in understanding tensors. When you are 

struggling along in the latter, the problem often comes from shallow understanding of vectors. 

Let your ambition be greater than just getting a good grade in this course. We have much more 

than that to offer you. You can be a real engineer that creates a future for yourself, make a 

comfortable living and help others to become successful. That is our goal. What is yours? 

Tensor Calculus is the language of Continuum Mechanics. We will go into it after a heavy dose of 

Tensor Algebra. Again, the order of the building blocks is important. If you miss out on Tensor 

Algebra, you are wasting your time trying to learn Tensor Calculus. The latter is simply the 

application of your well-known limiting procedures of calculus to the algebraic structure in 

Tensor Algebra. Honestly, there is nothing really to cram! Everything follows a logical order. 
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Cramming that many resort to is the result of poor choices on what to take seriously that you 

probably took in an earlier lecture. Tensor algebra is a simple extension to vector algebra but the 

consequences of such extension are enormous. Pay attention therefore and pay attention in 

good time. 

Learning Resources 

The first resource you will meet is your lecturer. We have prepared for you. You will quickly see 

that this is not “just another course”. We will listen to you; please ask us questions because we 

will answer you. When we cannot find the answer immediately, we will tell you. We don’t know 

everything, but we know where we can find useful information to help you. 

The book. There are ten chapters. You are only covering chapters 1-3 in 300 level. If you do it 

well, things get easier as you go along. If not, it will keep getting more difficult. Please start early 

and do not fall behind. This is a marathon! 

Q&A. There are usually at least sixty problems in each chapter. Some have more than one 

hundred. ALL problems are solved. They are to give you practice and further elucidate the theory. 

Some of the questions are to be programmed. Our language and environment of choice are 

Python and 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎© . Do not fear, we will be gentle with you and you WILL see that 

programming is achievable and that you can thrive in it! We teach these in the Course on Data 

structures and Algorithms. This course is not required for Mechanical Engineering, you may be 

able to audit it if you need to. Try and ask questions when you get stuck. In this course, you are 

NEVER completely stuck unless you choose to remain so! Here are the levels of assistance you 

may use: 

1. Your classmate that may be better in the topic or understands the material more than 

you or has already gone through the particular problem. That is the first line because she 

is the most easily accessible help for you. 

2. Internet. It is a good idea to browse before throwing in the towel in surrender for any 

issue. There is scarcely anything you want to know that something has not been written 

about. You can become more knowledgeable each time you hit a roadblock. 
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3. Interactive materials. The book, the slides, Q&A, video, audio, and other things that we 

shall deploy to teach this course are all available to you online. You can post questions 

and we will respond as appropriate. Please use this resource thoughtfully. You can reach 

your lecturers at their posted email addresses. You can also ask me questions 

lms.s2pafrica.com specifying the issue that is problematic: page number or question 

number. If a matter is a general problem, we will do an addendum to explain it better. 

4. Mathematica. You can get a lot of help on Mathematica from the installation itself. There 

is an enormous amount of teaching, examples and documentation once you have it 

installed. Again, you can ask us questions if you have difficulty using it. You can also join 

the Mathematica Stack Exchange Group on the Internet to post questions and read 

answers to other questions. 

5. Python. Again, Python is on the web. There is scarcely any problem you may have that is 

so strange. If you do a purposeful browsing, you may get direct help with programing 

fragments that you can implement.  

Feedback on the way you use the materials are also welcome as they help us improve. That can 

help the next set as we give them even better materials. 

Your Responsibility 

The first responsibility you have is to receive and act on instructions for this course. We do not 

like to say things more than once. They will be written, and you can go and be looking as many 

times as you like. Dates and times for assignments are given. Materials to cover before coming 

to class are specified. Please, make things easy for everybody, read and act on instructions. 

The second is actually a superset of the first. Be ambitious! There are many people that have had 

good grades in university and still ended up in dependency upon their families and friends. Your 

case can be different, not just because you prayed for a miracle, but because you simply work 

hard! Aim at understanding; passing and getting good grades will accompany that in this 

course. Everything you are taught is geared towards design and product making. Be ambitious to 

be the best engineer you can be and make a difference. 

http://www.oafak.com/
https://mathematica.stackexchange.com/questions/96437/curl-of-a-second-order-tensor
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Our experience with the previous set shows us that a well-motivated student can aim, not at 

getting an “A” grade, but at getting 100%. If you practice the worked examples you are given, 

and take the self-tests often enough, there is no reason for you to settle for mediocre grades. 

Aim high, score high and learn a lot! 

Coming to class unprepared, coming late and disturbing the class with hypocritical greetings, are 

even worse than not coming at all! Come to class, come on time, come prepared! Come!! 

… and, finally … 

Welcome to the course on continuum mechanics. We are ready and have been waiting for you! 

We enjoy the course and we hope to infect you with our enthusiasm for it. We hope that, 

together, we shall have a good ride. 

 

 

OA Fakinlede  
oafak@unilag.edu.ng  
Lagos, May 27, 2020 
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Vectors: Elementary Principles &  
Computations Practicum 

 
“God made the integers, all else is the work of man.” – Leopold Kronecker 

MetaData 

The prose, video, slides and the Q&A in this chapter are directed at scoring the following points: 

1. A set of linearly independent vectors is a set where one member cannot be expressed as a linear 

combination of the others. 

2. When you have the maximum number of such vectors in a set, all other vectors in that space can be 

expressed as linear combinations of the members of this set. The set of orthonormal vectors, {𝐢, 𝐣, 𝐤}, we 

are used to in the Cartesian form is only one kind of such a set. Occasions will arise that will make other 

linearly independent vectors useful to know.  

3. When a set is complete – having the maximum number of linearly independent vectors, it is said to form a 

basis of the vector space that it spans. These words are codes to express the fact that they can be used to 

 

 

ONE 
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represent any other vector in the space. All that will be needed is the set of scalar weights (or scaling factors) 

of the basis vectors will represent each vector. 

4. These scalars are called components of the specific vectors represented. Once they are found, with the 

basis in mind, we use them instead of the vectors they represent because analyses are easier done with the 

components.  

5. #4 above can lead to confusing the vector with its matrix representation. The components of a vector are 

meaningless unless we specify the basis vectors underlying the representation. This is where the vector, 

and as we shall see later, the tensor objects, significantly differ from the matrices they look like. 

6. The number of vectors constituting a basis spanning the space is the dimension of that space. 

7. We gain valuable compactness using the index notation and the Summation Convention. Mastering it early 

is a great advantage for later work.  

8. Other topics treated include Coordinate transformations, Dyads and Rotations. General Curvilinear 

coordinates are introduced as an advanced topic that can be omitted at first reading.  

9. The chapter ends with a brief introduction to Software (Mathematica) the we use to avoid tedium and helps 

to tackle more challenging problems than could be easily done manually or with a calculator.  

10. Mathematica is one of two important software for the series of lectures and courses. Students that start 

early with the software will gain a lot of ground, will find that the subject helps to learn the software and 

the software makes learning the subject easier. There will be a lot of examples you CANNOT easily do 

manually. Those that postpone learning the software are already failing! The best time to learn is at the 

beginning! You gain a lot and should never be behind! 

Notation 

In this chapter, we shall be dealing with vectors and scalars. We adopt the following notation 

from elementary set theory: 

Table 1. Notation 

Notation Meaning 

𝛼, 𝛽 ∈ ℝ 𝛼 and 𝛽 belong to the space of real numbers. Or simply, 𝛼 and 𝛽 are real 
numbers. 

𝐯, 𝐰 ∈ 𝔼   𝐯 and 𝐰 belong to (are members of) the Euclidean vector space 𝔼 This is a 
set of vectors that allow the definition of the dot product. In three 
dimensions, it also allows the definition of the cross product.  
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𝛿𝑖𝑗 , 𝛿𝑗
𝑖 Kronecker Delta, Mixed Kronecker Delta; Coefficients of the Identity tensor 

𝑒𝑖𝑗𝑘 

𝜖𝑖𝑗𝑘 , 𝜖𝑖𝑗𝑘 

Alternating, Levi-Civita Symbol. Also the coefficients of the Alternating tensor 

covariant and contravariant alternating tensor components 

𝐞1, 𝐞2, 𝐞3, …  ONB (Ortho-Normal Basis Coordinate System) Base Vectors 

𝐠1, 𝐠2, 𝐠3, 

𝐠1, 𝐠2, 𝐠3 

Covariant Base vectors 

Contravariant Base Vectors 

𝑔𝑖𝑗 , 𝑔𝑖𝑗 Covariant and contravariant metric tensors, Non-Cartesian identity tensor 

components 

ℝ Real space; Set of real numbers 

𝕍 

𝕍 × 𝕍 

𝕍 × 𝕍 × 𝕍 

Real Vector Space 

Product Vector Space. Pick two vectors or one from each space, that is an 

element of the product space. For example, If 𝐮, 𝐯 ∈ 𝕍, 𝐮 × 𝐯 = 𝐰 could be 

written as the transformation from the product space, 𝕍 × 𝕍 → 𝕍 while 𝐮 ⋅

𝐯 = 𝐰 is 𝕍 × 𝕍 → ℝ from the same product space to the real space. An 

example of 𝕍 × 𝕍 × 𝕍 →  ℝ is the scalar triple product. While 

𝕍 × 𝕍 × 𝕍 →  𝕍 is typified by the vector triple product operation. 

𝔼 Euclidean Vector Space. A real vector space in which the inner product is 

defined. In 3-D, a vector product can be defined. 

∈ Belongs to, member of. 

ℰ Euclidean Point Space. Where we live. Where objects we are interested in 

physically reside. It is related to a vector space. It is NOT a vector space. Its 

elements are points. 
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∀ Shorthand representing “for all … ” 

⊗ Binary operator for Dyad or Tensor Product 

∃ There exists 

Introduction 

A vector, roughly speaking, is an abstract representation of quantities that have magnitude, 

direction and sense. In this chapter, we start by repeating, in a summary form, several of the 

established notions of what a vector is, and what operations are valid for them with one another 

and with scalars. These are essentially 

repetitions of the way you have been taught 

Vector Theory thus far. It will be seen later that 

there are other ways of learning the subject.  

From our knowledge of Mechanics and similar 

subjects, vectors remind us of forces, 

velocities, moments, angular velocities, 

displacements and several quantities that 

have, in common, the fact that “magnitude” or 

“size” is not sufficient to quantify them; we 

must add direction and sense, for full 

characterization. A plane area, for example, 

can be thought of as a vector quantity if we add the outwardly drawn unit normal to its full 

description. In that case, the line of the normal is the direction, and the fact that it is “outward” 

is the sense. The inward normal is the opposite vector in the same direction.  

This idea is widely applicable and props up in virtually everything we do. A more abstract – hence 

more widely applicable definition will be given later. It is very well and good to be clear on the 

meaning of the elementary notions at the outset. More accurate definitions will still include this 

as a special case as we shall see. 

Figure 1. Vector magnitude, direction and sense 
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In figure 1, the length of the line gives us the magnitude of the vector; the direction of the line 

gives us the direction of the vector while the arrowhead indicates the sense of the vector. 

Furthermore, we assume that two vectors are equal if they have the same magnitude and are 

directed the same way.  

Defined in this way, a vector may represent a force, an acceleration, a moment of an angular 

velocity. While these quantities are divers and represent vastly different things, in so far as each 

requires a magnitude, as well as a direction and a sense for full representation, the concept of a 

vector can be used to represent each; and we gain valuable analytical ability for doing so. 

Vectors: Basic Properties 

Equality of Vectors. 

Two vectors are equal if their magnitudes, represented here by the 

lengths of the arrows, are equal, and they are pointing in the same 

direction. Accordingly, in figure 2, 

𝐚 = 𝐛 ≠ 𝐜 

While the three vectors are parallel, and of equal magnitude as they 

are contained within the same parallel lines, and they are not all 

pointing in the same direction. Two vectors that are equal and parallel but pointing in different 

directions are negatives of each other: 

 𝐚 = 𝐛 = −𝐜 (1) 

 

It also follows that, −𝐚 = −𝐛 = 𝐜. 

Vector Scaling.  

We assume that the spacing lines in figure 3 are separated from each 

other by one unit as shown. Vector 𝐚 has a magnitude of one unit.  If 

the lengths of 𝐛, 𝐜 and 𝐝 are 3, 3.5 and 2 respectively, then we have 

that, 𝐛 = 3𝐚;  𝐜 = −3.5𝐚; and 𝐝 = −2𝐚 – the signs being dictated by 

the sense in which they are pointing. These vectors are all scaled 

versions of 𝐚. The scaling factors are real numbers and are therefore 

Figure 2. Equal, opposite 
vectors 

Figure 3. Vector Scaling 
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called “scalars” for this reason. One property of a vector we often take for granted is that it is 

something that can be scaled. These relationships are the operation of “multiplication by a 

scalar” or scaling of vectors. From this relationship, it is clear, for example, that, 

 𝐛 = 3𝐚 = −
3

3.5
𝐜 (2) 

 

in which case, 𝐜 is a scaled version of 𝐛, the scalar in this case being −
3

3.5
. This means they are 

not only scaled versions of 𝐚 but also scaled versions of one another as the last example shows. 

The negative of a vector is simply the scaling of the same vector by a scalar value of −1. Scaling 

with a value of unity retains the original vector. 

Vector Addition, Subtraction. 

Vectors can be added or subtracted from each other. The parallelogram law of addition governs 

this operation: 

In the two figures below, we have vectors 𝐚 and 𝐛. To effect the parallelogram law of addition, 

we place the tail of 𝐚 at the tip of 𝐛 or vice versa. In either case the resultant shown is the addition 

of the two vectors by the parallelogram rule.  

In Figure 4b, the same law is applied; this time to vectors 𝐚 and −𝐛. Hence, subtracting vectors 

is simply effected by the addition of its negative to the other as shown. 

Scaled Projections or Scalar Product. 

As we have seen previously, we can scale a vector by simply multiplying it by a scalar. Another 

important operation for vectors is the scaled projection also called the “Scalar product”. Before 

we define this, observe that there is a fundamental difference between a scalar product on the 

one hand, and multiplication by a scalar on the other. Disambiguating these is very important 

Figure 4. Parallelogram Rule 
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and simple: Multiplication by a scalar takes place between a real number, (called a scalar or a 

scaling factor) and a vector; the result of the operation is a new vector, in the same direction as 

before with a sense dictated by the sign of the scalar multiplier. The scaling may increase or 

decrease magnitude, depending on the value of the scaling factor. In the multiplication by the 

scalar 𝛼 ∈ ℝ, 

 𝐛 = 𝛼𝐚 (3) 

 

𝛼 = 1 leaves the length unchanged, 0 < |𝛼| < 1 creates a decrease in length, while |𝛼| > 1 

increases the length. 

 On the other hand, scalar product is an operation that takes place between two vector operands: 

If 𝐚 and 𝐛 are both vectors, then the scalar quantity, 

 𝑙 =  𝐚 ⋅ 𝐛 (4) 

Is the scalar product of 𝐚 and 𝐛. This product is also 

called the dot product on account of the operator “⋅” 

used to represent it. In order to define this product and 

give it a geometric meaning, consider vectors 𝐚 and 𝐛 in 

figure 5. Here, we project a line from the tip of vector 𝐚 

perpendicular to vector 𝐛 as shown. There is another 

line from the tip of vector 𝐛 to 𝐚 (we needed to elongate 

𝐚 to make this possible). We examine the product of the 

projection of 𝐚 on 𝐛 and the magnitude of vector 𝐛: 

‖𝐚‖ cos 𝛼 × ‖𝐛‖. 

Comparing this with the product of the projection of 𝐛 on 𝐚 and the magnitude of vector; we find 

they are equal: 

 ‖𝐚‖ cos 𝛼 × ‖𝐛‖ = ‖𝐛‖ cos 𝛼 × ‖𝐚‖ (5) 

 

The result on both sides of the equation is a scalar quantity. It is a product consisting of the two 

vector magnitudes and the angle between them, the largest value occurs when the angle is 𝑧𝑒𝑟𝑜. 

Figure 5. Components and Scalar product 
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There is a shorthand for expressing this idea: It is called a scalar product. The scalar equality is 

defined as the scalar product of the two vectors, that is, 

 𝐚 ⋅ 𝐛 ≡ ‖𝐚‖‖𝐛‖ cos 𝛼 (6) 

 

If ‖𝐛‖ = 1, that is, 𝐛 is a vector of unit magnitude, also called a Unit Vector, then this quantity is 

the projection of vector 𝐚 on the direction of 𝐛. The converse is also true when 𝐚 is a unit vector. 

This product is called a Scalar Product with the emphasis on the scalar result of the operation. A 

dot between the two vectors is the symbolic expression of a scalar product of two vectors. As a 

result of this, scalar products have the nickname, “Dot Product” reminding us of the fact that we 

let everybody know that the product we want is the one that produces scalar result and we use 

the dot to signify that intention. 

Cross Product: Vector Area of a Parallelogram 

Consider the rectangle, figure 6, whose base is vector 𝐮 with height ℎ as shown. Its area is 

obviously  

𝐴𝑟 = 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡 = ‖𝐮‖ℎ. 

Triangle II completes the parallelogram so that its slanting side is parallel to vector 𝐯. Congruency 

of I and II is assured as they are both right 

angled triangles. Removing I gives the 

parallelogram, keeping it and removing II 

gives the rectangle. The rectangle is 

therefore of the same area as the 

parallelogram. But ℎ = ‖𝐯‖ sin 𝜃. Area of 

the parallelogram is therefore, 

 𝐴𝑝 = 𝐴𝑟 = ‖𝐮‖‖𝐯‖ sin 𝜃 (7) 

 

For two vectors, 𝐮 and 𝐯, we imbue the above scalar area with a direction. We choose this 

direction to be the outwardly drawn normal to the plane containing 𝐮 and 𝐯 which is also the 

direction of movement of a right threaded screw rotated from vector 𝐮 to 𝐯. Let the unit vector 

Figure 6. Area of a Parallelogram 
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along this normal be 𝐞. We define the cross product of 𝐮 and 𝐯 as the vector area of the 

parallelogram formed by the two vectors such that, 

 𝐮 × 𝐯 ≡ 𝐀 = 𝐴𝑝𝐞 = ‖𝐮‖‖𝐯‖ sin 𝜃 𝐞 (8) 

We have just completed the definition of the vector 

product between two vectors! As before, there is a special 

symbol for showing that you are carrying out a vector 

product between two vectors; it is the usual multiplication 

sign. We refer to it as the “cross symbol”. It is therefore 

customary to give the vector product the name of the 

operator symbol used to signify it. You are free to call it 

Vector Product or Cross Product.  

Note that we have defined three kinds of products. They are scaling, scalar product and vector 

product. They have other names. The set of names we have also introduced here are coined from 

the operator symbols to represent them. Given that 𝛼 is a scalar, and that 𝐚 and 𝐛 are vectors, 

the following table depicts the operations we have defined thus far: 

Table 2. Products with vectors 

Product Operation Result Other Names 

Scalar 
Multiplication 

𝐛 = 𝛼𝐚 Vector 𝐛 in the same direction 
as 𝐚. Scaled to the value of 
𝛼. Sense depends on the sign of 
𝛼 

Scaling 

Scalar Product 𝐚 ⋅ 𝐛 ≡ ‖𝐚‖‖𝐛‖ cos 𝛼 Result is a scalar value. Here 𝛼 is 
the angle between the two 
vectors.  

Dot Product, 
Inner Product 

Vector Product 𝐮 × 𝐯 ≡ 𝐀 = 𝐴𝑝𝐞

= ‖𝐮‖‖𝐯‖ sin 𝛼 𝐞 

Result is a vector value. It’s 
magnitude is the scalar area of 
the parallelogram formed by the 
vectors. Here 𝛼 is the angle 
between the two vectors. 

Cross Product 

Observation. 

The above table has one important implication: “product” or “multiplication” of vectors has at 

least three meanings. (A fourth meaning will be introduced later in this chapter). To simply say, 

take a product, when referring to vectors, is therefore ambiguous. It is important that a specific 

Figure 7. Direction of Unit Vector e 
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product be specified unless the context explicitly makes the product in question transparent. It 

is often necessary to therefore qualify which of the four products we have in mind explicitly. This 

is the reason why they have different operator symbols in the first place. Note that while other 

products take place between two vectors; the first, multiplication by a scalar, takes place 

between a vector and a scalar or vice versa. 

Furthermore, while the other products listed are commutative, the vector product (and tensor 

product also as we shall see) is not commutative. The vector direction of the product reverses 

when the operands are swapped. More of this later.  

Linear Independence, Basis Vectors 

In the first instance, we further assume that this vector is contained in a plane. Suppose we 

introduce two new vectors 𝐚 and 𝐛. The only thing we require is that these two should not be 

collinear; their directions are different. We do not, for example, require these two new vectors 

to have unit magnitude; neither do we require them to be orthogonal, but they are not collinear. 

We will argue that these two vectors can be used to 

express any other vector on the plane in the sense 

that we only need two scaled versions of them to 

add up to any other vector. If we succeed in 

showing that, we then say that the two vectors span 

the space given by the plane. This idea of spanning 

comes from the fact that we can always select two 

scaling factors for the two vectors. With these, we 

can represent any vector as the weighted sum of 

the two vectors using the two scaling factors (or 

scalars) 

At the tip of the vector 𝐟, we draw a line parallel to 

𝐛. At the tail of the same vector, we draw another line parallel to 𝐚. It is easy to see that the 

vectors 𝐱 and 𝐲, chosen along these lines are parallel to 𝐚 and 𝐛 respectively. Consequently, we 

may write that 𝐱 = 𝛼𝐚; and 𝐲 = 𝛽𝐛 where 𝛼 and 𝛽 are the scaling factors (real numbers that can 

Figure 8. Representing a vector by Linearly 
Independent vectors 



19 
 

be positive or negative). From the forgoing, we see clearly that any vector 𝐟 on this plane can be 

expressed as  

 
𝐟 = 𝐱 + 𝐲 

= 𝛼𝐚 + 𝛽𝐛 
(9) 

𝛼.𝛽 ∈ ℝ. Where the above shorthand simply means that the scaling factors belong to the class 

of real numbers. 

The proviso that the two vectors MUST not be collinear is paramount. If they were collinear, it 

would not be possible to guarantee that every vector in this plane can be so represented. We 

hereby conclude by this geometrical arrangement that in a 2-D plane, the maximum number of 

vectors that can be used in this way is two because a third vector can be expressed in terms of 

the other non-collinear two. 

Another way of expressing the fact that these two vectors can be used, with appropriate scalars, 

in a weighted addition, to represent any other vector, is to say that the set {𝐚, 𝐛} forms a basis 

for the plane in question. 

Notice that it is a basis. There could be other pairs that can equally form a basis for this plane. 

One such famous pair is the coordinate unit vectors {𝐢, 𝐣} that have unit magnitude and are 

directed (orthogonal to each other) along the 𝑥 and 𝑦 −axes in a Cartesian system of coordinates 

when the plane in question is the 𝑥 − 𝑦 plane. There are several ways you can obtain the vectors 

to form the basis in any plane. One thing they must have in common is that it MUST not be 

possible to express one as a scaled version of another. When that condition is satisfied, we say 

that the vectors are Linearly Independent. A set containing the maximum number of linearly 

independent vectors is what you need to form a basis in any situation. 

A further observation about the basis vectors. It is possible to complete the parallelogram with 

the other two sides parallel to the basis vectors. One geometric way to check if the vectors truly 

form a basis (equivalently, are linearly independent), is that the parallelogram formed must have 

a non-zero area. Given that 𝜃 is the angle between the two vectors, the area of this parallelogram 

is given by the base times the perpendicular height, 

 𝐴 = ‖𝐚‖‖𝐛‖ sin 𝜃 = ‖𝐚 × 𝐛‖ (10) 

Hence, we can say that any two vectors such that 𝐚 × 𝐛 ≠ 𝐨 can be used as basis in a 2-D plane. 
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Linear Independence, 3-Dimensional Space 

In three-dimensional space, we must require, in addition to the fact that our three vectors be 

non collinear, they must not all be contained in the same plane. If this condition is not satisfied, 

they will not be able to represent the vectors that are not contained in the plane. We hereby 

introduce the set of vectors {𝐚, 𝐛, 𝐜} that are not collinear and not coplanar as shown in figure 

1.3 below. 

 

 

Figure 9. Linear Independence, 3D 

 

The first two basis vectors {𝐚, 𝐛} are drawn on the 𝑥 − 𝑦 plane. The third vector, 𝐜 is shown in 

pink and drawn near the 𝑧 −axis. A typical vector in this 3-D space can be constructed as shown 

in the directed line in yellow. In order to represent this vector in terms of the three basis vectors, 

construct the plane containing vectors , 𝐜 and 𝐟. Drop a line from the tip of 𝐟 to the 𝑥 − 𝑦 plane 

containing {𝐚, 𝐛}parallel to vector 𝐟. Call the vector image of 𝐟 on the 𝑥 − 𝑦 plane 𝐱. The vector 

on this oblique plane, parallel to 𝐜 is called 𝐲. The fact that 𝐱 on the same plane as 𝐚 and 𝐛 means 

we can, as we just did in the 2-D case represent it by the two basis vectors in that plane. 

Therefore, we can easily find 𝛼.𝛽 ∈ ℝ such that, 

 𝐱 = 𝛼𝐚 + 𝛽𝐛 (11) 

We recall that 𝐲 is parallel to 𝐜 , hence,∃𝛾 ∈ ℝ such that, 𝐲 = 𝛾𝐜. Consequently, any 3-D vector 

𝐟 can be expressed as, 

 𝐟 = 𝛼𝐚 + 𝛽𝐛 + 𝛾𝐜 (12) 
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The set, {𝐚, 𝐛, 𝐜} forms a basis for the 3-D space. A tetrahedron formed by joining the tips of this 

set of basis vectors has a base that is half the size of the parallelogram base.  

Dimensionality of Space 

One Dimension 

A collection or a bag full of vectors, which when each is uniquely identifiable is all we mean by a 

set of vectors. Somehow, some influential people feel we should call a set of vectors, a vector 

space. Consider the collection, or vector space in the picture below.  

Imagine it goes on both sides such that we have many elements in the set. If we take one vector 

in the list, call it 𝐚; any other vector 𝐛 can be represented as a scalar multiple of 𝐚. Alternatively. 

Given any other vector 𝐛 in the vector space, the equation  

 𝛼𝐚 + 𝛽𝐛 = 𝐨 (13) 

can always be solved for 𝐛 provided 𝛽 ≠ 0, this equation can be simplified to 𝐛 = −
𝛼

𝛽
𝐚. In which 

case, once we have identified vector 𝐚, all we need to represent any other vector in the space is 

the scalar −
𝛼

𝛽
, which can take fractional, decimal, positive or negative values, as a multiple of 𝐚. 

We express this fact by saying that “vector 𝐚 spans this space”. It forms a basis of this space from 

the fact that every other vector can be expressed by a scalar multiplier of 𝐚; and the dimension 

of this space is one because only one vector is needed to span the space. It is just a basis because 

we could have chosen any other vector to perform this function. Therefore, there could be other 

bases. A different choice of basis leads to different set of choices for the scalar −
𝛼

𝛽
 to define 

define each element in the new basis. The fact that any basis we correctly select contains only 

one vector what makes this a one-dimensional vector space. 

Figure 10. One Dimensional Vector Space 
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Two-Dimensional Space 

Consider another bag, collection or set of vectors (Figure 11) as shown below. Here, all the 

vectors are contained in a single flat plane. We showed earlier that any two non-collinear vectors, 

say 𝐚 and 𝐛 among these can be chosen in such a way that the other vectors in the vector space 

can be expressed in terms of scalar multiples of the two. We also showed further that once these 

are chosen, any other vector 𝐱 can be expressed as a sum of scaled versions 

 𝐱 = 𝛼𝐚 + 𝛽𝐛 (14) 

of this two so that, 𝐚 and 𝐛 that have been so chosen have formed a basis of the vector space. 

Furthermore, given any vector c in the space, the equation, 

 𝛼𝐚 + 𝛽𝐛 + 𝛾𝐜 = 0 (15) 

can be solved for 𝐜 provided 𝛾 is not zero. 

This means that the maximum number of 

linearly independent vectors in this space is 

two. This makes the plane a two-

dimensional vector space. In such a space, 

the maximum number of linearly 

independent vectors you can have is two. 

There is no uniqueness about the choice, as 

another two non collinear vectors may as 

well have been chosen. . 

Three Dimensions 

The arguments above can be carried to three 

dimensions. A geometric interpretation can 

be given. With a more accurate 

mathematical definition of vectors, we can even go to higher dimensions. Once we are past three 

dimensions, however, a geometric interpretation will no longer be possible, but the concept can 

remain useful for analytical purposes. 

Figure 11. Two Dimensional Vectors 
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The maximum number of linearly independent vectors in a three-dimensional space is three. 

These will, in addition to not being collinear, they MUST NOT all be coplanar. That means that 

once you have four or more vectors, one will be expressible in terms of the other three. 

Components in Different Bases 

Up till this point, you may have taken for granted, the fact that you could express any vectors in 

terms of the basis vector set {𝐢, 𝐣, 𝐤} or {𝐞1, 𝐞2, 𝐞3} which are orthogonal unit vectors along the 

three coordinate axes in a Cartesian system of coordinates. Two properties of these vectors are 

that they are mutually orthogonal and that they have unit magnitudes are quite useful. They not 

only allow you to express any given vector in terms of these basis vectors, they also, by these 

attractive properties of normality (unit magnitude) and orthogonality (being at right angles bgto 

one another) make the computation of the coordinates along the basis vectors very simple.  

Despite this, it is important to note that, we DO NOT have to require these properties in order to 

conclude that a set of vectors can form a basis. What we have proved here is that, in three 

dimensions, a set of linearly independent vectors (orthogonal or not, normalized or not) can form 

a basis set. Any other vector in the space, as we have shown above, can be expressed in terms of 

their components along these vectors. The method of computing their components along these 

axes may be more difficult; the fact remains they can be found.  

It turns out that occasions will arise when we will no longer require our basis vectors to be 

orthonormal. However, the linear independence requirement will always be made because it is 

only linearly independent vectors that can form a basis for any space. Orthonormal sets form 

basis; not all basis vector sets are orthonormal; Orthonormal sets are linearly independent; not 

all linearly independent sets are orthonormal. 
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Volume of a Tetrahedron 

The area of the triangular base of the tetrahedron (Figure 12) 

formed by three vectors 𝐚, 𝐛 and 𝐜 is half the parallelogram 

formed by the same vectors. Hence this base is 
1

2
𝐚 × 𝐛 with the 

vector area directed at the normal to this plane. If we take the dot 

product of this with vector 𝐜, we have obtained the base times 

height. However, for a tetrahedron, or any volume obtained by a 

flat area lofted linearly to a single point is one third of this as we 

shall show (See Q&A 1.14). Consequently, a tetrahedron formed 

by the three vectors has the volume 

 

 𝑉 =
1

3
( 

1

2
𝐚 × 𝐛) ⋅ 𝐜 =

1

6
|𝐚 × 𝐛 ⋅ 𝐜| =

1

6
|𝐚 ⋅ 𝐛 × 𝐜| (16) 

As before, linear independence requires that the volume of this tetrahedron be nonzero. That 

means that no two of them can be colinear, and the three cannot be coplanar. 

Volume of a Parallelepiped 

A parallelepiped (Figure 13) with sides 

bound by vectors 𝐮, 𝐯 and 𝐰 with 𝐮 

subtending an angle 𝜃 on the 

horizontal plane while 𝐰 is inclined at 

angle 𝛼 to the vertical axis. The base 

area  

𝐴 = ‖𝐮‖‖𝐯‖ sin 𝜃 = ‖𝐮 × 𝐯‖ 

Vertical height, ℎ, of the object is ‖𝐰‖ 

cos 𝛼. Volume therefore is 

 

𝑉 = 𝐴ℎ = ‖𝐮 × 𝐯‖‖𝐰‖ cos 𝛼 

=  |𝐮 × 𝐯 ⋅  𝐰|. 

 

(17) 

Figure 12. Volume of a 
Tetrahedron 

Figure 13. Volume of a Parallelepiped 
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Orthonormal Basis (ONB) Vectors 

It is often (not always) convenient to use the Cartesian System of coordinates. We can choose a 

convenient set of linearly independent vectors that are unit vectors and mutually orthogonal to 

one another. Instead of the calling this set {𝐢, 𝐣, 𝐤} it is found more convenient to refer to them 

as {𝐞1, 𝐞2, 𝐞3}. In this case, 𝐞1 × 𝐞2 ⋅ 𝐞3 = 1. The base vectors of the coordinate system is now 

an indexed object. We can depict the as 𝐞1, 𝐞2 and 𝐞3. We could also have written, 𝐞𝑖, 𝑖 = 1,2,3 

or 𝐞𝑖, 𝑖 = 1, … ,3.  

If you are going to be severe and argue that this change in the method of representation does 

not amount to much; let us politely disagree: Imagine you have ten of them. In the earlier case 

you have to write, {𝐢, 𝐣, 𝐤, 𝐥, 𝐦, 𝐧, 𝐨, 𝐩, 𝐪, 𝐫 }. If there are 30, then you will run out of symbols and 

may need to look for another naming strategy. For indexed objects, the answer is very simple: 

𝐞𝑖, 𝑖 = 1, … ,10, or 𝐞𝑖, 𝑖 = 1, … ,30 are equally easy! By the time we add the parsimony afforded 

by the summation convention, (next section) it will gradually become clear that there is no 

comparison in the ease of usage between indexed objects and regular symbol usage.  

A typical vector 𝐟 can be written in terms of the basis vectors as,  

 𝐟 = 𝛼𝐚 + 𝛽𝐛 + 𝛾𝐜 = 𝑎1𝐞1 + 𝑎2𝐞2 + 𝑎3𝐞3 (18) 

The scalars 𝑎1, 𝑎2, 𝑎3in this case are easily found by taking the dot product of the equation with 

𝐞1, 

 𝐟 ⋅ 𝐞1 = 𝑎1𝐞1 ⋅ 𝐞1 + 𝑎2𝐞2 ⋅ 𝐞1 + 𝑎3𝐞3 ⋅ 𝐞1 = 𝑎1. (19) 

And we can similarly take products with 𝐞2 and 𝐞3 respectively and obtain that, 𝑎2 = 𝐟 ⋅ 𝐞2, and 

𝑎3 = 𝐟 ⋅ 𝐞3. 

The Einstein Summation Convention 

We introduce an index notation to facilitate the expression of relationships in indexed objects. 

Whereas the components of a vector may be three different functions, indexing helps us to have 

a compact representation instead of using new symbols for each function, we simply index and 

achieve compactness in notation. As we later deal with higher ranked objects (for example, 

tensors), such notational conveniences become even more important. We shall often deal with 

coordinate transformations requiring such indexing. 
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When an index occurs twice on the same side of any equation, or term within an equation, it is 

understood to represent a summation on these repeated indices the summation being over the 

integer values specified by the range. A repeated index is called a summation index, while an 

unrepeated index is called a free index. The summation convention requires that one must never 

allow a summation index to appear more than twice in any given expression.  

Consider the following set of transformation equations between variables sets, 

{𝑥1, 𝑥2, 𝑥3} 𝑜𝑟 𝑥𝑗 , 𝑗 = 1, … ,3 and {𝑦1, 𝑦2, 𝑦3} 𝑜𝑟 𝑦𝑘, 𝑘 = 1, … ,3. 

 

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 

𝑦2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 

𝑦3 = 𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 

(20) 

We may write these equations using the summation symbols as: 

 

𝑦1 = ∑ 𝑎1𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑦2 = ∑ 𝑎2𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑦3 = ∑ 𝑎3𝑗𝑥𝑗

𝑛

𝑗=1

 

 

(21) 

In each of these, noting the repeated indices that can be made to signify summation, we can 

invoke the Einstein summation convention, and write that, 

 𝑦1 = 𝑎1𝑗𝑥𝑗;  𝑦2 = 𝑎2𝑗𝑥𝑗;  𝑦3 = 𝑎2𝑗𝑥𝑗 (22) 

Finally, we observe that 𝑦1,  𝑦2,  and 𝑦3 can be represented as we have been doing by 𝑦𝑖,   𝑖 =

1,2,3 so that the three equations can be written more compactly as, 

 𝑦𝑖 = 𝑎𝑖𝑗𝑥𝑗 ,    𝑖 = 1,2,3 (23) 

Please note here that while 𝑗 in each equation is a dummy index, 𝑖 is not dummy as it occurs once 

on the left and in each expression on the right. We therefore cannot arbitrarily alter it on one 

side without matching that action on the other side. To do so will alter the equation. Again, if we 

are clear on the range of 𝑖, we may leave it out completely and write, 
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 𝑦𝑖 = 𝑎𝑖𝑗𝑥𝑗 (24) 

to represent, more compactly, the transformation equations above. It should be obvious there 

are as many equations as there are free indices. 

If 𝑎𝑖𝑗 represents the components of a 3 × 3 matrix 𝐀, we can show that,  

 𝑎𝑖𝑗𝑎𝑗𝑘 = 𝑏𝑖𝑘 (25) 

where 𝐁 = [𝑏𝑖𝑗] is the product matrix 𝐀𝐀.  

To show this, apply summation convention and see that, 

Table 3. Summation convention 

𝒊 𝒌 𝒂𝒊𝒋𝒂𝒋𝒌 𝒃𝒊𝒌 

1 1 𝑎11𝑎11 + 𝑎12𝑎21 + 𝑎13𝑎31 𝑏11 

1 2 𝑎11𝑎12 + 𝑎12𝑎22 + 𝑎13𝑎32 𝑏12 

1 3 𝑎11𝑎13 + 𝑎12𝑎23 + 𝑎13𝑎33 𝑏13 

2 1 𝑎21𝑎11 + 𝑎22𝑎21 + 𝑎23𝑎31 𝑏21 

2 2 𝑎21𝑎12 + 𝑎22𝑎22 + 𝑎23𝑎32 𝑏22 

2 3 𝑎21𝑎13 + 𝑎22𝑎23 + 𝑎23𝑎33 𝑏23 

3 1 𝑎31𝑎11 + 𝑎32𝑎21 + 𝑎33𝑎31 𝑏31 

3 2 𝑎31𝑎12 + 𝑎32𝑎22 + 𝑎33𝑎32 𝑏32 

3 3 𝑎31𝑎13 + 𝑎32𝑎23 + 𝑎33𝑎33 𝑏33 

 

The above can easily be verified in matrix notation as, 

 𝐀𝐀 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) = (

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

) = 𝐁 (26) 

In this same way, we could have also proved that, 

 𝑎𝑖𝑗𝑎𝑘𝑗 = 𝑏𝑖𝑘 (27) 

Where 𝐁 is the product matrix 𝐀𝐀T. Note the arrangements could sometimes be counter 

intuitive. 

Points to note: 
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1. An index must not be repeated more than once in any term. A repeated index is called a 

dummy index. 

2. Dummy indices are mutable. Changing one pair to another pair, unused index, in the 

object does not change value. For example, 𝑎𝑘𝑎𝑘𝑗 = 𝑎𝛼𝑎𝛼𝑗 = 𝑎𝑚𝑎𝑚𝑗 = 𝑎1𝑎1𝑗 +

𝑎2𝑎2𝑗 + 𝑎3𝑎3𝑗 

3. IMPORTANT: Because of #2, use a pair of new dummy variables to avoid situations that 

could have caused more repeats than allowed.  

Also do not forget that the Einstein summation convention is a matter of convenience, allowing 

us to avoid writing too many summation symbols. The meaning of the expressions and equations 

are not affected by the correct use of this convention. A great deal of reduction in written terms 

can be achieved, nevertheless. 

Orthonormal vector components again 

In a previous section, we introduced the orthonormal basis vectors, 𝐞𝑖,  𝑖 = 1,2,3 With respect to 

this basis, we can express vectors 𝐯, 𝐰  in terms of the basis as, 𝐯 = 𝑣1𝐞1 + 𝑣2𝐞2 + 𝑣3𝐞3 = 𝑣𝑖𝐞𝑖, 

𝐰 = 𝑤𝑖𝐞𝑖. The summation sign is no longer needed because of the summation convention. Each 

𝑣𝑖  is called the component of 𝐯, while 𝑤𝑖 is called the component of 𝐰 

The Kronecker Delta. 𝛿𝑖𝑗  

The Kronecker delta is a symbol with two indices. The value attained depends on the values of 

the indices. In our case, each can assume values ranging from 1 to 3. The value of the symbol 

itself depends, not so much on the indices directly, but on their equality or non-equality. When 

the indices are equal, the Kronecker Delta takes the value of one; otherwise, its value is zero. 

Here are all possibilities: 

 

𝛿11 = 1,  𝛿12 = 0,  𝛿13 = 0    

𝛿21 = 0,  𝛿22 = 1,  𝛿23 = 0 

𝛿31 = 0,  𝛿32 = 0,  𝛿33 = 1 

(28) 

These nine equations can be summarized in the simple form: 

 𝛿𝑖𝑗 = {
1, if 𝑖 = 𝑗      

0, otherwise.
 (29) 

The Kronecker Delta, for reasons that will later become obvious, is called the substitution 

symbol. We will later also see that they are the components of the Identity Tensor when referred 

to Cartesian coordinates. 

Consider the scalar product of two Cartesian base vectors, 𝐞𝑖and 𝐞𝑗. 
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 𝐞𝑖 ⋅ 𝐞𝑗 = {
0 if 𝑖 ≠ 𝑗
1 if 𝑖 = 𝑗

 (30) 

This is precisely the same as the definition of the Kronecker Delta! It is therefore clear that  

 𝐞𝑖 ⋅ 𝐞𝑗 = 𝛿𝑖𝑗 (31) 

For any 𝐯 ∈ 𝕍, 

 𝐯 = 𝑣𝑖𝐞𝑖 (32) 

is the vector expressed in component form using the summation convention. Taking the inner 

product of the above equation with the basis vector 𝐞𝑗, we have 

 
𝐯 ⋅ 𝐞𝑗 = 𝑣𝑖𝐞𝑖 ⋅ 𝐞𝑗 = 𝑣𝑖𝛿𝑖𝑗 

= 𝑣1𝛿1𝑗 + 𝑣2𝛿2𝑗 + 𝑣3𝛿3𝑗 
(33) 

We now examine the value of both sides for different values of 𝑗: 

𝑗 = 1, 𝐯 ⋅ 𝐞1 =  𝑣1𝛿1𝑗 + 𝑣2𝛿2𝑗 + 𝑣3𝛿3𝑗 = 𝑣1𝛿11 + 𝑣2𝛿21 + 𝑣3𝛿31 = 𝑣1; 

 𝑗 = 2, 𝐯 ⋅ 𝐞2 =  𝑣1𝛿1𝑗 + 𝑣2𝛿2𝑗 + 𝑣3𝛿3𝑗 = 𝑣1𝛿12 + 𝑣2𝛿22 + 𝑣3𝛿32 = 𝑣2 and  

𝑗 = 3, 𝐯 ⋅ 𝐞3 =  𝑣1𝛿13 + 𝑣2𝛿23 + 𝑣3𝛿33 = 𝑣3 

In all cases, therefore,  

 𝐯 ⋅ 𝐞𝑗 = 𝑣𝑗 (34) 

which contains the expressions for 𝑣1, 𝑣2, and 𝑣3 as we allow 𝑗 = 1,2,3 in the above equation.  

Substitution Symbol 

The epithet of “substitution symbol, as applied to the Kronecker Delta is the result of the above 

result: 𝑣𝑖𝛿𝑖𝑗 = 𝑣𝑗! It is a general rule: When you have the product of the Kronecker Delta and 

another object with which it shares an index, the result of that product is to remove the 

Kronecker Delta and allow a substitution of the symbol that was not shared as in this expression. 

Look at the following examples:  

Product with Kronecker Delta Result 

𝑆𝛼𝛽𝛿𝑖𝛼 𝑆𝑖𝛽 

𝑇𝑖𝑗𝑘𝛿𝑗𝛼 𝑇𝑖𝛼𝑘 

𝛿𝑖𝑗𝛿𝛼𝑗 𝛿𝑖𝛼 

𝛿𝑖𝑗𝛿𝑖𝑗 𝛿𝑖𝑖 = 𝛿𝑗𝑗 = 𝛿11 + 𝛿22 + 𝛿33 = 3 
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𝑒𝑖𝑗𝑘𝛿𝑗𝑘 𝑒𝑖𝑗𝑗 = 𝑒𝑖𝑘𝑘 

 

The Alternating Levi-Civita Symbol. 

Consider the following determinant of Kronecker Deltas, 

𝑒𝑖𝑗𝑘 ≡ |

𝛿1𝑖 𝛿1𝑗 𝛿1𝑘

𝛿2𝑖 𝛿2𝑗 𝛿2𝑘

𝛿3𝑖 𝛿3𝑗 𝛿3𝑘

|, where the indices 𝑖, 𝑗 and 𝑘, varying column to column, can take the 

values 1,2 or 3. Clearly, the values 𝑖 = 1, 𝑗 = 2 and 𝑘 = 3 gives the determinant,  

 𝑒𝑖𝑗𝑘 = 𝑒123 = |

𝛿11 𝛿12 𝛿13

𝛿21 𝛿22 𝛿23

𝛿31 𝛿32 𝛿33

| = |
1 0 0
0 1 0
0 0 1

| = 1 (35) 

once we apply the definition of the Kronecker Deltas, it is clear that this is the determinant of 

the Identity Tensor. A simple check reveals the fact that  

 
𝑒123 = 𝑒231 = 𝑒312 = 1 

𝑒132 = 𝑒321 = 𝑒213 = −1 
(36) 

and the value of this quantity is zero in every other case as can be checked by a simple 

determinant expansion. Those cases include situations when one or more of the indices is equal 

to another.  

We can arrive at the same relationship if, going row-wise, we define 

 𝑒𝑟𝑠𝑡 = |

𝛿𝑟1 𝛿𝑟2 𝛿𝑟3

𝛿𝑠1 𝛿𝑠2 𝛿𝑠3

𝛿𝑡1 𝛿𝑡2 𝛿𝑡3

| (37) 

Again, just as the previous case, 

 
𝑒123 = 𝑒231 = 𝑒312 = 1 

𝑒132 = 𝑒321 = 𝑒213 = −1 
(38) 

with all the other cases returning zero. In either of these cases, the symbol, 𝑒𝑖𝑗𝑘 or 𝑒𝑟𝑠𝑡 as we 

have defined it, is called the Levi-Civita or Alternating Symbol. An even permutation of its 

symbols retains sign while any odd permutation negates the sign. This behavior can be predicted 

from the knowledge of determinants. A row or column swap negates sign while two row or 

columns swaps becomes a double negation of sign and gives positive. Consequently, even 
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permutations result in sign preservation while odd permutations negative. It is said to be 

perfectly anti-symmetric.  

Continuing with the determinant interpretation, equality of the indices denotes a determinant 

with repeated rows or columns. Clearly, we have zero value for such a determinant. 

Products of Alternating tensors 

Consider the product, 𝑒𝑟𝑠𝑡𝑒𝑖𝑗𝑘 of the alternating symbols – the determinants we just defined. We 

will proceed to show that, 

 𝑒𝑟𝑠𝑡𝑒𝑖𝑗𝑘 = |

𝛿𝑟𝑖 𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑗 𝛿𝑠𝑘

𝛿𝑡𝑖 𝛿𝑡𝑗 𝛿𝑡𝑘

| (39) 

The definition of 𝑒𝑖𝑗𝑘 and of 𝛿𝑖𝑗 immediately shows that, 

𝑒𝑖𝑗𝑘 = |

𝛿1𝑖 𝛿1𝑗 𝛿1𝑘

𝛿2𝑖 𝛿2𝑗 𝛿2𝑘

𝛿3𝑖 𝛿3𝑗 𝛿3𝑘

|, and 𝑒𝑟𝑠𝑡 = |

𝛿𝑟1 𝛿𝑟2 𝛿𝑟3

𝛿𝑠1 𝛿𝑠2 𝛿𝑠3

𝛿𝑡1 𝛿𝑡2 𝛿𝑡3

| 

The product,  

𝑒𝑟𝑠𝑡𝑒𝑖𝑗𝑘 = |

𝛿𝑟1 𝛿𝑟2 𝛿𝑟3

𝛿𝑠1 𝛿𝑠2 𝛿𝑠3

𝛿𝑡1 𝛿𝑡2 𝛿𝑡3

| |

𝛿1𝑖 𝛿1𝑗 𝛿1𝑘

𝛿2𝑖 𝛿2𝑗 𝛿2𝑘

𝛿3𝑖 𝛿3𝑗 𝛿3𝑘

| 

= |

𝛿𝑟1𝛿1𝑖 + 𝛿𝑟2𝛿2𝑖 + 𝛿𝑟3𝛿3𝑖 𝛿𝑟𝛼𝛿𝛼𝑗 𝛿𝑟𝛼𝛿𝛼𝑘

𝛿𝑠𝛼𝛿𝛼𝑖 𝛿𝑠𝛼𝛿𝛼𝑗 𝛿𝑠𝛼𝛿𝛼𝑘

𝛿𝑡𝛼𝛿𝛼𝑖 𝛿𝑡𝛼𝛿𝛼𝑗 𝛿𝑡𝛼𝛿𝛼𝑘

| 

= |

𝛿𝑟𝑖 𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑗 𝛿𝑠𝑘

𝛿𝑡𝑖 𝛿𝑡𝑗 𝛿𝑡𝑘

| 

(We showed the first working only; as an exercise, work the others out). We now consider a 

situation when one of the indices of the alternating symbols in a product are the same. To do 

this, we begin from the above result: 

Given that 

𝑒𝑟𝑠𝑡𝑒𝑖𝑗𝑘 = |

𝛿𝑟𝑖 𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑗 𝛿𝑠𝑘

𝛿𝑡𝑖 𝛿𝑡𝑗 𝛿𝑡𝑘

| we now show, by setting 𝑡 → 𝑘 in this expression, that  

 𝑒𝑟𝑠𝑘𝑒𝑖𝑗𝑘 = 𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑟𝑗𝛿𝑠𝑖  (40) 
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Clearly, not forgetting that repetition of an unknown index signifies a summation,  

 𝑒𝑟𝑠𝑘𝑒𝑖𝑗𝑘 = |

𝛿𝑟𝑖 𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑗 𝛿𝑠𝑘

𝛿𝑘𝑖 𝛿𝑘𝑗 𝛿𝑘𝑘

| = |

𝛿𝑟𝑖 𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑗 𝛿𝑠𝑘

𝛿𝑘𝑖 𝛿𝑘𝑗 𝛿11 + 𝛿22 + 𝛿33

| = |

𝛿𝑟𝑖 𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑗 𝛿𝑠𝑘

𝛿𝑘𝑖 𝛿𝑘𝑗 3

| 

Expanding the equation, using the third row, we have: 

 
𝑒𝑟𝑠𝑘𝑒𝑖𝑗𝑘 = 𝛿𝑘𝑖 |

𝛿𝑟𝑗 𝛿𝑟𝑘

𝛿𝑠𝑗 𝛿𝑠𝑘
| − 𝛿𝑘𝑗 |

𝛿𝑟𝑖 𝛿𝑟𝑘

𝛿𝑠𝑖 𝛿𝑠𝑘
| + 3 |

𝛿𝑟𝑖 𝛿𝑟𝑗

𝛿𝑠𝑖 𝛿𝑠𝑗
| 

= 𝛿𝑘𝑖(𝛿𝑟𝑗𝛿𝑠𝑘 − 𝛿𝑠𝑗𝛿𝑟𝑘) − 𝛿𝑘𝑗(𝛿𝑟𝑖𝛿𝑠𝑘 − 𝛿𝑠𝑖𝛿𝑟𝑘)

+ 3(𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗) 

= 𝛿𝑟𝑗𝛿𝑠𝑖 − 𝛿𝑠𝑗𝛿𝑟𝑖 − 𝛿𝑟𝑖𝛿𝑠𝑗 + 𝛿𝑠𝑖𝛿𝑟𝑗 + 3(𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗) 

= −2(𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗) + 3(𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗) 

= 𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗 

 

It is instructive to observe the two terms in the last expression. Notice that there is a change in 

partners in the pairs. This observation, if we remember, means that once we can form one term, 

the other is a simply an index pairing exchange.  

We now proceed to look at the example where two of the indices of the alternating symbols in 

the product are the same. Beginning from our most recent result, equation 15, that  

 𝑒𝑟𝑠𝑘𝑒𝑖𝑗𝑘 = 𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗 (411) 

 

We proceed to show that 𝑒𝑟𝑗𝑘𝑒𝑖𝑗𝑘 = 2𝛿𝑟𝑖. 

In the equation, 𝑒𝑟𝑠𝑘𝑒𝑖𝑗𝑘 = 𝛿𝑟𝑖𝛿𝑠𝑗 − 𝛿𝑠𝑖𝛿𝑟𝑗 set 𝑠 → 𝑗, we have, 

 

𝑒𝑟𝑗𝑘𝑒𝑖𝑗𝑘 = 𝛿𝑟𝑖𝛿𝑗𝑗 − 𝛿𝑗𝑖𝛿𝑟𝑗  

= 3𝛿𝑟𝑖 − 𝛿𝑟𝑖 

= 2𝛿𝑟𝑖 . 

(42) 

Component Form of Products of Vectors 

Invoking the Einstein summation convention and using the Cartesian system of coordinates, we 

can write the component form of vectors 𝐚 = 𝑎𝑖𝐞𝑖, 𝐛 = 𝑏𝑗𝐞𝑗. We can go ahead to write the scalar 

and vector products in their component forms: 
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Scalar, Dot Product 

To find the component form of the scalar product, let us remember the meaning of the scalar 

product as it applies to unit basis vectors. 𝐞𝑖 ⋅ 𝐞𝑗 is a projection of a vector to a direction 

perpendicular to it whenever 𝑖 ≠ 𝑗. This projection has the value of zero; it vanishes. When 𝑖 = 𝑗, 

we are projecting a vector unto itself. This gives the value of unity since it is a unit vector that has 

been project. Clearly therefore, 𝐞𝑖 ⋅ 𝐞𝑗 = 𝛿𝑖𝑗. Consequently, 

 

𝐚 ⋅ 𝐛 = (𝑎𝑖𝐞𝑖) ⋅ (𝑏𝑗𝐞𝑗) 

= 𝑎𝑖𝑏𝑗𝐞𝑖 ⋅ 𝐞𝑗 = 𝑎𝑖𝑏𝑗𝛿𝑖𝑗 

= 𝑎𝑖𝑏𝑖 

= 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 

(43) 

Which is the meaning of the compact form, 𝑎𝑖𝑏𝑖. (Note: It is correct that 𝑏𝑖𝐞𝑖 = 𝑏𝑗𝐞𝑗. Any dummy 

index would be ok. However, using the first would have led to 𝑎𝑖𝑏𝑖𝐞𝑖 ⋅ 𝐞𝑖 which would not only 

violate the summation convention ruled that no index be repeated more than once in any term. 

It would also have led to wrong results). 

Vector, Cross Product. 

 

𝐚 × 𝐛 = (𝑎𝑖𝐞𝑖) × (𝑏𝑗𝐞𝑗) 

= 𝑎𝑖𝑏𝑗𝐞𝑖 × 𝐞𝑗 

= 𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐞𝑘 

(44) 

The last step requires us to show that the cross product of the base vectors, 𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝑘𝐞𝑘. 

This important result comes from a compendium of repeated application of the definition of the 

cross product as shown in the table below: 

i j 𝒆𝒊 × 𝒆𝒋 

1 × 1 sin 90 (−𝒆2) 

𝒆1 × 𝒆2 = 𝒆3 

𝒆2 × 𝒆3 = 𝒆1 

𝒆3 × 𝒆1 = 𝒆2 

𝑒𝑖𝑗𝑘𝐞𝑘 

1 3 1 × 1 sin 90 = (−𝒆𝟐) 𝑒13𝑘𝐞𝑘 = 𝑒131𝐞1 + 𝑒132𝐞2 + 𝑒133𝐞3 = −𝐞2 

1 2 𝒆1 × 𝒆2 = 𝒆3 𝑒12𝑘𝐞𝑘 = 𝑒121𝐞1 + 𝑒122𝐞2 + 𝑒123𝐞3 = 𝐞3 

2 3 𝒆2 × 𝒆3 = 𝒆1 𝑒23𝑘𝐞𝑘 = 𝑒231𝐞1 + 𝑒232𝐞2 + 𝑒233𝐞3 = 𝐞1 

3 1 𝒆3 × 𝒆1 = 𝒆2 𝑒31𝑘𝐞𝑘 = 𝑒311𝐞1 + 𝑒312𝐞2 + 𝑒313𝐞3 = 𝐞2 



34 
 

1 1 𝒆1 × 𝒆1 = 0 𝑒11𝑘𝐞𝑘 = 𝑒111𝐞1 + 𝑒112𝐞2 + 𝑒113𝐞3 = 0 

2 2 𝒆2 × 𝒆2 = 0 𝑒22𝑘𝐞𝑘 = 𝑒221𝐞1 + 𝑒222𝐞2 + 𝑒223𝐞3 = 0 

2 1 𝒆2 × 𝒆1 = −𝒆3 𝑒21𝑘𝐞𝑘 = 𝑒211𝐞1 + 𝑒212𝐞2 + 𝑒213𝐞3 = −𝐞3 

3 2 𝒆3 × 𝒆2 = −𝒆1 𝑒32𝑘𝐞𝑘 = 𝑒321𝐞1 + 𝑒322𝐞2 + 𝑒323𝐞3 = −𝐞1 

3 3 𝒆3 × 𝒆3 = 0 𝑒33𝑘𝐞𝑘 = 𝑒331𝐞1 + 𝑒332𝐞2 + 𝑒333𝐞3 = 0 

Note that we only need to specify the 𝑖 and 𝑗 values as there is indexing into all the values of 𝑘 

because it is a dummy index in the above expression. 

Expansion of the vector product is straightforward: 

𝐚 × 𝐛 = 𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐞𝑘 

= 𝑒123𝑎1𝑏2𝐞3 + 𝑒132𝑎1𝑏3𝐞2 + 𝑒231𝑎2𝑏3𝐞1 + 𝑒213𝑎2𝑏1𝐞3 + 𝑒312𝑎3𝑏1𝐞2 + 𝑒321𝑎3𝑏2𝐞1 

= 𝑎1𝑏2𝐞3 − 𝑎1𝑏3𝐞2 + 𝑎2𝑏3𝐞1 − 𝑎2𝑏1𝐞3 + 𝑎3𝑏1𝐞2 − 𝑎3𝑏2𝐞1 

By avoiding repeated indices, we gain speed in ignoring zero elements in the expression. 

You will see that only the six non-vanishing values of 𝑒𝑖𝑗𝑘 appear in the expression here. We gain 

valuable time and avoid unnecessary evaluation by following a simple strategy: 

1. Once the first index, 𝑖 = 1, only two non-zero cases exist: 𝑗 = 2, 𝑘 = 3 and 𝑗 = 3, 𝑘 = 2 

2. When 𝑖 = 2, again, only two non-zero cases exist: 𝑗 = 3, 𝑘 = 1 and 𝑗 = 1, 𝑘 = 3 

3. Lastly, when 𝑖 = 3, again, only two non-zero cases exist: 𝑗 = 1, 𝑘 = 2 and 𝑗 = 2, 𝑘 = 1.  

Using this approach, it becomes unnecessary to write 27 terms when 21 of them vanish. Instead, 

we can pick out only the six non-vanishing terms. 

We can also make 𝐞𝑘 the subject of the formula starting from the equation, 

 𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝑘𝐞𝑘 (45) 

Multiplying both sides by 𝑒𝑖𝑗𝛼, we have, 

𝑒𝑖𝑗𝛼𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝛼𝑒𝑖𝑗𝑘𝐞𝑘 = 2𝛿𝑘𝛼𝐞𝑘 = 2𝐞𝛼 

so that, 

 𝐞𝛼 =
1

2
𝑒𝑖𝑗𝛼𝐞𝑖 × 𝐞𝑗 =

1

2
𝑒𝛼𝑖𝑗𝐞𝑖 × 𝐞𝑗 (46) 
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The Dyad 

We are used to producing scalars or vectors by taking a product of two vectors. One exceedingly 

important object that you can also produce from taking such a binary product is a Tensor. 

Naturally, we shall call such a product a “Tensor Product”.  

Its symbol, ⊗, is not a dot or a cross. It is a symbol that may look strange. That symbol combines 

the product sign and a circle. It is called a dyad operator. Therefore, as before, a tensor product 

also has a nickname, “the Dyad”, or a “Dyad Product”. 

The dyad is defined by the result of its action on a vector. Consider the dyad 𝐚 ⊗ 𝐛. Its action on 

a vector 𝐜 is defined as follows: 

 (𝐚 ⊗ 𝐛)𝐜 = (𝐛 ⋅ 𝐜)𝐚 (47) 

That is, it produces a vector in the direction of its first argument scaled by a factor of the scalar 

product of its second argument with the vector it acts upon. A dyad, as we shall see, is a tensor. 

The most elementary tensor you can get is the dyad product of two base vectors: 𝐞𝑖 ⊗ 𝐞𝑗 

The tensor product of two vectors can be expressed in terms of this dyad base: 

 𝐚 ⊗ 𝐛 = (𝑎𝑖𝐞𝑖) ⊗ (𝑏𝑗𝐞𝑗) = 𝑎𝑖𝑏𝑗𝐞𝑖 ⊗ 𝐞𝑗 (48) 

The summation convention still applies so that it is easy to see that the above expression contains 

nine components. 

Observe immediately that, in 3D, just as you express a vector in terms of three basis vectors, 

there are nine base dyads for expressing every tensor: 𝐞1 ⊗ 𝐞1,  𝐞1 ⊗ 𝐞2, 𝐞1 ⊗ 𝐞3, 𝐞2 ⊗

𝐞1,  𝐞2 ⊗ 𝐞2, 𝐞2 ⊗ 𝐞3, 𝐞3 ⊗ 𝐞1,  𝐞3 ⊗ 𝐞2, 𝐞3 ⊗ 𝐞3 

To find the components of a tensor is to find nine scalar coefficients to these base dyads. Just as 

a dot product is called an “inner product”, a tensor product is called an “outer product” or a 

“Kronecker product”.  

Binary, Ternary Operations 

We will introduce tensors more formally in the next chapter. For our purpose here, remember 

that with two vectors, we have defined three different products that may result. These are: scalar 

or dot product; vector or cross product; tensor or dyad product. This means that, unlike scalars, 

you DO NOT simply “multiply” two vectors. To say that creates an ambiguity because we have 
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these three possible results: a scalar, a vector or a tensor. The specific product we have in mind 

MUST be specified. While the statement, “multiply two scalars” is sensible, the same statement, 

applied to two vectors, is ambiguous. When we are dealing with vector multiplication, we must 

disambiguate by being specific on which vector multiplication or product we have in mind. We 

do this in prose, we also do it in the equation in which vector products are involved. The 

disambiguation method is the sign, dot, cross or the dyad circle on a product sign that signifies a 

tensor product. It is therefore an incomplete specification of product, to simply concatenate two 

vectors, to signify a product, as you would be permitted to do when dealing with two scalar 

variables or numbers. Given that 𝛼 and 𝛽 are scalars, and that 𝐮, 𝐯 and 𝐰 are vectors, the 

following table provides examples of products explaining why some may be ambiguous 

statements requiring more information to be correct: 

Product Right or wrong Comments 

𝛼𝐮 Correct Scaling a vector, multiplication of a scalar and a vector; 
No explicit sign required 

𝐮𝛽𝐯 Error 𝐮𝛽 is a scaled vector whose product with 𝐯 is ambiguous. 
Possible additional information can make it (𝐮𝛽) ⋅ 𝐯, 
𝐮 × (𝛽𝐯), or 𝐮 ⊗ (𝛽𝐯). They have different meanings 
that cannot be reliably guessed unless you supply the 
needed information a priori. 

𝛽𝛼 Correct Product of two scalars; No explicit sign required 

𝐯𝐮 Error Product of two vectors; 𝐯 ⋅ 𝐮 ≠ 𝐯 × 𝐮 ≠ 𝐯 ⊗ 𝐮  
Explicit disambiguating sign required. We note here that 
certain authors imply this simple concatenation as the 
way they represent the tensor product, 𝐯 ⊗ 𝐮. In most 
current Literature on the subject, the tensor or dyad sign 
is the preferred way to represent this product. We retain 
that more popular convention here and subsequently. 

𝛽(𝐮 × 𝐯) Correct Vector product of two vectors gives a vector. Multiplying 
this result by a scalar does not require another sign. The 
order of the scaling is NOT important: 

𝛽(𝐮 × 𝐯) = 𝛽𝐮 × 𝐯 = 𝐮 × 𝛽𝐯 = (𝐮 × 𝐯)𝛽 
The order of the appearance of the vectors is inviolable: 
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𝛽(𝐮 × 𝐯) ≠ 𝛽𝐯 × 𝐮 = 𝐯 × 𝛽𝐮 ≠ (𝐮 × 𝐯)𝛽 

𝐮 ⋅ 𝐯𝛼 Correct The dot product of a vector with a scaled vector. No 
ambiguity is created with the location of 𝛼; 𝐮 ⋅ 𝐯𝛼 , (𝐮𝛼) ⋅
𝐯, or 𝛼𝐮 ⋅ 𝐯 all mean the same thing. 

𝛽𝐮 ⋅ 𝐯 × 𝐰𝛼 Correct Scalar triple product with vector scaling along. Result is 
the same as (𝛽𝛼)𝐮 ⋅ 𝐯 × 𝐰 = (𝛽𝛼)𝐮 × 𝐯 ⋅ 𝐰 

𝛽𝐮 × 𝐯 × 𝐰 Error Vector triple product with vector scaling along. Vector 
product is not associative:  

𝛽𝐮 × (𝐯 × 𝐰) = 𝛽(𝐮 ⋅ 𝐰)𝐯 − 𝛽(𝐮 ⋅ 𝐯)𝐰 
≠  𝛽(𝐮 × 𝐯) × 𝐰
=  𝛽(𝐮 ⋅ 𝐰)𝐯 − 𝛽(𝐯 ⋅ 𝐰)𝐮 

Parentheses are required to show which product is 
intended. 

𝐮 ⋅ 𝐯 ⊗ 𝐰 Error (𝐯 ⊗ 𝐰)𝐮 ≠ 𝐮(𝐯 ⊗ 𝐰) 

𝐮 × 𝐯 ⊗ 𝐰 Correct Treat the vector cross as a tensor, then obtain the LHS:  
(𝐮 × 𝐯) ⊗ 𝐰 =  𝐮 × (𝐯 ⊗ 𝐰) 

The two different interpretations evaluate to the same 
value. 

 

More on the Tensor Product 

Given vectors 𝐚 = 𝑎𝑖𝐞𝑖 and 𝐛 = 𝑏𝑗𝐞𝑗, we may use matrix notation, in two different ways, and 

write, 

 

𝐚 = [𝐞1, 𝐞2, 𝐞3] [

𝑎1

𝑎2

𝑎3

] = 𝑎1𝐞1 + 𝑎2𝐞2 + 𝑎3𝐞3 = 𝑎𝑖𝐞𝑖 

𝐛 = [𝑏1, 𝑏2, 𝑏3] [

𝐞1

𝐞2

𝐞3

] = 𝑏1𝐞1 + 𝑏2𝐞2 + 𝑏3𝐞3 = 𝑏𝑗𝐞𝑗 

(49) 

 The dyad 𝐚 ⊗ 𝐛 = 𝑎𝑖𝑏𝑗𝐞𝑖 ⊗ 𝐞𝑗 which can be given in its full component form as, 

 𝐚 ⊗ 𝐛 = 𝑎𝑖𝑏𝑗𝐞𝑖 ⊗ 𝐞𝑗 (50) 
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The matrices of scalars can cross the dyad sign because only one product is defined for scalars. 

For vectors, the case is different. Three different products are defined between two vectors. We 

must always be consistent with the product involved. The matrix for the dyad 𝐚 ⊗ 𝐛 is 

 [𝐚 ⊗ 𝐛] = [

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3

𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3

𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

] (51) 

The dyad itself is, 

 𝐚 ⊗ 𝐛 = [𝐞1, 𝐞2, 𝐞3] ⊗ [

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3

𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3

𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

] [

𝐞1

𝐞2

𝐞3

] (52) 

or,  

 𝐚 ⊗ 𝐛 = [𝐞1, 𝐞2, 𝐞3] [

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3

𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3

𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

] ⊗ [

𝐞1

𝐞2

𝐞3

] (53) 

The matrix representation of the vector is 𝐚 is 

 [𝐚] = [

𝑎1

𝑎2

𝑎3

]  𝑜𝑟 [𝐛]T =  [𝑏1, 𝑏2, 𝑏3]. (54) 

The vectors, in component form are expressed as,  

 𝐚 = 𝑎𝑖𝐞𝑖 = [𝐞1, 𝐞2, 𝐞3] [

𝑎1

𝑎2

𝑎3

] or 𝐛 = 𝑏𝑗𝐞𝑗 = [𝑏1, 𝑏2, 𝑏3] [

𝐞1

𝐞2

𝐞3

]. (55) 

The matrix elements will change if we change the basis vectors to which the vector or dyad is 

referred. Again, as you can see, the matrix representations, in all cases, are not the same as the 

tensor or the vector. 

Trace of a Dyad 

A very important linear operation on a dyad is the trace operation. It turns a dyad into a scalar 

quantity. It is achieved by simply changing the dyad operator into a dot as follows: 

 

tr(𝐚 ⊗ 𝐛) = 𝑎𝑖𝑏𝑗  tr(𝐞𝑖 ⊗ 𝐞𝑗) 

= 𝑎𝑖𝑏𝑗  (𝐞𝑖 ⋅ 𝐞𝑗) 

= 𝑎𝑖𝑏𝑗  𝛿𝑖𝑗 

= 𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3. 

(56) 

A simple observation will show that this is the sum of the diagonal elements  
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[

𝒂𝟏𝒃𝟏 𝑎1𝑏2 𝑎1𝑏3

𝑎2𝑏1 𝒂𝟐𝒃𝟐 𝑎2𝑏3

𝑎3𝑏1 𝑎3𝑏2 𝒂𝟑𝒃𝟑

] 

of the dyad matrix representation as shown above. There is more to say about linearity, linear 

operators and linear functions in the next chapter. 

Coordinate Transformation 

Consider a set of Cartesian coordinate orthonormal vectors, {𝐞𝟏, 𝐞𝟐, 𝐞𝟑} shown in blue in figure 

1.4. These vectors are position vectors at {1,0,0}, {0,1,0} and {0,0,1} respectively. Consider 

another orthonormal system, shown in pink, whose unit vectors are oriented as shown in the 

figure. Let these unit vectors be {𝛏𝟏, 𝛏𝟐, 𝛏𝟑}. The set {𝐞𝟏, 𝐞𝟐, 𝐞𝟑}, since they are orthonormal, are 

also linearly independent. Consequently, each 

member of the set, {𝛏𝟏, 𝛏𝟐, 𝛏𝟑} can be expressed 

in terms of the basis vectors in {𝐞𝟏, 𝐞𝟐, 𝐞𝟑}. (We 

note that the opposite is also possible: we could 

express the original vectors in terms of the 

rotated system). Taking these vectors one by 

one, we may write, 

𝛏𝟏 = 𝛼1𝐞𝟏 + 𝛽1𝐞𝟐 + 𝛾1𝐞𝟑 

𝛏2 = 𝛼2𝐞𝟏 + 𝛽2𝐞𝟐 + 𝛾2𝐞𝟑 

𝛏3 = 𝛼3𝐞𝟏 + 𝛽3𝐞𝟐 + 𝛾3𝐞𝟑 

The coefficients can be found by taking the dot products as usual. Note that we can gain more 

compactness and use only one symbol for all the nine coefficients if we adopt this simple 

arrangement: Let 𝛼𝑖 ≡ 𝑎𝑖1, 𝛽𝑖 ≡ 𝑎𝑖2, and 𝛾𝑖 ≡ 𝑎𝑖3. The three equations can therefore be written 

more compactly as, 

 𝛏𝒊 = 𝑎𝑖𝑗𝐞𝒋 (57) 

We can find each of the nine coefficients by taking the scalar product of this equation with 𝐞𝜶: 

 𝛏𝒊 ⋅  𝐞𝜶 = 𝑎𝑖𝑗𝐞𝒋 ⋅ 𝐞𝜶 = 𝑎𝑖𝑗𝛿𝑗𝛼 = 𝑎𝑖𝛼 (58) 

Or, 𝑎𝑖𝑗 = 𝛏𝒊 ⋅  𝐞𝑗.These linear equations can always be inverted and we may have the converse: 

 𝐞𝒋 = 𝑏𝑗𝑘𝛏𝑘 (59) 
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𝐁 = [𝑏𝑖𝑗] is obviously the inverse of the coefficient matrix 𝐀 = [𝑎𝑖𝑗]. This inverse relationship 

can be obtained easily using the indicial notation. Starting with 𝛏𝒊 = 𝑎𝑖𝑗𝐞𝒋,  we could substitute 

for e𝑗 and write,  

 𝛏𝒊 = 𝑎𝑖𝑗𝐞𝒋 = 𝑎𝑖𝑗𝑏𝑗𝑘𝛏𝑘  (60) 

Taking scalar products again, we have, 

 

𝛏𝒊 ⋅ 𝛏𝛼 = 𝛿𝑖𝛼 = 𝑎𝑖𝑗𝑏𝑗𝑘𝛏𝑘 ⋅ 𝛏𝛼  

= 𝑎𝑖𝑗𝑏𝑗𝛼  

= (𝑎𝑖𝑗𝐞𝒋) ⋅ (𝑎𝛼𝛽𝐞𝜷) 

= 𝑎𝑖𝑗𝑎𝛼𝛽𝛿𝑗𝛽 

= 𝑎𝑖𝑗𝑎𝛼𝑗 

(61) 

 

These equations in matrix form can be written as, 

 𝐈 = 𝐀𝐁 = 𝐀𝐀T (62) 

Showing that the inverse transformation matrix is the transpose of the original transformation. 

The inverse transformation can now be re-written, using this result: 

 𝐞𝑗 = 𝑏𝑗𝑘𝛏𝑘 = 𝑎𝑘𝑗𝛏𝑘  (63) 

So that, in a transformation of from one orthonormal system to another, if  

𝛏𝑖 = 𝑎𝑖𝑗𝐞𝑗, 

 then  

𝐞𝑖 = 𝑎𝑗𝑖𝛏𝑗  

because the inverse of the transformation is simply its transpose.  

Example.  

Show, in two dimensions that the rotation, 𝐑T = 𝐞𝑗 ⊗ 𝛏𝑗 gives the coordinates of a fixed vector 

in rotated coordinates. 



41 
 

 

 

Answer: In the figure 14, Let the original coordinates be 𝐎 𝑥1 𝑥2  and imagine that we are leaving 

the vector 𝐎𝐏 which is presented as 𝐯 = 𝑎𝑖𝐞𝑖 where 𝐞1and 𝐞2 are unit vectors along 𝐎 𝑥1 𝑥2 If 

the coordinates are rotated to 𝐎 𝑦1 𝑦2 such that the same vector now becomes 𝐯 = 𝑏𝑖𝛏𝑖  where 

𝛏1and 𝛏2 are unit vectors along the 𝐎 𝑦1 𝑦2  system. These will be the new coordinates after the 

rotation of coordinates to this point.  

Clearly, 𝐎𝐀 = 𝑎1 and 𝐎𝐁 = 𝑎2. We need to find the lengths , 𝐎𝐀′′ = 𝑏1 and 𝐎𝐁′′ = 𝑏2. We drop 

perpendicular lines to the lines 𝐎 𝑦1 and 𝐎 𝑦2 meeting them at 𝐀′′ and 𝐁′′respectively. It is clear 

that 𝐎𝐀′ = 𝑎1 cos 𝛼. Furthermore, 𝐀𝐀′′′ = 𝑎2 sin 𝛼 because 𝐏𝐀 is the hypotenuse of a right 

angled triangle 𝐀𝐏𝐀′′′with angle 𝛼 at  𝐀𝐏𝐀′′′ And it is easy to see that 𝐀𝐀′𝐀′′𝐀′′′ is a rectangle. 

Its opposite sides are equal, consequently, the length  

 
𝐎𝐀′′ = 𝑏1 = 𝑎1 cos 𝛼 + 𝑎2 sin 𝛼. 

= 𝑎1(𝛏1 ⋅ 𝐞1) + 𝑎2(𝛏1 ⋅ 𝐞2) 
(64) 

as we note that 𝐞1 is the unit vector along 𝑂𝑥1while 𝛏1 is the unit vector along 𝑂𝑦1 therefore, 𝛏1 ⋅ 𝐞1 =

‖𝛏1‖‖𝐞1‖ cos 𝛼 = cos 𝛼. Similarly, 𝐞2 is the unit vector along 𝑂𝑥2 so that 𝛏1 ⋅ 𝐞2 = ‖𝛏1‖‖𝐞2‖ cos 𝛽 =

sin 𝛼. 𝐁′′ is the foot of the perpendicular from point 𝐏 to the 𝐎 𝑦2-axis. 𝐁𝐁′is parallel to 𝐏𝐁′′. 𝐁′′′ 

is the foot of the perpendicular from 𝐁 to 𝐏𝐁′′. By the same arguments as before, 𝐁𝐁′𝐁′′𝐁′′′ is 

also a rectangle. Clearly, 

 
𝐎𝐁′′ = 𝑏2 = −𝑎1 sin 𝛼 + 𝑎2 cos 𝛼. 

= 𝑎1(𝛏2 ⋅ 𝐞1) + 𝑎2(𝛏2 ⋅ 𝐞2) 
(65) 

The rotation tensor is: 𝐑T = 𝐞𝑗 ⊗ 𝛏𝑗. Hence, we have: 

Figure 14. Vector rotation 
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𝐑T𝐯 = (𝐞𝑗 ⊗ 𝛏𝑗)𝑎𝑖𝐞𝑖 

= 𝑎𝑖𝐞𝑗(𝛏𝑗 ⋅ 𝐞𝑖). 
(66) 

Expanding for this two-dimensional case, we have: 

 𝐑T𝐯 = 𝐞1(𝑎1(𝛏1 ⋅ 𝐞1) + 𝑎2(𝛏1 ⋅ 𝐞2)) + 𝐞2(𝑎1(𝛏2 ⋅ 𝐞1) + 𝑎2(𝛏2 ⋅ 𝐞2)) (67) 

which is exactly what we have obtained by simple geometry. 

The Euclidean Point Space 

The 3D Euclidean Point Space we live in is where all engineering objects of interest to us reside. 

This space contains point locations that can be occupied by a location in an object at a particular 

time. It is often of interest to be able to do several things: 

1. Locate the point in an unambiguous way, 

2. Relate the point to one or more other points in its vicinity, and 

3. Define quantities that take up values of interest at that point. 

 Temperature map of this classroom (one thousand thermometers)  

 Temperature distribution, Temperature field. 

 Tensor Fields 

Cartesian & Other Coordinate Systems 

Our coordinate systems so far have very interesting features: They are based on spatially 

constant unit vectors orthogonal to each other. These are called Rectangular Cartesian or 

Orthonormal Base (ONB) Systems. We have seen that we are only required to have, for basis 

vector sets to span a space, that they are linearly independent. 

ONBs are more than linearly independent; their orthonormal attributes make the computation 

of coordinates for any vector referred to them, very easy to obtain. There are other advantages: 

 We can refer the room to a set of Cartesian coordinates (𝑥, 𝑦, 𝑧).  

 In this system, each location is represented by three ordered numbers. The first 

represents the 𝑥 coordinate, the second the 𝑦 coordinate, and the third, the 𝑧 coordinate 

respectively.  

 The basis vector set is {𝐢, 𝐣, 𝐤} or {𝐞1, 𝐞2, 𝐞3}. These are along the constant coordinate lines 

which are straight line intersections of the coordinate planes as shown below. 
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 Following 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎® code implements this idea (Type it and see for yourself). 

In locating point 𝐏(𝑥1, 𝑦1, 𝑧1) above, we constructed three coordinate planes:  

 A dark colored plane perpendicular to the 𝑥 −axis,  

 A purple plane perpendicular to the 𝑦 −axis, and  

 A purple plane perpendicular to the 𝑧 −axis. 

Position Vector 

 Furthermore, we can define a vector for the point location 𝑷(𝑥1, 𝑦1, 𝑧1)  .Such a vector is 

defined by joining the point 𝑷 to the origin to form the vector OP represented by the line 

shown.  

 The vector whose magnitude is 

defined by the length of OP, and 

whose direction is indicated by the 

direction of OP, a Position Vector. 

 We defined a vector (a member of the 

Euclidean Vector Space, that is now 

embedded in the Euclidean point 

space of our daily experience.  

 The latter contains just points, 

the former is a collection of 

objects that obey certain rules 

that make us label them 

“vectors”. 

 This particular one is not just a 

vector, it is a position vector 

because it is the point Figure 15. Cartesian Coordinate Surfaces 
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𝑷(𝑥1, 𝑦1, 𝑧1) that gave birth to it. At any other point we define by three numbers, we 

can also get a position vector in this simple way. 

Notice several things that are attractive in the Cartesian system we have described.  

 Each coordinate surface is a plane. The three defined at a particular point are respectively 

parallel to the three you can define at any other point. 

 Each coordinate lines: the intersection of these planes that are parallel to the axes are 

similarly parallel straight lines at all points in the system.  

 The basis vectors – usually defined as unit vectors along the axes, are always the same at 

any point in the Cartesian system. It does not matter where the point P is located, the 

basis vectors are the same unit vectors we define as (𝐢, 𝐣 and 𝐤)  or (𝐞1, 𝐞2,  and 𝐞3)  along 

the coordinate lines at the origin. 

These properties combine to make the Cartesian coordinate system very simple and easy to use. 

It is no wonder that it is the first coordinate system you get introduced to – for most people, as 

early as secondary school! 

The first important advantage of the Cartesian system is the simplicity of the expression for a 

position vector. The position vector OP can be written simply as, 

 𝐫 = 𝑥1𝐢 + 𝑦1𝐣 + 𝑧1𝐤 (68) 

Or, more conveniently as,  

 𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 = 𝑥𝑖𝐞𝑖 (69) 

Where we have replaced (𝑥1, 𝑦1, 𝑧1)  by (𝑥1, 𝑥2, 𝑥3)  so we may benefit from the compactness of 

the Einstein’s summation convention. This expression is linear in the coordinate variables. There 

are two other hidden reasons why this coordinate system is so simple and easy to use. It may not 

be obvious that the simple expression of the position vector we have here is possible only in the 

Cartesian system.  

In other coordinate systems, the position vector is usually a much more complicated function of 

the coordinate variables and the basis vectors. In general, if we do not assume that we are using 

the Cartesian system,  

 𝐫 =  𝐫(𝛼1,  𝛼2,  𝛼3,  𝐠1, 𝐠2, 𝐠3) (70) 
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where 𝛼𝑖,  𝑖 = 1,2,3  are the coordinate variables and 𝐠𝑖,  𝑖 = 1,2,3  are the basis vectors. The 

simple linear form we have for the Cartesian case, as we shall see is a rare exception and a special 

case. The functional for of the position vectors can be complicated. 

A second reason that the Cartesian system is so easy, useful and pervasive is the related fact of 

the constancy of the basis unit vectors. To illustrate this, imagine we continue with our thought 

experiment to get a temperature map for the room, then we have a scalar field 𝑇(𝑥1, 𝑥2, 𝑥3)  . If 

we have a vector function defined at each point, then we get a vector field 𝒗(𝑥1, 𝑥2, 𝑥3)  .We can 

easily write the vector field in terms of three scalar fields that we call its components; hence, we 

may write, 

 𝐯(𝑥1, 𝑥2, 𝑥3) =  𝑣1(𝑥1, 𝑥2, 𝑥3)𝐞1 + 𝑣2(𝑥1, 𝑥2, 𝑥3)𝐞2 + 𝑣3(𝑥1, 𝑥2, 𝑥3)𝐞3 (71) 

 

Where 𝑣𝑖(𝑥1, 𝑥2, 𝑥3),  𝑖 = 1,2,3  are the components of the velocity vector. The fact that the basis 

vectors 𝐞𝑖, 𝑖 = 1,2,3  neither varies temporally nor spatially means that differential and integral 

calculus with the Cartesian system take a particularly easy form. Differentiating the above 

equations, whether with respect to time or to space, we simply focus on the functions, 

𝑣𝑖(𝑥1, 𝑥2, 𝑥3) and ignore the constants 𝐞𝑖, 𝑖 = 1,2,3!  

A third reason for the simplicity of the Cartesian system is in the fact that the three numbers 

representing the coordinates are of the same dimensionality.  

The numbers, 𝑥1, 𝑥2,and 𝑥3   (coefficients of the basis vectors)  for the coordinates of 𝐏 are all 

lengths. They are all the same dimension. There is nothing compelling you to use lengths for your 

coordinate variables in a coordinate system. 

Observation: A partial differentiation of the position vector with respect to the coordinate 

variables yield the basis vectors for the coordinate system as shown here: 

 

𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 = 𝑥𝑖𝐞𝑖 

𝜕𝐫

𝜕𝑥𝑖
= 𝐞𝑖, 𝑖 = 1,2,3. 

(72) 

This applies to the other coordinate systems as well. 

In fact, the two next most popular systems – the Spherical and Cylindrical systems use a 

combination of lengths and angles! If you are not careful, and you use these coordinate systems 

just the way you do the Cartesian, your first error might be that you are adding quantities of 
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different dimensions and units in the same expression and will be guaranteed to obtain wrong 

results. 

Coordinate Points & Coordinate Surfaces 

In 3D Euclidean Point Space, each coordinate system is defined by three coordinate variables. 

(𝜉1, 𝜉2, 𝜉3). When each takes a value, say, 𝜉𝑖 = 𝛼𝑖 where each 𝛼𝑖 is a real number, then we have 

the point (𝛼1, 𝛼2, 𝛼3). We can write this point in at least two other ways: 𝜉𝑖 = 𝛼𝑖, 𝑖 = 1, … ,3 or 

as (𝜉1 = 𝛼1, 𝜉2 = 𝛼2, 𝜉3 = 𝛼3). For each, 𝜉𝑖 = 𝛼𝑖, we have defined a coordinate surface. In the 

case of Cartesian coordinates, given any three 𝛼𝑖 ∈ ℝ, 𝑖 = 1,2,3, we have 𝑥1 = 𝛼1, defining a 

plane with normal along the 𝐞1axis, 𝑥2 = 𝛼2, defining a plane with normal along the 𝐞2axis and 

𝑥3 = 𝛼3, which is a plane with normal along the 𝐞3 axis. It is easy to see that at the point of 

intersection, these three planes meet at right angles. The coordinate system is, for this reason, 

orthogonal.  

This coordinate system is also linear in the sense that the normal do not change as you change 

the values of 𝛼𝑖; that is, as you move from point to point, the normal to the coordinate planes 

remain the same vector as at any point.  

The other coordinate systems we will look at are not linear in this sense. They are CURVIlinear. 

We limit ourselves to curvilinear systems that remain orthogonal. In these systems, the following 

ideas remain unchanged: 

1. For each 𝜉𝑖 = 𝛼𝑖, we define a coordinate surface; 

2. The coordinate point, 𝜉𝑖 = 𝛼𝑖, 𝑖 = 1, … ,3 is the intersection of the three surfaces; 

3. The tangents to these surfaces are mutually orthogonal. 

In contradistinction from the Cartesian system, these surfaces do not have constant normal as 

you move from point to point. This difference is NOT trivial, as we shall see. The first curvilinear 

system we shall consider is the Cylindrical Polar coordinate system as follows. 

Cylindrical Polar Coordinates 

In the cylindrical system, we select the three numbers that we shall use to represent a typical 

point P using a different strategy. We select two lengths and an angle. Since we already are quite 

used to the Cartesian system, let us first note that the third coordinate in the Cylindrical Polar 
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System is shared with the Cartesian. Even if we represent it with a different symbol, note that 

the z-coordinate as well as the 𝐤, 𝐞3  or 𝐞𝑧  essentially remain the same in both Cartesian and the 

Cylindrical Polar system. 

Begin with our familiar Cartesian system of coordinates. We can represent the position of a point 

(position vector) with three coordinates 𝑥1, 𝑥2, 𝑥3 (∈ 𝑅) such that, 

 𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 = 𝑥𝑖𝐞𝑖 (73) 

That is, the choice of any three scalars can be used to locate a point. We now introduce a 

transformation (called a polar transformation) of {𝑥1, 𝑥2} → {𝑟,  𝜙}  such that, 𝑥1 = 𝑟 cos 𝜙,    and 

𝑥2 = 𝑟 sin 𝜙  .Note also that this transformation is invertible: 𝑟 = √𝑥1
2 + 𝑥2

2,and 𝜙 = tan−1 𝑥2

𝑥1
 

With such a transformation, we can locate any point in the 3-D space with three scalars {𝑟,  𝜙, 𝑧} 

instead of our previous set {𝑥1, 𝑥2, 𝑥3} .Our position vector is now, 

 𝐫 = 𝑟 cos 𝜙 𝐞1 + 𝑟 sin 𝜙 𝐞2 + 𝑧𝐞𝑧 = 𝑟𝐞𝑟 + 𝑧𝐞𝑧 (74) 

where we define 𝒆𝑟 ≡ cos 𝜙 𝒆1 + sin 𝜙 𝒆2  ,𝒆𝑧 is no different from 𝐞3 or 𝐤. In order to complete 

our triad of basis vectors, we need a third vector, 𝒆𝜙 .In selecting 𝒆𝜙 ,we want it to be such that 

{𝒆𝑟 , 𝒆𝜙, 𝒆𝑧}  can form an orthonormal (pairwise orthogonal and individually normalized) basis. Let 

 𝐞𝜙 = 𝜉𝐞1 + 𝜂𝐞2 (75) 

To satisfy our conditions, 𝐞𝜙 ⋅ 𝐞𝑟 = 0  ,𝐞𝜙 ⋅ 𝐞𝑧 = 0 (automatically satisfied by not choosing a 

different third coordinate) and √𝜉2 + 𝜂2 = 1. 

It is easy to see that 𝐞𝜙 ≡ −sin 𝜙 𝐞1 + cos 𝜙 𝐞2  satisfies these requirements. {𝐞𝑟 , 𝐞𝜙, 𝐞𝑧}  forms 

an orthonormal (that is, each member has unit magnitude and they are pairwise orthogonal) 

triad just like 𝐞𝑖, 𝑖 = 1,2,3   . 

The transformation we have just described can be given a geometric interpretation. In either 

case, it is the definition of the Cylindrical Polar coordinate system.  

Unlike our Cartesian system, we note that {𝐞𝑟(𝜙), 𝐞𝜙(𝜙), 𝐞𝑧}  as the first two of these are not 

constants but spatial variables dependent on angular orientation. 𝐞𝑧  remains a constant vector 

as in the Cartesian case. 
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Geometric Interpretation 

The coordinate system just described requires us, as before, to select three ordered numbers to 

uniquely represent a point in the Euclidean point space. The first is a length, 𝑟, the second, an 

angle 𝜙, and the third, a length, 𝑧. These are the coordinate variables.  

Recall that in the Cartesian case, the coordinate planes have equations, 𝑥1 = 𝑐𝑜𝑛𝑠𝑡,  𝑥2 = 𝑐𝑜𝑛𝑠𝑡,  

and 𝑥3 = 𝑐𝑜𝑛𝑠𝑡 giving us three planes that intersect at the point defined by those three values 

of the constants used.  

In a similar way, the coordinate planes in the Cylindrical Polar are: (𝜉1 = 𝛼1) 𝑟 = 𝑐𝑜𝑛𝑠𝑡 

describing a cylinder with the z-axis as its axis, (𝜉2 = 𝛼2) 𝜙 = 𝑐𝑜𝑛𝑠𝑡 describing a plane through 

the axis and another plane, (𝜉3 = 𝛼3) 𝑧 = 𝑐𝑜𝑛𝑠𝑡 describing a plane that is perpendicular to the 

cylinder axis. This is as shown in the figure 15. 

 

We can obtain the basis vectors by differentiation of the position vector:  

 

𝐫 = 𝑟 cos 𝜙 𝐞1 + 𝑟 sin 𝜙 𝐞2 + 𝑧𝐞𝑧 = 𝑟𝐞𝑟 + 𝑧𝐞𝑧 

𝜕𝐫

𝜕𝑟
= 𝐞𝑟;   

𝜕𝐫

𝜕𝜙
= 𝑟𝐞𝜙;   

𝜕𝐫

𝜕𝑧
= 𝐞𝑧 

(76) 

The basis vectors obtain by differentiation also compels dimensional consistency, but they are 

no longer orthonormal even though they 

remain mutually orthogonal.  

Mistakes to avoid 

Two easy mistakes that can be made are: 

1. That the Cylindrical position vector is 

𝑟𝐞𝑟(𝜙) + 𝜙𝒆𝜙 + 𝑧𝒆𝑧  which is a simplistic 

copy of the Cartesian formula. This is 

wrong in at least two ways. For one thing, 

it is dimensionally incorrect because the Figure 16. Cylindrical Polar Coordinate Surfaces 
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unit of the middle basis component is an angle while the other components are measuring 

lengths. Secondly, we cannot obtain the Cartesian result from this via a coordinate 

transformation. 

2. That the basis vectors are constants. They are NOT all constants. 𝐞𝑟(𝜙)  and 𝒆𝜙(𝜙)  are both 

functions of 𝜙 unlike in the Cartesian case, but 𝒆𝑧 is a constant like the Cartesian case. 

Spherical coordinates 

The spherical Polar coordinate system selects its three ordered triplets with yet another strategy. 

This can be explained by the same transformation route we started. Continuing further with our 

transformation, we may again introduce two new scalars such that {𝑟,  𝑧} → {𝜌, 𝜃}  in such a way 

that the position vector, 

 𝐫 = 𝑟𝐞𝑟 + 𝑧𝐞𝑧 = 𝜌 sin 𝜃 𝐞𝑟 + 𝜌 cos 𝜃 𝐞𝑧 ≡ 𝜌𝐞𝜌 (77) 

Here, 𝑟 = 𝜌 sin 𝜃,  𝑧 = 𝜌 cos 𝜃.  As before, we can use three scalars, {𝜌,  𝜃,  𝜙}  instead of 

{𝑟,  𝜙, 𝑧}. In comparison to the original Cartesian system we began with, we have that, 

 

𝐫 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 =  𝜌 sin 𝜃 𝐞𝑟 + 𝜌 cos 𝜃 𝐞𝑧 

= 𝜌 sin 𝜃 (cos 𝜙 𝐢 + sin 𝜙 𝐣) + 𝜌 cos 𝜃 𝐤 

=  𝜌 sin 𝜃 cos 𝜙 𝐢 + 𝜌 sin 𝜃 sin 𝜙 𝐣 + 𝜌 cos 𝜃 𝐤 

≡ 𝜌𝐞𝜌 

(78) 

 

the unit vector  

 𝐞𝜌 ≡ sin 𝜃 cos 𝜙 𝐢 + sin 𝜃 sin 𝜙 𝐣 + cos 𝜃 𝐤. (79) 

Again, we introduce the unit vector, 𝐞𝜃 ≡ cos 𝜃 cos 𝜙 𝐢 + cos 𝜃 sin 𝜙 𝐣 − sin 𝜃 𝐤  and retain 𝐞𝜙 =

− sin 𝜙 𝐢 + cos 𝜙 𝐣  as before. It is easy to demonstrate the fact that these vectors constitute 

another orthonormal set. Combining the two transformations, we can move from {𝑥, 𝑦, 𝑧}  system 

of coordinates to {𝜌,  𝜙, 𝜃}  directly by the transformation equations, 𝑥 = 𝜌 sin 𝜙 cos 𝜃,  𝑦 =



50 
 

𝜌 sin 𝜙 sin 𝜃 and 𝑧 = 𝜌 cos 𝜃  .The orthonormal set of basis for the {𝜌,  𝜃,  𝜙}  system is 

{𝐞𝜌(𝜃,  𝜙), 𝐞𝜃(𝜃,  𝜙), 𝐞𝜙(𝜙)} 

𝐫(𝜌, 𝜃,  𝜙) ≡ 𝜌𝐞𝜌(𝜃,  𝜙) 

Showing that the position vector 

depends on the three coordinate 

variables representing the radial 

distance, 𝜌, from the origin on the 

azimuthal (great circle, longitudinal) plane inclined at an 

angle 𝜃 to the meridian plane (𝑥 − 𝑧), with a polar angle 

𝜙 as shown below: the orthonormal basis vectors are shown at the point of interest. The 

projection of the radial distance to the “equatorial” plane is also shown  

Coordinate Surfaces 

In spherical coordinates, the point 𝐏 lies at the intersection of a spherical surface, 𝜌 = 𝑐𝑜𝑛𝑠𝑡, 

cone,  𝜃 = 𝑐𝑜𝑛𝑠𝑡 and a plane, 𝜙 = 𝑐𝑜𝑛𝑠𝑡. The cone and the sphere are both centered at the 

origin, 𝐎, as shown in figure 17, and the position vector lies at the intersection of the cone and 

the plane, beginning from the origin and terminating at the point 𝐏. Note that the plane 𝜙 =

𝑐𝑜𝑛𝑠𝑡 passes through the same origin. As before, the coordinate surfaces are orthogonal as well 

as the tangents to the coordinate lines that are at the intersections of the coordinate planes. Just 

the same way we obtained the basis vectors by 

differentiation in the cylindrical system, we can obtain 

the same for the spherical: 

For spherical polar,  

Figure 17. Computing Spherical Polar Components 

Figure 18. Spherical Coordinates 
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𝐫 = 𝜌𝐞𝜌(𝜃,  𝜙) 

𝜕𝐫

𝜕𝜌
= 𝐞𝜌;   

𝜕𝐫

𝜕𝜃
= 𝜌𝐞𝜃;   

𝜕𝐫

𝜕𝜙
= 𝜌 sin𝜃𝐞𝜙 

(80) 

 

The vectors 𝐞𝜌, 𝐞𝜃 and 𝐞𝜙 are unit vectors. The multipliers in each case are the magnitudes of 

the basis vectors obtained from differentiation.  

Other Coordinate Systems 

There are many other ways of selecting three ordered scalars to create a coordinate system. The 

ones we have seen so far are all orthogonal coordinate systems because the coordinate planes 

meet at all points at right angles. Other orthogonal coordinate systems that have engineering 

significance include:  

1. Parabolic and Parabolic Cylindric 

2. Elliptic Cylinder, Elliptic, Bipolar,  

3. Confocal,  

4. Prolate and Oblate spheroidal, Toroidal 

The strategy of definition is similar in each case. A few: 

Parabolic Cylinder Coordinate System 

Parabolic Cylindrical Coordinates are (𝜉, 𝜂, 𝑧). Here the first two are square roots of length while 

the third scalar is length. Transformation equations are: 𝑥1 = 𝜉𝜂, 𝑥2 =
1

2
(𝜉2 − 𝜂2) and 𝑥3 = 𝑧. 

Substituting these in the Cartesian position vector, 

 𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 = 𝜉𝜂𝐞1 +
1

2
(𝜉2 − 𝜂2)𝐞2 + 𝑧𝐞3 (81) 

Again, by differentiating this with respect to the coordinate variables, 𝜉, 𝜂, 𝑧, we obtain the 

following basis vectors for the Parabolic Cylindrical System: 

 𝜂𝐞1 + 𝜉𝐞2; 𝜉𝐞1 − 𝜂𝐞2; 𝐞3 (82) 

The table below shows a summary of position and basis vectors for these and other coordinate 

systems 
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Table 4. Position & Basis Vectors for some Coordinate Systems 

Coordinate 

System 

Position Vector Basis Vectors 

Cartesian, 𝑥1𝑥2. 𝑥3 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 𝐞1, 𝐞2, 𝐞3 

Cylindrical Polar 

𝑟, 𝜙, 𝑧 

𝑟𝐞𝑟(𝜙) + 𝑧𝐞𝑧 𝐞𝑟 , 𝑟𝐞𝜙, 𝐞𝑧 

Spherical Polar 

𝜌, 𝜃, 𝜙 

𝜌𝐞𝜌(𝜃, 𝜙) 𝐞𝜌, 𝐞𝜃, 𝐞𝜙 

Parabolic Cylindrical 

𝜉, 𝜂, 𝑧 

𝜉𝜂𝐞1 +
1

2
(𝜉2 − 𝜂2)𝐞2 +

𝑧𝐞3  

𝜂𝐞1 + 𝜉𝐞2, 

ξ𝐞1 − 𝜂𝐞2, 𝐞3 

Parabolic 𝜉, 𝜂, 𝜙 𝜂𝜉 cos 𝜙 𝐞1

+ 𝜂𝜉 sin 𝜙 𝐞2

+
1

2
(𝜉2 − 𝜂2)𝐞3 

𝐞𝜉 = 𝜂 cos 𝜙 𝐞1 + 𝜂 sin 𝜙 𝐞2 + 𝜉𝐞3, 

𝐞𝜂 = 𝜉 cos 𝜙 𝐞1 + 𝜉 sin 𝜙 𝐞2 − 𝜂𝐞3, 

𝐞𝜙 = −𝜂𝜉 sin 𝜙 𝐞1 + 𝜂𝜉 cos 𝜙 𝐞2 

Elliptic Cylindrical 

𝜉, 𝜂, 𝑧 

cosh 𝜉 cos 𝜂 𝐞1 +

sinh 𝜉 sin 𝜂 𝐞2 + 𝑧𝐞3  

𝐞𝜉 = sinh 𝜉 cos 𝜂 𝐞1 + cosh 𝜉 sin 𝜂 𝐞2, 

𝐞𝜂 = − cosh 𝜉 sin 𝜂 𝐞1 + sinh 𝜉 cos 𝜂 𝐞2, 

𝐞𝑧 = 𝐞3 

Vector Spaces 

We are now in a position to provide a more exact definition of what a vector really is. What you 

should observe in the following is that the definition is satisfied by our elementary notions about 

vectors. However, a vector is a more abstract object than we have been looking at. The 

abstraction is useful because it allows the analytical treatment of quantities that do not appear 

to be similar or related to the notions brought from elementary considerations. 

We begin by assuming we have a bag containing real numbers. The numbers in this bag 

constitutes a collection – just like any collection of items like the dishes in your dining table, or 
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shoes in your closet. We call this collection, the set ℝ. The set of real numbers we have just 

defined, is the foundation of our vector space. It is possible to build the vector space upon a 

different foundation, such as complex numbers, or rational numbers. For this reason, our 

definition has indicator, “real”, in it. 

Definition. A real vector space  𝕍 is a set of elements (called vectors) such that, 

1. Addition operation is defined and it is commutative and associative under 𝕍: that is, 𝐮 +

𝐯 ∈   𝕍,   𝐮 + 𝐯 = 𝐯 + 𝐮,  𝐮 + (𝐯 + 𝐰) = (𝐮 + 𝐯) + 𝐰,  ∀ 𝐮, 𝐯, 𝐰 ∈ 𝕍. Furthermore,  𝕍 is 

closed under addition: That is, given that 𝐮, 𝐯 ∈  𝕍, then 𝐰 = 𝐮 + 𝐯 = 𝐯 + 𝐮,  ⇒ 𝐰 ∈  𝕍. 

2. 𝕍 contains a zero element 𝐨 such that 𝐮 + 𝐨 = 𝐮 ∀ 𝐮 ∈  𝕍. For every 𝐮 ∈  𝕍,  ∃ − 𝐮: 𝐮 +

(−𝐮) = 𝐨. 

3. Multiplication by a scalar. For 𝛼,  𝛽 ∈ ℝ and 𝐮, 𝐯 ∈  𝕍, 𝛼𝐮 ∈  𝕍 , 1𝐮 = 𝐮,  𝛼(𝛽𝐮) =

(𝛼𝛽)𝐮,  (𝛼 + 𝛽)𝐮 = 𝛼𝐮 + 𝛽𝐮,   𝛼(𝐮 + 𝐯) = 𝛼𝐮 + 𝛼𝐯.   

End of definition 

Note the following: 

1. By “under 𝕍”, we mean, so long as you are only dealing with elements of the vector space 

𝕍. 

2. The only multiplication needed to define a vector space is scaling. Not scalar, vector nor 

tensor products among vectors are needed to define a vector space. Consequently, there 

are several structures that would qualify as a vector space.  

3. Our understanding of vectors thus far is admissible here. Condition #1 is satisfied by our 

parallelogram law of vector addition. The space is closed under addition because when 

you add two or more vectors (extending the parallelogram law to a polygon of vectors, 

the result you will get remains a vector, thus guaranteeing closure. Commutativity as well 

as associativity are straightforward when we try to add more than two vectors and find 

that the order of addition is immaterial.  

4. For rule #2, note that a zero vector will be represented by a point; no length – resulting 

in a magnitude of zero. The negation of a vector is simply to retain the direction but 

change the sense of the arrow.  
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5. Rule three is merely a mathematical expression of the scaling process. It should also be 

handled by the addition law when applied to scaled vectors. 

The Inner Product or Euclidean Vector Space 

 An Inner-Product (also called a Euclidean Vector) Space 𝔼 is a real vector space that defines, 

among its elements, the scalar product: for each pair 𝐮, 𝐯 ∈ 𝔼, ∃ 𝑙 ∈ ℝ such that,  

 𝑙 = 𝐮 ⋅ 𝐯 = 𝐯 ⋅ 𝐮  (83) 

Further, 𝐮 ⋅ 𝐮 ≥ 0, the zero-value occurring only when 𝐮 = 0. It is called “Euclidean” because 

the laws of Euclidean geometry hold in such a space. “Euclidean Geometry” is the totality of 

the geometry you have done so far, including: Adding all angle of a triangle to 180 degrees, 

Parallel lines never meeting, Sum of two sides of triangle always larger than the third, etc. 

You will later get to know that there are other “geometries” where these things are not valid. 

These are non-Euclidean geometries. 

 The inner product, because of its operational representation as a dot between two vector 

operands, is also called a dot product, is the mapping  

  ⋅ : 𝕍 × 𝕍 → ℝ (84) 

from the product space to the real space. The notation here means nothing more than, first 

expressing the fact that the operational sign to denote the Inner Product is the dot, " ⋅ ". The 

“product” (𝕍 × 𝕍) is not the same meaning of multiplication of the type we are used to, but 

simply expressing the fact that we took one element of a vector space, and went back again to 

take another element of a vector space in order to perform the operation. And the right pointing 

arrow in the expression shows that the result of the operation is a member of the Real collection, 

or set: a complicated way of saying that it is a real number! If we had needed three element from 

the vector space, then we would have had, 𝕍 × 𝕍 ×  𝕍 for the scalar triple product. These 

operations will be written as, 

 " ⋅×  ": 𝕍 × 𝕍 ×  𝕍 → ℝ (85) 

We could also have written, 

 "[ , ,]": 𝕍 × 𝕍 ×  𝕍 → ℝ (86) 

Because we may in fact prefer this notation as it emphasizes that only the ordering of the vectors 

is important, NOT the locations of the dot and the cross for the scalar triple product – showing 
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that the symbolic representation of the operation which produces a scalar result but requires a 

dot and a cross, while, 

 " ×  ": 𝕍 × 𝕍 ×  𝕍 → 𝕍 (87) 

will represent the vector triple product as it requires three vectors to produce a single vector. 

Our dyads require two vectors to produce a tensor. We can write,  

 " ⊗  ": 𝕍 × 𝕍 → 𝕃 (88) 

if we represent the linear transformation that we call tensors by the symbol 𝕃. 

The inclusion of a definition for the Scalar product induces the concept of length. To make it easy, 

note that we have used spaces that have no concept of length – hence, it is not always necessary 

to include the concept into every structure we intend to develop. As a quick example, the 

thermodynamic plot of pressure to volume remains very useful even though the concept of 

distance between two arbitrary points is meaningless. In case of the vector space, for our use, 

the extension to the inclusion of the inner product as well as its induction of the length idea is, 

though not essential, is very useful indeed. 

Magnitude The norm, length or magnitude of 𝐮, denoted ‖𝐮‖ is defined as the positive square 

root of 𝐮 ⋅ 𝐮 = ‖𝐮‖2. When ‖𝐮‖ = 1, 𝐮 is said to be a unit vector. When 𝐮 ⋅ 𝐯 = 0, 𝐮 and 𝐯 

are said to be orthogonal. 

Direction Furthermore, for any two vectors 𝐮 and 𝐯, the angle between them is defined as, 

 cos−1 (
𝐮 ⋅ 𝐯

‖𝐮‖‖𝐯‖
) (89) 

The scalar distance 𝑑 ∈ ℝ between two position vectors 𝐮 and 𝐯 

 𝑑 = ‖𝐮 − 𝐯‖. (90) 

Notice that we do not include the definition of the vector product in the definition of any vector 

space. The fact is that, once the concept of magnitude exists, we can define several other things 

on that basis. The vector product is just one of the many consequences of the scalar product. The 

latter being the more fundamental concept. 

The Euclidean Point Space 

It is a good thing to get a firm grasp of the Euclidean Point Space. It is NOT a vector space because 

its members are not vectors as we have defined them. There is a relationship between members 

of the Euclidean point space and vectors, as we shall see. The Euclidean Point Space is the 
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ambient space in which all physical objects of interest reside. To make it simple, where you are 

sitting, or standing, reading this, is a Euclidean Point Space. It is made up of points rather than 

vectors. 

What is a Point? On your graph paper from high school, you are used to locating points with an 

ordered pair of real numbers. These are the Cartesian coordinates of the point. We are also used 

to the extension of this concept to three dimensions. If 𝑥 = {𝑥1, 𝑥2, 𝑥3}, 𝑦 = {𝑦1, 𝑦2, 𝑦3} and 𝑧 =

{𝑧1, 𝑧2, 𝑧3} are three such points, we can define the vectors joining them to a given point  

 o ≡ {0,0,0} (91) 

the origin of coordinates in ℰ. The Euclidean Point Space may also be referred to non-Cartesian 

systems. The three ordered numbers may no longer represent distances. They must be in correct 

order. The dimensionality of a space determines the number of elements contained in the 

description of a point in ℰ 

Definition: The Euclidean Point Space, ℰ is such that, for points 𝑥, 𝑦, 𝑧 and an origin, if we 

represent the vector, 𝐯 joining point 𝑥 to point 𝑦 as 𝐯(𝑥, 𝑦) ∈ 𝔼, where 𝑥, 𝑦 ∈ ℰ, then,  

 

1. 𝐯(𝑥, 𝑧) =  𝐯(𝑥, 𝑦) +  𝐯(𝑦, 𝑧) ∀ 𝑥, 𝑦, 𝑧 ∈ ℰ, and  

2. 𝐯(𝑥, 𝑦) = 𝐯(𝑥, 𝑧) ⇔ 𝑦 = 𝑧 for each 𝑥 ∈ ℰ 

End of Definition 

Consequences: 

From Rule 1, we can see that, 𝐯(𝑥, 𝑥) =  𝐯(𝑥, 𝑦) +  𝐯(𝑦, 𝑥) = 𝐨 as the vector joining a point to 

itself must necessarily be the zero vector. This neutral additive concept of a zero vector in the 

Euclidean POINT space leads to an additive inverse as the last equation immediately implies that, 

Figure 19. Euclidean Points Joined by Vectors 
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 𝐯(𝑥, 𝑦) = − 𝐯(𝑦, 𝑥) ∀ 𝑥, 𝑦 ∈ ℰ (92) 

In simple terms, we are stating the geometrically obvious fact that the vector joining point 𝑥 to 

point 𝑦 is the negative of the one joining point 𝑦 to point 𝑥. 

The Position Vector 

The question of the true nature of what is called a “position vector” can now be addressed. 

Remember, all points are resident in the Euclidean Point Space. A position vector joins a point to 

the origin of coordinates. It is a vector defined by the location of two points in ℰ. Consequently, 

we have, 

 𝐯(𝑥) ≡  𝐯(𝑥, 𝑜) = 𝐱(𝑜) = 𝐱 − 𝐨 (93) 

Where 𝐱(𝑜), 𝐱(𝑦) ∈ 𝔼, that is they are vectors in the Euclidean Vector Space and we define  

 𝐱(𝑦) ≡ 𝐱(𝑜) − 𝐲(𝑜) = 𝐱 − 𝐨 − (𝐲 − 𝐨). (94) 

The vector 𝐱(𝑜) =  𝐱 − 𝐨 joining the point 𝑥 ∈ ℰ to the origin is called a Position Vector. The 

vector itself resides in the vector space, (in the sense that it takes its characteristics among 

vectors) the points defining it dwell in the Euclidean point space. Mathematically, this is called 

an embedding of a Vector Space (defining the Position Vectors) in the Euclidean Point Space 

(defining the points that create them). 

The distance between two position vectors becomes sensible: It is the magnitude of the vector 

𝐯(𝑥, 𝑦) joining point 𝑥 to point 𝑦 in the Euclidean Point Space. 

 𝑑(𝑥 − 𝑦) = ‖𝐯(𝑥, 𝑦)‖ = ‖𝐱(𝑦)‖ = ‖𝐱 − 𝐲‖ (95) 

Software 

The most important thing about this course is NOT what you can know, but WHAT YOU CAN DO 

WITH WHAT YOU KNOW. Many engineering books contain computationally simple questions. 

They often do not reflect the reality of the kinds of real problems you come across. The reason 

for this is that it is assumed that you will do them manually with, at best, the use of a calculator. 

In this course, we are changing that assumption. We assume you want to use what you are 

learning. Therefore, you will use proper tools and can look at practical problems and go beyond 

simplistic problems couched to make manual solutions possible. One great enabler in doing 

things is appropriate software. In this course, we will be using two kinds of software. These are 
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Symbolic & Computations software, and Graphics, Simulations & Design software. We spend the 

rest of this chapter giving some guidelines to what we shall use. 

For Symbolics & Computations, we will support 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎© by Wolfram Research. It is 

possible to survive the course without this software but, compared to someone who understands 

how to properly use it, you will be like a person walking from Lagos to Ibadan compared to 

someone travelling in a motor vehicle. Of course, if you do not get kidnapped on the way, you 

may eventually get there. But the difference is not trivial. Get yourself a copy of this software in 

order to do well in this course and get yourself ready for serious engineering computations in the 

modern way. 

Licenses can be obtained for as low as two hundred US dollars ($200.00) per user if you try to get 

it as group of students. Those who have the single-board computer called Raspberry Pi are lucky 

because 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎© version 10 is already installed. Anything higher than version 9 is good 

enough for our use. Earlier versions are tolerable but get the more current one if you can. 

Another software that can match 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎© in the ability for Symbolic Algebra is called 

Maple. We will later support Maple with the next version of this material. Unfortunately, we may 

not be able to help you directly in the sense that all the code examples we shall give will be in 

Mathematica. A good Maple user will have little difficulty translating or writing her own code.  

For Graphics, Simulations and Design, we will use Fusion 360 by Autodesk. There are several 

competing software that can do similar things as Fusion 360. Our reasons for selecting this among 

others are as follows: 

1. It is the most modern in the Autodesk stable for additive and subtractive manufacturing (3D 

Printing and CNC Machine support). We expect these courses to lead directly to product 

design and prototyping. It is better to become familiar with the current software as early in 

the process, as possible. Other Autodesk software such as Autodesk Inventor, AutoCAD, etc. 

are also OK. But we shall support Fusion 360 in the sense that we give examples and practical 

guides when necessary using that platform. 

2. The second reason is that you are entitled to a fully licensed full version of the software if you 

remain a student. Go to their website and register as a student, they will direct you on how 

to get a copy.  
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3. We recommend that you get yourself a computer with at least 8GB RAM and, if possible, a 

graphics co-processor such as NVDIA series. Those who cannot afford top of the line 

computers need not despair. Autodesk allows you to run your simulations in the cloud. That 

means that your computer will mainly be used to do your design while the computationally 

intensive discretization or simulations will take place on their own computers using cloud 

credits. Again, these cloud credits are given to you free of charge. It is your responsibility to 

ensure you have enough data facility to use these credits. 

As in the case with the Symbolics and Computations software, there may be those that prefer 

other software. They are welcome. But do not plan to go through this course manually. If you 

are a poor student, go and sell all you have and get the correct equipment to move yourself out 

of poverty! Trying to get grades in this course without knowing what to do with its contents is a 

waste of your youth. Don’t try it! It will not work!  

We present a quick introduction to Mathematica next. It is NECESSARY to have the software 

running and not just read the notes. Each Mathematica Installation is loaded with enormous 

documentation and Help system. This vary from version to version. Our work requires version 9 

and later. Current version at the time of writing this is 12.0. 

Mathematica 

Introduction 

Perhaps the easiest way to begin using Mathematica is to start a new Notebook file. You can start 

using Mathematica Right away by typing  

Upon launching the software, in the first line, you type 2*2. The Prefix: In[1]= is generated by the 
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Mathematica Notebook Environment. It tells you that this statement is an input made by you. In 

the example above, the next line is an Output: A Response by Mathematica. The happened 

because I held down the Shift Key and pressed Enter at the same time. That is the way to tell 

Mathematica to execute your input. Now take a look at another set of lines: 

 

In this case, I typed 2+2 Pressed Enter, 3+3 Again Pressed Enter, 5*5 and at last pressed Shift and 

Enter together. It was only at the last point that Mathematica realized I wanted to execute the 

statements I had typed. It executed them one-by-one and gave me a list of results. 

In the next example, I typed the same lines as above. At the end of each statement, I typed a 

semicolon. See what happens: 

 

Looks like the earlier case, everything was executed but only the result of the last statement is 

shown. And even that is because I did not add a semicolon to it. This shows that we can suppress 

the result of statements with the semicolon. We could have placed the statements on the same 

line and get the same effect: 

 

Functions & Conventions. 

Mathematica contains all the elementary functions you are already familiar with: Trigonometric 

functions, Exponential and Logarithmic Functions, Hyperbolic functions. In addition, it contains, 

built in, perhaps all the special functions you will likely need: Gamma Function, Error function, 
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etc. are all included. Its commands and operators including control structures are all available as 

functions. Before we look at specific examples, observe the important issue of notation: 

ALL built in functions, constructs and structures are functions with capitalized first letters. 

Consequently, Mathematica does NOT recognize that you want the following trigonometric 

functions: sin 𝑥 , cos 𝑥 , arcsin 𝜗. Instead, you will have to type  

 

In addition to functions, it also contains constants and other scientific quantities that you may 

need. The Greek symbol 𝜋, for example, can be invoked by typing Pi but the first letter MUST be 

capitalized. So MUST you capitalize the “S” in Sin as well as use SQUARE Brackets for collecting 

the function arguments. Mathematica is very insistent on the kind of bracket delimiters used. 

Only the Square brackets are recognized as function delimiters.  

This has the consequence that you can define your variables using any names you want. You can 

be sure that Mathematica is not using the name if you start your own with a lowercase letter. 

Another observation here is that, whenever possible, unless you override it, Mathematica will 

work in closed form and preserve full accuracy. In the above trigonometric example, we could 

force a decimal output by using the Numeric call as follows: 

 

In the first call, we requested for a numerical rather than a symbolical output by using the 𝑁[▪] 

function. This function can be called by one or two arguments. Here we called by two arguments: 

in the first case, we asked for six figures, in the second case we wanted 60 figures. Mathematica 

has no difficulties giving us any number of figures we request. In the next example, we request 

for the same operation numerically but for 600 figures: 
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The following are some functions with the way Mathematica interprets them: 

Input Interpretation Comments 

Sin [x] 𝐬𝐢𝐧 𝒙 Ensure to Capitalize first letter and use square 

brackets 

Integrate[a x^2,x] ∫ 𝒂 𝒙𝟐𝒅𝒙 Indefinite integral. It is still necessary to let 

Mathematica know which variable you are 

integrating with respect to after the comma. 

Integrate[a x^2,{𝒙, 𝟎, 𝟏}] ∫ 𝒂 𝒙𝟐𝒅𝒙
𝟏

𝟎

 
Definite integral. The range is a list showing the 

variable of integration, beginning and end of 

domain. 

Log[x,b] 𝐥𝐨𝐠𝐱 𝒃  

x y 𝒙 × 𝒚 The space tells Mathematica you are multiplying the 

two variables whether you have declared them to be 

so or not. 

TensorProduct[u,v] 𝐮 ⊗ 𝐯 Tensor Product of two vectors. Mathematica expects 

the vectors to be defined as a list of numbers. 

It may surprise those who already know how to program in a High-Level language that 

Mathematica does not insist that a variable be defines before usage. It can always treat it as an 

undefined symbol and do the necessary arithmetic in closed form whenever it can. The next two 

examples will demonstrate this: 



63 
 

 

In In[15], the indefinite integral, ∫ 𝑎 𝑦2𝑑𝑦 =
𝑎𝑦3

3
 as expected despite the fact that y is a variable 

throughout. This is a symbolic as opposed to a numerical operation. Most of the programming 

you have probably done were in numerical computations. Mathematica is capable of both 

numerical and symbolic computations. In In[20], we defined a matrix as a list of undefined 

variables, 𝑎, 𝑏, 𝑐 and 𝑑. We then proceeded to invert this matrix. Again, Mathematica performed 

the symbolic operations as expected.  

List Processing 

We go a little bit further in list processing here. As we have already seen, matrices, tensors, 

tables, etc. are all treated as lists in Mathematica. When Mathematica is expecting more than 

one input as an argument or to be supplied to a process, the usual way is to represent these as 

lists. Arguments of functions may expect lists or single variables; the context and the particular 

function will determine that. Usually, a list is specified inside curly brace delimiters separated by 

commas. There can be a single list, there can be a lists of lists, etc.  
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Here the matrix is typed in as a lists of lists. Each sub list is a row of elements, is separated by a 

comma just the same way as the scalar elements, the numbers, in each of the simple lists. 

Consider the outputs of the other commands: 

 

The matrix form of the input matrix puts it in the familiar matrix format. We can index into the 

list of lists. The first index looks at the lists in the list, while the second index addresses the 

elements of the inner list. M[[2]][[1]] is for the first element in the second sub list as can be seen. 

The last function takes the trace of the trace of the square matrix. It is the sum of the diagonal 

elements. In this case 1 + 5 + 7 = 13 as the answer given shows. 

Assignment and Equality Signs 

Mathematica treats the arithmetic equality “=” in the same way most other programming 

languages do. It is a good thing to note – especially if you have not programmed before that the 

expression, 

 𝑎 = 𝑏 (96) 

in Mathematica, as it is in most programming languages does NOT mean the same thing that you 

have been used to in arithmetic or mathematics. It is NOT an equality; rather, it is an assignment. 

It would have been more proper to have allowed it to be (as in APL and some other matrix 

languages) 

 𝑎 ← 𝑏 (97) 

The latter expresses the intention of the former in a clearer way: Look at the variables 𝑎 and 𝑏 as 

storage locations in the computer. What you are doing here is that an assignment in equation 25 

makes a copy of what is in location identified by the left-hand side identifier, 𝑏, and places them, 

overwriting whatever was in 𝑎. Usually, whereas, the left hand of an assignment is a single 

identifier, as 𝑎 is in this case, the right side could be anything that can result in a value: an 
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expression, an identifier, a computation, a function returning a value. Whatever it is, once the 

expression on the RHS is computed, the result is assigned to 𝑎. Equation 26 expresses what is 

happening more clearly even though Equation 25 is the way Mathematica signifies an 

assignment. 

How then do you write an equality sign? Simply with a double equality sign! Once you see “==”, 

it is an equality sign carrying the same meaning as your “=” in usual mathematics and other 

subjects. 

 

In[1] above is the Solve function. It is used to solve simple equations. Its arguments are lists: a 

list of the equations to be solved, followed by a list of variables you want to solve for. Here, as 

you can see, the equations are: 

𝑎𝑥 + 𝑏𝑦 = 1, 𝑥 − 𝑦 = 2. 

In the second list argument, you have a list of variables, here, 𝑥, 𝑦. The answer is provided by 

Mathematica in yet another list. Here we are given the values  

𝑥 =
1 + 2𝑏

𝑎 + 𝑏
, 𝑦 =

1 − 2𝑎

𝑎 + 𝑏
 

It will be an error to have used the single “=” in the expression of the equations. Equality requires 

the double “==”, while the single “=” is reserved for the assignment operation as we have 

explained. 

Numerical Types 

All numbers are not equal Programming languages distinguish between numbers for reasons of 

efficiency. Computations you want to carry out can have several possible ways. For example, 

compare the two computations:  

23, 23.1 

Will call for different methods. The way most programming languages work out which algorithm 

to call for is the kind of number the exponent here is. If it is an integer, or if it is a real number. 

The type of number also tells how big it is allowed to become in a program when variables take 

different values. It is therefore good to be clear which number to use.  
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Mathematica supports the following number types: 

Integer, Real, Complex and Rational. Rational numbers are quotients (unevaluated) of integers. 

As much as possible, Mathematica will like to work at the highest precision and thus keep 

numbers as close to the highest possible precision they can get. Consider for example, this matrix: 

 

You can see that in the computations here, the same figures are used for the two matrices, while 

the first preserves the precision by using integers, the other gives the eigenvalues in real 

numbers. The function Head[], when used to pick the numbers show they are treated as integer 

and reals respectively as shown below: 

 

Two points here:  

1. The type of number you want can be known to Mathematica jut by the way you write 

them. For example, writing 2. instead of 2 tells Mathematica that the number is a real 

type even though it could have been represented by an integer. If a matrix list contains a 

real number, Mathematica can thenceforth use Real arithmetic instead of Integer to 

respond to actions on the matrix (Det[], Tr[], Eigenvalues[], etc.) 

2. You can find the underlying data type that Mathematica is assuming by simply using the 

Head [] function with the variable concerned as argument. 
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In[1] above is one way to multiply three numbers. This can be done either by typing the operator 

directly, or if you are using newer versions of the software, it can help you to add the times by 

itself. The second method is the function call. The function Times[], does multiplication. It can 

take many arguments as we can see. Division, addition, and virtually any regular operator 

connects to a specific function that provides an alternative way to get perform the operation.  

Simple Graphing 

Consider the Plot[] function. We pass a list of functions to be plotted and another list telling Plot 

the domain of interest. The latter contains the variable, start and end point: 

 

This shows that both 
sin 𝑥

𝑥
 as well as 

tan 𝑥

𝑥
 tend to unity as their arguments tend to zero. One comes 

from below, the other from above. We selected the initial points here to avoid a zero division; 

Mathematica does not care! It will automatically take the asymptotic values and it is too smart 

to divide by zero if there are superior interpretations such as limiting values as we have here. 

Precision and accuracy 

As we have already seen, symbolic computations keep exact values. Mathematica, whenever 

possible will work in this mode unless you deliberately override it. There are occasions when you 

want to specify the amount of precision you want. The precision of a computation is about the 
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total number of digits in its decima representation; accuracy is about the number of places after 

the decimal. When we have converted a large number to the exponent form, we are dealing with 

accuracy even with the places after the decimal. The following code is instructive: 

 

The Help System, Documentation Center. 

Are you confused about the above use of Table? Or about anything else? The Mathematica 

Installation you are using has an elaborate help system that will require a whole book to explain. 

Keep matters simple: just begin to use the system! To get better assistance on any command, 

simply type double question marks and name the keyword as in: 

 

This gives you a listing of the many ways you can call the function Table[]. The next listing helps 

with the function With[]: 
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Still not satisfied? Then go directly to the documentation Center. The last Drop Menu to your 

right is “Help”. It leads directly to the Documentation Center – the first among the options you 

will see. Type Table. You will be rewarded with a full screen of assistance. This includes full 

examples you can run directly, in situ! You don’t even need to copy them! You can even edit and 

run them as many times as you like. 

The longer time you spend in the documentation Center, the more familiar and competent with 

the software environment you become. This is often superior to buying more books on the 

subject. 

Numerical Example: Rotation 

Given the vectors 𝛏1 = 0.843394𝐞1 + 0.389796𝐞2 + 0.369791𝐞3, 𝛏2 = −0.275206𝐞1 +

0.904508𝐞2 − 0.325769𝐞3, and 𝛏3 = −0.461463𝐞1 + 0.172983𝐞2 + 0.870132𝐞3, where 

𝐞1 = {1,0,0}; 𝐞2 = {0,1,0}; 𝐞3 = {0,0,1} are the Cartesian basis vectors. Show that 

(a) 𝛏𝑖 , 𝑖 = 1,2,3 is an orthonormal, right-handed set of vectors. 

(b) Show that of the matrix, tensor 𝐐 = 𝛏𝑖 ⊗ 𝐞𝑖 rotates vectors along the direction of the 

vector, 𝐯1 = 3𝐞1 + 5𝐞2 − 4𝐞3 

(c) Use any two vectors to show that the rotation angle of this tensor is 
𝜋

5
 

(d) Show that this result is independent of the vectors chosen. [Hint. Use another set of 

vectors and see the angle is the same – hence a property of the rotation tensor] 
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Solution.  

Figure 14 shows two arbitrary vectors, 𝐯2 and 𝐯3 projected to a flat disc as 𝐯′2(not shown) and 

𝐯′3. The vector 𝐯1 is along the normal to the 

disk. The solution to this problems rests on 

working with dyad products. We are going to 

use the result, that given any vector, 𝐯 

(𝛏𝑖 ⊗ 𝐞𝑖)𝐯 = (𝐞𝑖 ⋅ 𝐯)𝛏𝑖 

Apart from that, much of what is left is 

computational tedium and drudgery. Here is 

where Mathematica comes in handy. If the 

rotation is along an axis, the vector along 

that axis will not be changed when this 

tensor is applied to it. 

Let 𝐯2 = 2𝐞1 + 𝐞2 − 4𝐞3 and 𝐯3 = −10𝐞1 + 15𝐞3. Let 𝐯1 be normal to the disc shown such that 

the projections of 𝐯2 and 𝐯3 are 𝐯′2 and 𝐯′3 respectively.  

From In[5] we can see that 𝛏𝑖 , 𝑖 = 1,2,3 is an orthonormal set because each is of unit magnitude 

and the fact that 

𝛏1 ⋅  𝛏2 = 0; 𝛏2 ⋅ 𝛏3 = 0; 𝛏3 ⋅ 𝛏1 = 0. 

To demonstrate right handedness, look at the cross products and observe that,  

𝛏1 × 𝛏2 = 𝛏3;  𝛏2 × 𝛏3 = 𝛏1;  𝛏3 × 𝛏1 = 𝛏2 

The tensor products to derive 𝐐 = 𝛏𝑖 ⊗ 𝐞𝑖 is coded as follows: 

Figure 20. Rotation Tensor 
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The fact that 𝐐, as defined, rotates around 𝐯1is shown by the fact that, 𝐐𝐯1 = 𝐯1. It makes sense 

that any vector along the axis of rotation remains unchanged by the rotation. 

 

We cannot find the relevant angle of rotation of the vectors by examining 𝐯2 and 𝐯3. They are 

selected arbitrarily, therefore, are not guaranteed to be on the same plane and are not 

perpendicular to the axis of rotation. In order to find vectors along the plane of the disk shown, 

we observe that the normalized cross products: 

𝐲2 =
𝐯1 × 𝐯2

‖𝐯1‖‖𝐯2‖
, 𝑎𝑛𝑑 𝐲3 =

𝐯1 × 𝐯3

‖𝐯1‖‖𝐯3‖
 

must lie on the plane of the disk shown as they are perpendicular to 𝐯2 and 𝐯1, and 

𝐯3 and 𝐯1respectively. We compute the rotation on the unit vectors 𝐲2 and 𝐲3 to obtain 𝐰2 and 

𝐰3. Cosines of the angles between unit vectors (𝐲2, 𝐰2) and (𝐲𝟑, 𝐰𝟑), obtained by taking their 

scalar products, give us the angle of rotation. The value shown is the Cosine of 
𝜋

5
. 

The last part is given as an exercise. 

Solved Problems 1.1 

1.1 Given that vectors  𝐚, 𝐛, 𝐜 and 𝐝 form a closed circuit, show that the vectors joining their 

midpoints form a parallelogram 
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In the picture, 𝐚 + 𝐛 + 𝐜 + 𝐝 = 0. Clearly, 

(𝐚 + 𝐝)

2
= −

(𝐛 + 𝐜)

2
 

also, 

(𝐚 + 𝐛)

2
= −

(𝐜 + 𝐝)

2
 

Opposite sides of the lines joining the midpoints are 

parallel. This is a parallelogram. 

1.2 Given that 𝐚 and 𝐛 are vectors, use indicial notation to show that  𝐚 × 𝐛 = −𝐛 × 𝐚 

 
𝐚 × 𝐛 = 𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝐞𝒊 = −𝑒𝑖𝑘𝑗𝑏𝑘𝑎𝑗𝐞𝑖 = −𝐛 × 𝐚 

1.3 Given that 𝐚 and 𝐛 are vectors, use indicial notation to show that  (𝐚 × 𝐛) ⋅ 𝐚 = (𝐚 × 𝐛) ⋅

𝐛 = 𝟎 

 
𝐚 × 𝐛 = 𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝐞𝒊  

(𝐚 × 𝐛) ⋅ 𝐚 = (𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝐞𝑘) ⋅ (𝑎𝛼𝐞𝜶) 

= 𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝑎𝛼𝐞𝒊 ⋅ 𝐞𝜶 

= 𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝑎𝛼𝛿𝑖𝛼 

= 𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝑎𝑖 

= −𝑒𝑗𝑖𝑘𝑎𝑗𝑏𝑘𝑎𝑖 

= −𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘𝑎𝑖 = 0 

The expression in symmetrical in 𝑖 and 𝑗, it is also anti-symmetrical in the same two 

indices at the same time. The same situation occurs on the RHS. 

1.4 Show that (a) (𝐚 + 𝐛) ⋅ (𝐚 − 𝐛) = ‖𝐚‖2 − ‖𝐛‖2, and that (𝐚 + 𝐛) × (𝐚 − 𝐛) = −𝟐𝐚 × 𝐛 
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a (a) Opening the parentheses,  

(𝐚 + 𝐛) ⋅ (𝐚 − 𝐛) = 𝐚 ⋅ 𝐚 − 𝐚 ⋅ 𝐛 + 𝐛 ⋅ 𝐚 − 𝐛 ⋅ 𝐛 

= 𝐚 ⋅ 𝐚 − 𝐛 ⋅ 𝐛 

= ‖𝐚‖2 − ‖𝐛‖2 

(b) Similarly,  

(𝐚 + 𝐛) × (𝐚 − 𝐛) = 𝐚 × 𝐚 − 𝐚 × 𝐛 + 𝐛 × 𝐚 − 𝐛 × 𝐛 

= −𝐚 × 𝐛 + 𝐛 × 𝐚 = −𝐚 × 𝐛 − 𝐚 × 𝐛 

= −𝟐𝐚 × 𝐛 

1.5 Given that ∀ 𝐯 ∈ 𝔼, 𝐚 ⋅ 𝐯 = 𝐛 ⋅ 𝐯, Show that 𝐚 = 𝐛 

We are given that ∀ 𝐯 ∈ 𝔼, 𝐚 ⋅ 𝐯 = 𝐛 ⋅ 𝐯 this implies, 
𝐚 ⋅ 𝐯 − 𝐛 ⋅ 𝐯 = (𝐚 − 𝐛) ⋅ 𝐯 = 0 

Define the vector 𝐜 ≡ 𝐚 − 𝐛. The equation becomes, 
𝐜 ⋅ 𝐯 = ‖𝐜‖‖𝐯‖ cos 𝜃 = 0. 

Because v can be any vector, it does not have to be perpendicular to 𝒄 and we can rule out the 

trivial case of its being the zero vector. This leaves us with the only choice that ‖𝐜‖ = 0. And, the 

only vector that has zero magnitude is the zero vector. So that, 

𝐜 ≡ 𝐚 − 𝐛 = 𝐨, or 𝐚 = 𝐛. 

1.6 Given that for any vector 𝐯, 𝐚 × 𝐯 = 𝐛 × 𝐯, Show that 𝐚 = 𝐛 

We are given that ∀ 𝐯 ∈ 𝔼 , 𝐚 × 𝐯 = 𝐛 × 𝐯, Now take a dot product with 𝐚, we have that,  

𝐚 ⋅ 𝐛 × 𝐯 = (𝐚 × 𝐛) ⋅ 𝐯 = 0 = 𝐨 ⋅ 𝐯 
for all 𝐯 proving that 𝐚 × 𝐛 = 𝐨. This shows that 𝐚 and 𝐛 are collinear. We can therefore write 

that 𝐛 = 𝛼𝐚 

Hence, 𝐚 × 𝐯 = 𝐛 × 𝐯 = 𝛼𝐚 × 𝐯 where 𝛼 is a scalar. So that  

(𝐚 × 𝐯)(1 − 𝛼) = 𝒐 ⇒ 1 = 𝛼 
showing that 𝐚 = 𝐛 as was required. 

1.7 Identify all the equations contained in the expression 𝑒𝑖𝑗𝑘𝑇𝑗𝑘 = 0 
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For each free index, there is an equation: 

𝑖 = 1 ⇒ 𝑒1𝑗𝑘𝑇𝑗𝑘 = 𝑒123𝑇23 + 𝑒132𝑇32 = 𝑇23 − 𝑇32 = 0 ⇒ 𝑇23 = 𝑇32  

𝑖 = 2 ⇒ 𝑒2𝑗𝑘𝑇𝑗𝑘 = 𝑒213𝑇13 + 𝑒231𝑇31 = 𝑇13 − 𝑇31 = 0 ⇒ 𝑇13 = 𝑇31 

𝑖 = 3 ⇒ 𝑒3𝑗𝑘𝑇𝑗𝑘 = 𝑒312𝑇12 + 𝑒321𝑇21 = 𝑇12 − 𝑇21 = 0 ⇒ 𝑇12 = 𝑇21 

Notice that this same expression could have been written in the full invariant form: 

𝑒𝑖𝑗𝑘𝑇𝑗𝑘𝐞𝑖 = 𝐨 

In this form, there is no free index, all indices are dummy. Notice that the RHS is a vector zero. 

Strictly speaking, this can be fully expanded to  

𝑒𝑖𝑗𝑘𝑇𝑗𝑘𝐞𝑖 = 0𝐞1 + 0𝐞2 + 0𝐞3 = 𝐨 

= 𝑒1𝑗𝑘𝑇𝑗𝑘𝐞1 + 𝑒2𝑗𝑘𝑇𝑗𝑘𝐞2 + 𝑒3𝑗𝑘𝑇𝑗𝑘𝐞3 

which are three equations: 

𝑒1𝑗𝑘𝑇𝑗𝑘 = 0, 𝑒2𝑗𝑘𝑇𝑗𝑘 = 0, 𝑒3𝑗𝑘𝑇𝑗𝑘 = 0. 

And this is the meaning of the single equation, 

𝑒𝑖𝑗𝑘𝑇𝑗𝑘 = 0 

where the free index facilitates the production of the three equations. It follows that either form 

of writing gives us the same set of equations if correctly interpreted. That is one reason why we 

should be careful to note whether the zero we are dealing with is a scalar zero, a vector zero or 

a tensor zero. It matters! 

1.8 
Given that 𝐀 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

)  Write the equation 𝐀𝐀T = 𝐈 in indicial notation. 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) (

𝑎11 𝑎21 𝑎31

𝑎12 𝑎22 𝑎32

𝑎13 𝑎23 𝑎33

)

= (
𝑎11𝑎11 + 𝑎12𝑎12 + 𝑎13𝑎13 𝑎11𝑎21 + 𝑎12𝑎22 + 𝑎13𝑎23 𝑎11𝑎31 + 𝑎12𝑎32 + 𝑎13𝑎33

𝑎21𝑎11 + 𝑎22𝑎12 + 𝑎23𝑎13 𝑎21𝑎21 + 𝑎22𝑎22 + 𝑎23𝑎23 𝑎21𝑎31 + 𝑎22𝑎32 + 𝑎23𝑎33

𝑎31𝑎11 + 𝑎32𝑎12 + 𝑎33𝑎13 𝑎31𝑎21 + 𝑎32𝑎22 + 𝑎33𝑎23 𝑎31𝑎31 + 𝑎32𝑎32 + 𝑎33𝑎33

) 

Observe that in each cell, every term maintains the cell’s row and column numbers in their 

first term.  

𝑎(𝑟𝑜𝑤 𝑛𝑜)1𝑎(𝑐𝑜𝑙 𝑛𝑜)1 + 𝑎(𝑟𝑜𝑤 𝑛𝑜)2𝑎(𝑐𝑜𝑙 𝑛𝑜)2 + 𝑎(𝑟𝑜𝑤 𝑛𝑜)3𝑎(𝑐𝑜𝑙 𝑛𝑜)3 

Is true of EVERY cell in the above array! Look at it closely! It is also clear that we are 

summing over the second number in each term. Is it not clear that we can gain a significant 

amount of space if we simply writing, for the 𝑖𝑡ℎ and 𝑗𝑡ℎ column,  
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𝑎𝑖1𝑎𝑗1 + 𝑎𝑖2𝑎𝑗2 + 𝑎𝑖3𝑎𝑗3 

And is it not obvious that this can be written, using the summation convention as, 

𝑎𝑖1𝑎𝑗1 + 𝑎𝑖2𝑎𝑗2 + 𝑎𝑖3𝑎𝑗3 = 𝑎𝑖𝛼𝑎𝑗𝛼 = 𝑎𝑖𝑘𝑎𝑗𝑘 

On the right hand side, the identity matrix is,  

𝐈 = (
1 0 0
0 1 0
0 0 1

) = (

𝛿11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 𝛿33

) 

Observe that anywhere the row and column numbers are the same, the value is 1. When 

they are not, the value is zero. So that the typical element is 𝛿𝑖𝑗. Hence, we can write the 

equation as, 

𝑎𝑖𝑘𝑎𝑗𝑘 = 𝛿𝑖𝑗 

1.9 Show that a transformation of every vector to the vector 4𝐞2 + 𝐞1cannot be a tensor. 

 
Let us first transform an arbitrary vector 𝐮; 

𝐓𝐮 = 4𝐞2 + 𝐞1 

For any scalar 𝛼, let us also transform 𝛼𝐮, since 𝛼𝐮 is a vector, this transformation, 

since it transforms every vector the same way, transforms to  

𝐓(𝛼𝐮) = 4𝐞2 + 𝐞1 = 𝐓 ≠ 𝛼𝐓𝐮 

Hence, it is not a linear transformation. A tensor is a linear transformation of a vector 

to another vector. The transformation is NOT a tensor. 

1.10 Can a transformation of every vector to the zero vector be a tensor? Why? 

 
Let us transform an arbitrary vector 𝐮; 

𝐓𝐮 = 𝐨 
For any scalar 𝛼, let us also transform 𝛼𝐮, since 𝛼𝐮 is a vector, this transformation, 

since it transforms every vector the same way, transforms to  

𝐓(𝛼𝐮) = 𝐨 = 𝛼𝐓𝐮 
Hence this transformation is a tensor: It transforms linearly, and from tensor to tensor. 

It is the Annihilator Tensor. 

1.11 Explain the terms, Vector Cross, Dual Vector, Deviatoric Tensor, Spherical Tensor.  

 
Vector Cross is a tensor that operates on a vector, yielding the same vector result that 

would have been obtained were there to have been a cross product on that vector. 

For any skew tensor, a Dual vector is a vector that is a vector cross of the tensor. 
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A Deviatoric tensor is what remains after subtracting the spherical part of the tensor 

from the tensor 

A Spherical Tensor is a tensor that has the value zero in each non-diagonal element. 

The diagonal elements are of equal value. It follows that the tensor can be written in 

the form, 𝛼𝐈 where 𝛼 is a scalar, and 𝐈 is the identity tensor. 

1.12 Given that the vector cross formula is (𝐮 ×) = 𝑒𝑖𝑗𝑘𝑢𝑗𝐞𝑖 ⊗ 𝐞𝑘, Find the vector cross of 

𝐮 = 4𝐞2 + 𝐞1 − 3𝐞3. Is it a deviatoric tensor? Why? 

 
Let 𝛀 = (𝐮 ×) = 𝑒𝑖𝑗𝑘𝑢𝑗𝐞𝑖 ⊗ 𝐞𝑘 

𝑖 = 1, 𝑘 = 2 ⇒ Ω12 = 𝑒132𝑢3 = −𝑢3 = 3 

𝑖 = 1, 𝑘 = 3 ⇒ Ω13 = 𝑒123𝑢2 = 𝑢2 = 1 

𝑖 = 2, 𝑘 = 3 ⇒ Ω23 = 𝑒213𝑢1 = −𝑢1 = −4 

[Ω𝑖𝑗] = (
0 3 1

−3 0 −4
−1 4 0

) 

The trace of a skew tensor is zero. It has no spherical part. Hence, the skew tensor is 

deviatoric. 

1.13 
Given [𝑆𝑖𝑗] = [

1 0 2
0 1 2
3 0 3

] and [𝑎𝑖] = [
1
2
3

] evaluate (a) 𝑆𝑖𝑖, (b) 𝑆𝑗𝑖𝑆𝑗𝑖, (c) 𝑆𝑗𝑘𝑆𝑘𝑗, (d) 𝑎𝑚𝑎𝑚, 

(e) 𝑆𝑚𝑛𝑎𝑚𝑎𝑛, (f) 𝑆𝑛𝑚𝑎𝑚𝑎𝑛 

a Because the subscript index is repeated, summation is implied for the full range of 

acceptable values – that is, 1,2 and 3; therefore, 𝑆𝑖𝑖 = 𝑆11 + 𝑆22 + 𝑆33 = 1 + 1 +

3 = 5. 

b In this case, two different indices are repeated. There is summation on both of them. 
To get it right, we must apply such one by one. We do it, starting with the first 
index,  𝑖,  and later, after that is fully completed, we take the second index 𝑗, as follows: 

𝑆𝑖𝑗𝑆𝑖𝑗 = 𝑆1𝑗𝑆1𝑗 + 𝑆2𝑗𝑆2𝑗 + 𝑆3𝑗𝑆3𝑗 = 𝑆11𝑆11 + 𝑆12𝑆12 + 𝑆13𝑆13 + 𝑆2𝑗𝑆2𝑗 + 𝑆3𝑗𝑆3𝑗 

= 𝑆11𝑆11 + 𝑆12𝑆12 + 𝑆13𝑆13 + 𝑆21𝑆21 + 𝑆22𝑆22 + 𝑆23𝑆23 + 𝑆3𝑗𝑆3𝑗 

= 𝑆11𝑆11 + 𝑆12𝑆12 + 𝑆13𝑆13 + 𝑆21𝑆21 + 𝑆22𝑆22 + 𝑆23𝑆23 + 𝑆31𝑆31 + 𝑆32𝑆32

+ 𝑆33𝑆33 
= 1 × 1 + 0 × 0 + 2 × 2 + 0 × 0 + 1 × 1 + ⋯ + 0 × 0 + 3 × 3 = 28 

c Proceeding as in the earlier two examples, we write, 

𝑆𝑗𝑘𝑆𝑘𝑗 = 𝑆1𝑘𝑆𝑘1 + 𝑆2𝑘𝑆𝑘2 + 𝑆3𝑘𝑆𝑘3 
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= 𝑆11𝑆11 + 𝑆12𝑆21 + 𝑆13𝑆31 + 𝑆2𝑘𝑆𝑘2 + 𝑆3𝑘𝑆𝑘3 

= 𝑆11𝑆11 + 𝑆12𝑆21 + 𝑆13𝑆31 + 𝑆21𝑆12 + 𝑆22𝑆22 + 𝑆23𝑆32 + 𝑆3𝑘𝑆𝑘3 

= 𝑆11𝑆11 + 𝑆12𝑆21 + 𝑆13𝑆31 + 𝑆21𝑆12 + 𝑆22𝑆22 + 𝑆23𝑆32 + 𝑆3𝑘𝑆𝑘3 

= 𝑆11𝑆11 + 𝑆12𝑆12 + 𝑆13𝑆13 + 𝑆21𝑆21 + 𝑆22𝑆22 + 𝑆23𝑆23 + 𝑆31𝑆13 + 𝑆32𝑆23

+ 𝑆33𝑆33 

= 1 × 1 + 0 × 0 + 2 × 3 + 0 × 0 + 1 × 1 + ⋯ + 0 × 2 + 3 × 3 

= 23 

d Here, again, one index is repeated. A summation over all the allowable values of that 

index is implied. Accordingly, 

𝑎𝑚𝑎𝑚 = 𝑎1𝑎1 + 𝑎2𝑎2 + 𝑎3𝑎3 = 1 × 1 + 2 × 2 + 3 × 3 = 14 

e This is another example of a double summation. We proceed as we have done 

previously: 

𝑆𝑚𝑛𝑎𝑚𝑎𝑛 = 𝑆1𝑛𝑎1𝑎𝑛 + 𝑆2𝑛𝑎2𝑎𝑛 + 𝑆3𝑛𝑎3𝑎𝑛 

= 𝑆11𝑎1𝑎1 + 𝑆12𝑎1𝑎2 + 𝑆13𝑎1𝑎3 + 𝑆2𝑛𝑎2𝑎𝑛 + 𝑆3𝑛𝑎3𝑎𝑛 

= 𝑆11𝑎1𝑎1 + 𝑆12𝑎1𝑎2 + 𝑆13𝑎1𝑎3 + 𝑆21𝑎2𝑎1 + 𝑆22𝑎2𝑎2 + 𝑆23𝑎2𝑎3

+ 𝑆31𝑎3𝑎1 + 𝑆32𝑎3𝑎2 + 𝑆33𝑎3𝑎3 

= 1 × 1 × 1 + 0 × 1 × 2 + 2 × 1 × 3 + 0 × 2 × 1 + 1 × 2 × 2

+ 2 × 2 × 3 + 3 × 3 × 1 + 0 × 3 × 2 + 3 × 3 × 3 

= 59 

f 
As in the above example, everything unchanged except that location of m and n indices in the 

first term are now revered. It is good to work this out fully manually and draw lessons from the 

result. This can have far reaching effects on your understanding of other materials later. 

𝑆𝑛𝑚𝑎𝑚𝑎𝑛 = 𝑆𝑛1𝑎1𝑎𝑛 + 𝑆𝑛2𝑎2𝑎𝑛 + 𝑆𝑛3𝑎3𝑎𝑛 
= 𝑆11𝑎1𝑎1 + 𝑆21𝑎1𝑎2 + 𝑆31𝑎1𝑎3 + 𝑆𝑛2𝑎2𝑎𝑛 + 𝑆𝑛3𝑎3𝑎𝑛 
= 𝑆11𝑎1𝑎1 + 𝑆21𝑎1𝑎2 + 𝑆31𝑎1𝑎3 + 𝑆12𝑎2𝑎1 + 𝑆22𝑎2𝑎2 + 𝑆32𝑎2𝑎3 + 𝑆13𝑎3𝑎1

+ 𝑆23𝑎3𝑎2 + 𝑆33𝑎3𝑎3 
= 1 × 1 × 1 + 0 × 1 × 2 + 3 × 1 × 3 + 0 × 2 × 1 + 1 × 2 × 2 + 0 × 2 × 3

+ 2 × 3 × 1 + 2 × 3 × 2 + 3 × 3 × 3 
= 59 
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The fact that the last two examples gave the same answer is NOT a coincidence. This example 

may look like some easy problem that is merely tedious. However, it strikes at the very heart of 

understanding the skills involved in the summation convention. These skills are not elementary 

nor are they trivial. We pause a little moment to look again at the problems 2.1f and 2.1g. By the 

time it fully sinks in, you will see that it should not be necessary for you to do the tedious 

arithmetic to see that they MUST give the same answer. Here is the proof: 

𝑆𝑖𝑗𝑎𝑖𝑎𝑗 = 𝑆𝑖𝑗𝑎𝑗𝑎𝑖 

Is true for the simple fact that multiplying 𝑎𝑖 and 𝑎𝑗 will always give us the same answer no 

matter in what order the operands are given: multiplication is Commutative. The fact that 𝑖 and 

𝑗 in the above equations are repeated means that they are dummy variables. They can therefore 

be exchanged for any other set of dummy variables provided we are consistent. Accordingly, 

replace 𝑖 by 𝑚 and 𝑗 by 𝑛 on the left-hand side, and replace 𝑖 by 𝑛 and 𝑗 by 𝑚 on the right-hand 

side, we obtain, 

𝑆𝑚𝑛𝑎𝑚𝑎𝑛 = 𝑆𝑛𝑚𝑎𝑚𝑎𝑛 

Never forget that we are only able to arbitrarily replace variables on a side without doing exactly 

the same at each object because we are here dealing with variables that have repeated 

themselves and are dummy variables. 

1.14 Show that the volume 𝑉 of a pyramid, cone, tetrahedron or any other body that lofts 

from a flat surface to a point (Conramid) is such that 

𝑉 =
1

3
𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡 
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Volume of a Conramid.  

Definition: A ConRamid is an object with a flat base of any shape that 

tapers, linearly, to a point maintaining the same shape in any 

horizontal section. A cone, pyramid or tetrahedron are all special 

cases of a conramid. 

Volume. We will show that the volume of a conramid is one third the 

height times the area of the base. In doing this, we shall first 

demonstrate that as the lengths vary linearly with distance from the 

tip, the elemental areas vary as the square of this distance. Let us 

assume that the base area is 𝐴, and the perpendicular distance between the base and the vertex 

is 𝐻. We consider an element at a distance 𝑥 from the vertex. To make things easy we have 

selected a right angled triangle at the centerline – through the perpendicular. The breadth, 𝑏𝑡𝑥 

and height, ℎ𝑡𝑥  of this triangle, compared to the image (height ℎ, breadth 𝑏) at the base is 

𝑏𝑡𝑥 =
𝑏

𝐻
𝑥, ℎ𝑡𝑥 =

ℎ

𝐻
𝑥 

. The area of this triangle is therefore, 

𝐴𝑥𝑡
=

1

2
(

𝑏

𝐻
𝑥) (

ℎ

𝐻
𝑥) =

𝑏ℎ

2𝐻2
𝑥2 =

1

𝐻2
𝐴𝑡𝑥2 
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We can easily mesh the entire disk in a set of triangles as shown. In this case, the total area of 

the disk at point 𝑥 will be the sum of all the triangular areas: 

The volume of the typical disk is,  

1

𝐻2
(𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛)𝑥2𝑑𝑥 =

1

𝐻2
𝐴𝑥2𝑑𝑥 

where 𝐻 is the height of the triangle at the base. The volume of the conramid is therefore, 

𝑉 =
𝐴

𝐻2
∫ 𝑥2𝑑𝑥

𝐻

0

=
1

3
𝐴𝐻 

Which is one third the area of the base times the height. This applies to a cone, a pyramid or a 

tetrahedron as we have assumed previously. 

 

1.15 Evaluate (𝐚 × 𝐛) ⋅ (𝐜 × 𝐝) 

 
(𝐚 × 𝐛) ⋅ (𝐜 × 𝐝) = ((𝐚 × 𝐛) × 𝐜) ⋅ 𝐝 

= ((𝐚 ⋅ 𝐜) 𝐛 − (𝐛 ⋅ 𝐜 )𝐚) ⋅ 𝐝 

= (𝐚 ⋅ 𝐜) (𝐛 ⋅ 𝐝) − (𝐛 ⋅ 𝐜 )(𝐚 ⋅ 𝐝) 

1.16 Show that (𝐚 × 𝐛) ⋅ (𝐛 × 𝐜) × (𝐜 × 𝐚) = (𝐚 × 𝐛 ⋅ 𝐜)𝟐 

 
(𝐚 × 𝐛) ⋅ (𝐛 × 𝐜) × (𝐜 × 𝐚) = (𝐚 × 𝐛) ⋅ [(𝐛 × 𝐜) ⋅ 𝐚]𝐜 − (𝐚 × 𝐛) ⋅ [(𝐛 × 𝐜) ⋅ 𝐜]𝐚 

= (𝐚 × 𝐛) ⋅ [(𝐛 × 𝐜) ⋅ 𝐚]𝐜 

= (𝐚 × 𝐛 ⋅ 𝐜)((𝐛 × 𝐜) ⋅ 𝐚) 

= (𝐚 × 𝐛 ⋅ 𝐜)(𝐚 ⋅ 𝐛 × 𝐜 ) 

= (𝐚 × 𝐛 ⋅ 𝐜)2 

  

1.17 Given that position vectors 𝐫1𝑎𝑛𝑑 𝐫2 on the 𝑥1 − 𝑥2 plane are inclined at angles 𝛼, and 

𝛽 respectively to the 𝑥1 axis. Find expressions for the component forms of these 

vectors and (a) use the dot product to show that, cos(𝛽 − 𝛼) = cos 𝛼 cos 𝛽 +

sin 𝛼 sin 𝛽.(b) Use the cross product to show that sin(𝛽 − 𝛼) = cos 𝛼 − sin 𝛼 cos 𝛽 
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(a) Writing 𝑟1 ≡ ‖𝐫1‖, and 𝑟2 ≡ ‖𝐫2‖ In the sketch 
below, let 𝐞1 and 𝐞2 be the unit coordinate 
vectors for 𝑥1 and 𝑥2 respectively. Clearly,  

𝐫1 = 𝑟1 cos 𝛼 𝐞1 + 𝑟1 sin 𝛼 𝐞2 
𝐫2 = 𝑟2 cos 𝛽 𝐞1 + 𝑟2 sin 𝛽 𝐞2 

𝐫1 ⋅  𝐫2 = ‖𝐫1‖‖𝐫2‖ cos(𝛽 − 𝛼) 
= (𝑟1 cos 𝛼 𝐞1 + 𝑟1 sin 𝛼 𝐞2)

⋅ (𝑟2 cos 𝛽 𝐞1 + 𝑟2 sin 𝛽 𝐞2) 
= 𝑟1 cos 𝛼 𝑟2 cos 𝛽 + 𝑟1 sin 𝛼 𝑟2 sin 𝛽 

so that, 
cos(𝛽 − 𝛼) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 

(b)  
𝐫1 × 𝐫2 = ‖𝐫1‖‖𝐫2‖ sin(𝛽 − 𝛼) 𝐞3 
 

= |

𝐞1 𝐞2 𝐞3

𝑟1 cos 𝛼 𝑟1 sin 𝛼 0
𝑟2 cos 𝛽 𝑟2 sin 𝛽 0

| 

 
= 𝐞3𝑟1𝑟2(cos 𝛼 sin 𝛽 − sin 𝛼 cos 𝛽) 

∴ sin  (𝛽 − 𝛼) = cos 𝛼 sin 𝛽 − sin 𝛼 cos 𝛽 

1.18 The diagonals of a parallelogram are given by the vectors, 3𝐞1 + 𝐞2 − 2𝐞3 and 𝐞1 −

3𝐞2 + 4𝐞3. Find the area of the parallelogram. 

a Assume vectors 𝐃1and 𝐃2 are the diagonals. The 

sides are 
1

2
(𝐃1 + 𝐃2), and 

1

2
(𝐃1 − 𝐃2). The 

required area is therefore, 

 |
𝐞1 𝐞2 𝐞3

2 −1 1
1 2 −3

| = 𝐞1(3 − 2) − 𝐞2(−6 −

1) + 𝐞3(4 + 1) 

The magnitude of this is √1 + 49 + 25 = 5√3 

It is a vector area with magnitude 5√3. 

1.19 Given three vectors 𝐮, 𝐯 and 𝐰, using the result, (𝐰 × 𝐮) × (𝐰 × 𝐯) =

(𝐰 ⊗ 𝐰)(𝐮 × 𝐯), show that [(𝐮 × 𝐯), (𝐯 × 𝐰), (𝐰 × 𝐮)] = [𝐮, 𝐯, 𝐰]2 



82 
 

a From the given result,  

[(𝐮 × 𝐯), (𝐯 × 𝐰), (𝐰 × 𝐮)] = −(𝐮 × 𝐯) ⋅ (𝐰 × 𝐯) × (𝐰 × 𝐮) 

= −(𝐮 × 𝐯) ⋅ (𝐰 ⊗ 𝐰)(𝐯 × 𝐮) 

= (𝐮 × 𝐯)((𝐰 ⋅ 𝐮 × 𝐯)𝐰) 

= [𝐮, 𝐯, 𝐰]2 

1.20 Given three vectors 𝐮, 𝐯 and 𝐰, show that (𝐰 × 𝐮) × (𝐰 × 𝐯) = (𝐰 ⊗ 𝐰)(𝐮 × 𝐯) and 

that for the unit vector 𝐞, [𝐞, 𝐞 × 𝐮, 𝐞 × 𝐯] = [𝐞, 𝐮, 𝐯] 

 
(𝐰 × 𝐮) × (𝐰 × 𝐯) = [(𝐰 × 𝐮) ⋅ 𝐯]𝐰 − [(𝐰 × 𝐮) ⋅ 𝐰]𝐯 

= [(𝐰 × 𝐮) ⋅ 𝐯]𝐰 

= [(𝐮 × 𝐯) ⋅ 𝐰]𝐰 

= (𝐰 ⊗ 𝐰)(𝐮 × 𝐯) 

Consequently, 

[𝐞, 𝐞 × 𝐮, 𝐞 × 𝐯] = 𝐞 ⋅ [(𝐞 × 𝐮) × (𝐞 × 𝐯)] 

= 𝐞 ⋅ [(𝐞 ⊗ 𝐞)(𝐮 × 𝐯)] 

= (𝐮 × 𝐯) ⋅ (𝐞 ⊗ 𝐞)𝐞 

= (𝐮 × 𝐯) ⋅ 𝐞 = [𝐞, 𝐮, 𝐯] 

making use of the symmetry of (𝐞 ⊗ 𝐞). 

1.21 Given that 𝐮, 𝐯 and 𝐰 are vectors, find the values of scalars 𝛼 and 𝛽 in the 
equation, (𝐮 × 𝐯) × 𝐰 = 𝛼𝐮 + 𝛽𝐯 



83 
 

 
𝐮 × 𝐯 = 𝑒𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝐞𝑘 = 𝑠𝑘𝐞𝑘 

Expanding the full equation, we have that 

(𝐮 × 𝐯) × 𝐰 = 𝑒𝑘𝑙𝑚𝑠𝑘𝑤𝑙𝐞𝑚 

= 𝑒𝑘𝑙𝑚𝑒𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑙𝐞𝑚 

= (𝛿𝑙𝑖𝛿𝑚𝑗 − 𝛿𝑙𝑗𝛿𝑚𝑖)𝑢𝑖𝑣𝑗𝑤𝑙𝐞𝑚 

= 𝑒𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑖𝐞𝑗 − 𝑒𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑗𝐞𝑖 

= (𝑢𝑖𝑤𝑖)𝑣𝑗𝐞𝑗 − (𝑣𝑗𝑤𝑗)𝑢𝑖𝐞𝑖 

= (𝐮 ⋅ 𝐰)𝐯 − (𝐯 ⋅ 𝐰)𝐮 = 𝛼𝐮 + 𝛽𝐯 

Clearly, 𝛼 = −(𝐯 ⋅ 𝐰) and 𝛽 = (𝐮 ⋅ 𝐰) 
 

1.22 Given that 𝐧 is a unit vector, use the fact that 𝐧 ⋅ 𝐮 is the projection of the vector 𝐮 in 

the direction of 𝐧 to represent 𝐮 as (𝐧 ⋅ 𝐮)𝐧 + 𝐧 × (𝐮 × 𝐧) or (𝐧 ⊗ 𝐧)𝐮 +

𝐧 × (𝐮 × 𝐧). 

 
By simple vector addition, we can represent 𝐮 as (𝐧 ⋅ 𝐮)𝐧 + 𝐮 − (𝐧 ⋅ 𝐮)𝐧. 

Since 𝐧 is a unit vector, 𝐧 ⋅ 𝐧 = 1. Therefore, 

𝐮 = (𝐧 ⋅ 𝐮)𝐧 + 𝐮 − (𝐧 ⋅ 𝐮)𝐧 

= (𝐧 ⋅ 𝐮)𝐧 + (𝐧 ⋅ 𝐧)𝐮 − (𝐧 ⋅ 𝐮)𝐧 

= (𝐧 ⋅ 𝐮)𝐧 + 𝐧 × (𝐮 × 𝐧) 

= (𝐧 ⊗ 𝐧)𝐮 + 𝐧 × (𝐮 × 𝐧) 

1.23 Simplify the following by employing the substitution properties of the Kronecker Delta 

(𝑎)𝑒𝑖𝑗𝑘𝛿𝑘𝑛, (𝑏)𝑒𝑖𝑗𝑘𝛿𝑖𝑠𝛿𝑗𝑚 (𝑐)𝑒𝑖𝑗𝑘𝛿𝑖𝑠𝛿𝑗𝑚  (𝑑) 𝑎𝑖𝑗𝛿𝑖𝑛 (𝑒)𝛿𝑖𝑗𝛿𝑗𝑛 (𝑓)𝛿𝑖𝑗𝛿𝑗𝑛𝛿𝑛𝑖  

 
(𝑎) 𝑒𝑖𝑗𝑛 (𝑏)𝑒𝑠𝑚𝑘 (𝑐)𝑒𝑠𝑚𝑘 (𝑑)𝑎𝑛𝑗(𝑒)𝛿𝑖𝑛 (𝑓)𝛿𝑖𝑗𝛿𝑗𝑖 = 𝛿𝑖𝑖 = 𝛿11 + 𝛿22 + 𝛿33 = 3 

1.24 Show (a) that the sum of triple products, (Jacobi’s identity)  (𝐮 × 𝐯) × 𝐰 +

(𝐯 × 𝐰) × 𝐮 + (𝐰 × 𝐮) × 𝐯 = 𝐨, and (b) (𝐮 × 𝐯) ⋅ (𝐰 × 𝐲) = (𝐮 ⋅ 𝐰)(𝐯 ⋅ 𝐲) − (𝐮 ⋅

𝐲)(𝐯 ⋅ 𝐰) (Lagrange Identity) 
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(𝐮 × 𝐯) × 𝐰 = (𝐮 ⋅ 𝐰)𝐯 − (𝐯 ⋅ 𝐰)𝐮 

(𝐯 × 𝐰) × 𝐮 = (𝐯 ⋅ 𝐮)𝐰 − (𝐰 ⋅ 𝐮)𝐯 

(𝐰 × 𝐮) × 𝐯 = (𝐰 ⋅ 𝐯)𝐮 − (𝐮 ⋅ 𝐯)𝐰 

Adding the three, we find that (𝐮 × 𝐯) × 𝐰 + (𝐯 × 𝐰) × 𝐮 + (𝐰 × 𝐮) × 𝐯 = 𝐨 

This is the zero vector. 

(𝐮 × 𝐯) ⋅ (𝐰 × 𝐲) = ((𝐮 × 𝐯) × 𝐰) ⋅ 𝐲 

= ((𝐮 ⋅ 𝐰)𝐯 − (𝐯 ⋅ 𝐰)𝐮) ⋅ 𝐲 

= (𝐮 ⋅ 𝐰)(𝐯 ⋅ 𝐲) − (𝐮 ⋅ 𝐲)(𝐯 ⋅ 𝐰) 

as required. 

1.25 Given that, 𝐼𝑖𝑗 = ∭ (𝑥𝑚𝑥𝑚𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗)
𝑉

𝜌(𝑥1, 𝑥2, 𝑥3)𝑑𝑥1𝑑𝑥2𝑑𝑥3 is the moment of 

inertia along the axis 𝑖 − 𝑗 where 𝑥 = 𝑥1, 𝑦 = 𝑥2, 𝑧 = 𝑥3  and 𝜚(𝑥1, 𝑥2, 𝑥3) is scalar 
density of the material find all the components of the tensor. 

 
I11 = ∭ (y2 + z2)𝜚(x, y, z)dxdydz

V

,     I21 = I12 = ∭xy𝜚(x, y, z)dxdydz
V

, 

I22 = ∭ (z2 + x2)𝜚(x, y, z)dxdydz
V

,   I32 = I23 = ∭ yz𝜚(x, y, z)dxdydz
V

, 

I31 = I13 = ∭xz𝜚(x, y, z)dxdydz
V

,      I33 = ∭(x2 + y2)𝜚(x, y, z)dxdydz
V

 

1.26 Write (a) in the long form,  

𝑎𝑖 =
𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
 

 
We can see that in this equation, the there is one free index, that is 𝑖 and it occurs once 

in every term on both sides. There is a dummy index, that is, 𝑗 appearing repeated in 

one term. Accordingly, 

𝑎𝑖 =
𝜕𝑣𝑖

𝜕𝑡
+ 𝑣1

𝜕𝑣𝑖

𝜕𝑥1
+ 𝑣2

𝜕𝑣𝑖

𝜕𝑥2
+ 𝑣3

𝜕𝑣𝑖

𝜕𝑥3
 

Which are, indeed, three equations one each for 𝑖 = 1, 𝑖 = 2 and 𝑖 = 3 as follows: 

𝑎1 =
𝜕𝑣1

𝜕𝑡
+ 𝑣1

𝜕𝑣1

𝜕𝑥1
+ 𝑣2

𝜕𝑣1

𝜕𝑥2
+ 𝑣3

𝜕𝑣1

𝜕𝑥3
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𝑎2 =
𝜕𝑣2

𝜕𝑡
+ 𝑣1

𝜕𝑣2

𝜕𝑥1
+ 𝑣2

𝜕𝑣2

𝜕𝑥2
+ 𝑣3

𝜕𝑣2

𝜕𝑥3
 

𝑎3 =
𝜕𝑣3

𝜕𝑡
+ 𝑣1

𝜕𝑣3

𝜕𝑥1
+ 𝑣2

𝜕𝑣3

𝜕𝑥2
+ 𝑣3

𝜕𝑣3

𝜕𝑥3
 

The equation comes from the natural law of the indestructibility of masses – or mass 

balance. It is often inaccurately called a continuity equation in some texts. 

1.27 Given that 𝜆 and 𝜇 are scalar constants, and that the identity tensor, 𝐈 = 𝛿𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽, 

𝐄 = 𝐸𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽 and 𝛔 = 𝜎𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽  write the equation, 𝛔 = 𝜆𝐈 tr 𝐄 + 2𝜇𝐄 in 

component form. 

a tr 𝐄 = 𝐸𝛼𝛽tr(𝐞𝛼 ⊗ 𝐞𝛽) = 𝐸𝛼𝛽𝐞𝛼 ⋅ 𝐞𝛽 = 𝐸𝛼𝛽𝛿𝛼𝛽 = 𝐸𝛼𝛼 

The given equation, in component form can be written as, 

𝜎𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽 = 𝜆𝛿𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽𝐸𝑘𝑘 + 2𝜇𝐸𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽 

Using the common bases, we can write this in terms of components only : 

𝜎𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽 = (𝜆𝛿𝛼𝛽𝐸𝑘𝑘 + 2𝜇𝐸𝛼𝛽)𝐞𝛼 ⊗ 𝐞𝛽 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝐸𝑘𝑘 + 2𝜇𝐸𝑖𝑗 

1.28 If 𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝐸𝑘𝑘 + 2𝜇𝐸𝑖𝑗, show that, (a) 𝜎𝑖𝑗𝐸𝑖𝑗 = 𝜆(𝐸𝑘𝑘)2 + 2𝜇𝐸𝑖𝑗𝐸𝑖𝑗 and (b) 𝜎𝑖𝑗𝜎𝑖𝑗 =

(𝐸𝑘𝑘)2(4𝜇𝜆 + 3𝜆2) + 4𝜇2𝐸𝑖𝑗𝐸𝑖𝑗 

a Multiplying both sides by 𝐸𝑖𝑗 we have,  

𝜎𝑖𝑗𝐸𝑖𝑗 = 𝜆𝛿𝑖𝑗𝐸𝑘𝑘𝐸𝑖𝑗 + 2𝜇𝐸𝑖𝑗𝐸𝑖𝑗  

By the substitution nature of the Kronecker Delta, we have that, 𝛿𝑖𝑗𝐸𝑖𝑗 = 𝐸𝑗𝑗 = 𝐸𝑘𝑘 

because 𝑗 as well as 𝑘  are dummy indices here. Consequently,  

𝜎𝑖𝑗𝐸𝑖𝑗 = 𝜆𝐸𝑘𝑘𝐸𝑗𝑗 + 2𝜇𝐸𝑖𝑗𝐸𝑖𝑗 =  𝜆(𝐸𝑘𝑘)2 + 2𝜇𝐸𝑖𝑗𝐸𝑖𝑗 

Squaring both sides of the equation,  

𝜎𝑖𝑗𝜎𝑖𝑗 = (𝜆𝛿𝑖𝑗𝐸𝑘𝑘 + 2𝜇𝐸𝑖𝑗)(𝜆𝛿𝑖𝑗𝐸𝑘𝑘 + 2𝜇𝐸𝑖𝑗) 

= 𝜆2𝛿𝑖𝑖(𝐸𝑘𝑘)2 + 2𝜆𝜇𝐸𝑗𝑗𝐸𝑘𝑘 + 2𝜆𝜇𝛿𝑖𝑗𝐸𝑖𝑗𝐸𝑘𝑘 + 4𝜇2𝐸𝑖𝑗𝐸𝑖𝑗  

= 3𝜆2(𝐸𝑘𝑘)2 + 4𝜆𝜇𝐸𝑗𝑗𝐸𝑘𝑘 + 4𝜇2𝐸𝑖𝑗𝐸𝑖𝑗 

= (𝐸𝑘𝑘)2(4𝜇𝜆 + 3𝜆2) + 4𝜇2𝐸𝑖𝑗𝐸𝑖𝑗 
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1.29 Given that 𝑎𝑚𝑛𝑥𝑚𝑥𝑛 = 0. Show that 𝑎𝑚𝑛, 𝑚, 𝑛 = 1,2,3 is antisymmetric 

a Given that 𝑎𝑚𝑛𝑥𝑚𝑥𝑛 = 0 for arbitrary values of 𝑥𝑛, 𝑛 = 1,2,3 then we can write, 

𝑎𝑚𝑛𝑥𝑚𝑥𝑛 = −𝑎𝑚𝑛𝑥𝑚𝑥𝑛 

because zero is also a negative of itself. Swapping the roles of 𝑥𝑚 and 𝑥𝑛 on the RHS of 

the above, we can write, 

𝑎𝑚𝑛𝑥𝑚𝑥𝑛 = −𝑎𝑚𝑛𝑥𝑚𝑥𝑛 

= −𝑎𝑚𝑛𝑥𝑛𝑥𝑚  

= −𝑎𝑛𝑚𝑥𝑛𝑥𝑚 

after swapping the roles of the two dummy indices. We therefore consolidate on the 

LHS by writing, 

𝑎𝑚𝑛𝑥𝑚𝑥𝑛 + 𝑎𝑛𝑚𝑥𝑛𝑥𝑚 = 0 

(𝑎𝑚𝑛 + 𝑎𝑛𝑚)𝑥𝑚𝑥𝑛 = 0 

Notice that the quantity in the parenthesis is always symmetric. And also note the 

contraction of two symmetric tensors can only vanish if one or both tensors vanish. 

Here, 𝑥𝑚𝑥𝑛 is a product of arbitrary tensors. We are left with the fact that  

𝑎𝑚𝑛 + 𝑎𝑛𝑚 = 0 

or,  

𝑎𝑚𝑛 = −𝑎𝑛𝑚 

which is the definition of anti-symmetry. 

1.30 Given that, [𝐚, 𝐛, 𝐜] ≡ 𝐚 ⋅ (𝐛 × 𝐜) = (𝐚 × 𝐛) ⋅ 𝐜. Show that this product vanishes if the 

vectors (𝐚, 𝐛, 𝐜) are linearly dependent. 

 
Suppose it is possible to find scalars 𝛼 and 𝛽 such that, 𝐚 = 𝛼𝐛 + 𝛽𝐜. It therefore means 

that, 

[𝐚, 𝐛, 𝐜] = 𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘 = 𝑒𝑖𝑗𝑘(𝛼𝑏𝑖 + 𝛽𝑐𝑖)𝑏𝑗𝑐𝑘 

= 𝛼𝑒𝑖𝑗𝑘𝑏𝑖𝑏𝑗𝑐𝑘 +  𝛽𝑒𝑖𝑗𝑘𝑐𝑖𝑏𝑗𝑐𝑘 

= 0 
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Note that 𝑏𝑖𝑏𝑗𝑐𝑘 is symmetric in 𝑖 and 𝑗, 𝑐𝑖𝑏𝑗𝑐𝑘 is symmetric in 𝑖 and 𝑘 and𝑒𝑖𝑗𝑘 is 

antisymmetric in 𝑖, 𝑗 and 𝑘 Because each term is the product of a symmetric and an 

antisymmetric object which must vanish. 

1.31 Show that the product of a symmetric and an antisymmetric object vanishes. 

 
Consider the product sum, 𝑒𝑖𝑗𝑘𝑏𝑖𝑏𝑗𝑐𝑘 in which 𝑏𝑖𝑏𝑗 is symmetric in 𝑖 and 𝑗 and 𝑒𝑖𝑗𝑘 is 

antisymmetric in 𝑖, 𝑗 and 𝑘. Only the shared symmetrical and antisymmetrical indices 𝑖, 𝑗 

are relevant here. 

𝑒𝑖𝑗𝑘𝑏𝑖𝑏𝑗𝑐𝑘 = −𝑒𝑖𝑗𝑘𝑏𝑖𝑏𝑗𝑐𝑘 = −𝑒𝑖𝑗𝑘𝑏𝑗𝑏𝑖𝑐𝑘 = −𝑒𝑖𝑗𝑘𝑏𝑖𝑏𝑗𝑐𝑘 = 0 

The first equality on account of the antisymmetry of 𝑒𝑖𝑗𝑘 in 𝑖, 𝑗; the second on the 

symmetry of 𝑏𝑖𝑏𝑗 in 𝑖, 𝑗; the third on the fact that 𝑖, 𝑗 are dummy indices. These vanish 

because a non-trivial scalar quantity cannot be the negative of itself. 

This is a general rule and its observation makes a number of steps easy to see 

transparently. Watch out for it. 

1.32 Define [𝐚, 𝐛, 𝐜] ≡ 𝐚 ⋅ (𝐛 × 𝐜) = (𝐚 × 𝐛) ⋅ 𝐜. Show that [ 𝐚, 𝐛, 𝐜] = [𝐛, 𝐜, 𝐚] = [𝐜, 𝐚, 𝐛] =

−[𝐛, 𝐚, 𝐜] = −[𝐜, 𝐛, 𝐚] = −[𝐚, 𝐜, 𝐛] 

 
In component form,  

[𝐚, 𝐛, 𝐜] = 𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘 

Cyclic permutations of this, upon remembering that (𝑖, 𝑗, 𝑘) are dummy indices, yield,  

𝑒𝑖𝑗𝑘𝑏𝑗𝑐𝑘𝑎𝑖 = [𝐛, 𝐜, 𝐚] = 𝑒𝑖𝑗𝑘𝑏𝑖𝑐𝑗𝑎𝑘 

= 𝑒𝑖𝑗𝑘𝑐𝑘𝑎𝑖𝑏𝑗 = [𝐜, 𝐚, 𝐛] = 𝑒𝑖𝑗𝑘𝑐𝑖𝑎𝑗𝑏𝑘 

[𝐛, 𝐜, 𝐚] = 𝐛 ⋅ 𝐜 × 𝐚 = −𝐛 ⋅ 𝐚 × 𝐜 = − [𝐛, 𝐚, 𝐜] 

In a similar way, [𝐚, 𝐛, 𝐜] = −[𝐚, 𝐜, 𝐛], and [𝐜, 𝐚, 𝐛] = −[𝐜, 𝐛, 𝐚] 

1.33 Write in indicial notations (a) 𝑠 = 𝐴1
2 + 𝐴2

2 + 𝐴3
2 (b) 

𝜕2𝜙

𝜕𝑥1
2 +

𝜕2𝜙

𝜕𝑥2
2 +

𝜕2𝜙

𝜕𝑥3
2  
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(a) In order to avoid confusion between squaring and simple indexing, we separate the 

two as follows: 

𝑠 = 𝐴1
2 + 𝐴2

2 + 𝐴3
2 = 𝐴1𝐴1 + 𝐴2𝐴2 + 𝐴3𝐴3 = 𝐴𝑖𝐴𝑖  

In a similar way, the Laplacian operator for a scalar function can be expressed as follows: 

𝜕2𝜙

𝜕𝑥1
2 +

𝜕2𝜙

𝜕𝑥2
2 +

𝜕2𝜙

𝜕𝑥3
2 =

∂2𝜙

∂𝑥1𝜕𝑥1
+

∂2𝜙

∂𝑥2𝜕𝑥2
+

∂2𝜙

∂𝑥3𝜕𝑥3
=

∂2𝜙

∂𝑥𝑖𝜕𝑥𝑖
 

1.34 Given the vectors 𝐚 = 3𝐞1 + 𝐞2 − 2𝐞3 and 𝐛 = 𝐞1 − 3𝐞2 + 4𝐞3. Find the dyad 𝐚 ⊗

𝐛, and (b) Find tr(𝐚 ⊗ 𝐛) 

 
𝐚 ⊗ 𝐛 = 𝑎𝑖𝑏𝑗𝐞𝑖 ⊗ 𝐞𝑗 

= [𝐞1, 𝐞2, 𝐞3] [

𝑎1

𝑎2

𝑎3

] ⊗ [𝑏1, 𝑏2, 𝑏3] [

𝐞1

𝐞2

𝐞3

] 

= [𝐞1, 𝐞2, 𝐞3] [
3 × 1 3 × (−3) 3 × 4

1 −3 4
(−2) × 1 −2 × (−3) −2 × 4

] ⊗ [

𝐞1

𝐞2

𝐞3

] 

= [𝐞1, 𝐞2, 𝐞3] [
3 −9 12
1 −3 4

−2 6 −8
] ⊗ [

𝐞1

𝐞2

𝐞3

] 

 tr(𝐚 ⊗ 𝐛) = 𝑎𝑖𝑏𝑖 = 3 − 3 − 8 = −8 

1.35 Given that 𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝑘𝐞𝑘, Find expressions for 𝐞𝑖 × 𝐞𝑗 ⋅ 𝐞𝑘 and 𝐞𝑖 ⋅ 𝐞𝑗 × 𝐞𝑘. 

Demonstrate the equality of the two expressions 

𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝑘𝐞𝑘 = 𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝛼𝐞𝛼 

Taking the scalar product of the above vector with 𝐞𝑘, 

𝐞𝑖 × 𝐞𝑗 ⋅ 𝐞𝑘 = 𝑒𝑖𝑗𝛼𝐞𝛼 ⋅ 𝐞𝑘 = 𝑒𝑖𝑗𝛼𝛿𝛼𝑘 = 𝑒𝑖𝑗𝑘 

Starting with 𝐞𝑗 × 𝐞𝑘 = 𝑒𝑗𝑘𝛼𝐞𝛼 we can also take the scalar product with 𝐞𝑖 and write, 

𝐞𝑖 ⋅ 𝐞𝑗 × 𝐞𝑘 = 𝐞𝑗 × 𝐞𝑘 ⋅ 𝐞𝑖 = 𝑒𝑗𝑘𝛼𝐞𝛼 ⋅ 𝐞𝑖 = 𝑒𝑗𝑘𝛼𝛿𝛼𝑖 = 𝑒𝑗𝑘𝑖 = 𝑒𝑖𝑗𝑘 

As a double swap does not alter sign. 
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1.36 Show that Cylindrical Polar basis vectors, 𝐞𝑟(𝑟, 𝜙), 𝐞𝜙(𝑟, 𝜙) and 𝐞𝑧 constitute an 

orthonormal system. Hint: Show that they have unit magnitudes and are mutually 

orthogonal.  

‖𝐞𝑟‖𝟐 = cos2𝜙 + sin2 𝜙 = 1 

‖𝐞𝜙‖
𝟐

= sin2 𝜙 + cos2𝜙 = 1 

‖𝐞𝑧‖𝟐 = 1 

They are individually normalized with each having a norm or magnitude of 1.  Now lets take 

them in pairs: 

𝐞𝑟 ⋅ 𝐞𝜙 = − cos 𝜙 sin 𝜙 + cos 𝜙 sin 𝜙 = 0 

𝐞𝜙 ⋅ 𝐞𝑧 = −sin𝜙 × 0 + cos 𝜙 × 0 + 1 × 0 = 0 

𝐞𝑧 ⋅ 𝐞𝑟 = cos 𝜙 × 0 +  sin𝜙 × 0 + 1 × 0 = 0 

So that they are pairwise orthogonal. 

1.37 Show that Normalized Spherical Polar basis vectors,  

𝐞𝜌(𝜌, 𝜃, 𝜙) = sin 𝜃 cos 𝜙 𝐞1 + sin 𝜃 sin 𝜙 𝐞2 + cos 𝜃 𝐞3 

𝐞𝜃(𝜌, 𝜃, 𝜙) = cos 𝜃 cos 𝜙 𝐞1 + cos 𝜃 sin 𝜙 𝐞2 − sin 𝜃 𝐞3 

𝐞𝜙(𝜌, 𝜃, 𝜙) = − sin 𝜙 𝐞1 + cos 𝜙 𝐞2  

constitute an orthonormal system. Hint: Show that they have unit magnitudes and are 

mutually orthogonal.  

‖𝐞𝜌‖
𝟐

= sin2 𝜃 cos2𝜙 + sin2 𝜃 sin2 𝜙 + cos2 𝜃 

= sin2 𝜃 (cos2𝜙 + sin2 𝜙) + cos2 𝜃 = 1 

‖𝐞𝜃‖𝟐 = cos2𝜃 cos2𝜙 + cos2𝜃 sin2 𝜙 + sin2 𝜃 

= cos2𝜃 (cos2𝜙 + sin2 𝜙) + sin2 𝜃 = 1 

‖𝐞𝜙‖
𝟐

= sin2 𝜙 + cos2𝜙 = 1 

They are individually normalized with each having a norm or magnitude of 1.  Now lets take 

them in pairs: 

𝐞𝝆 ⋅ 𝐞𝜽 = cos2 𝜙 (sin 𝜃 cos 𝜃) + sin2 𝜙 (sin 𝜃 cos 𝜃) − sin 𝜃 cos 𝜃 = 0 

𝐞𝜙 ⋅ 𝐞𝜌 = −sin 𝜃 sin 𝜙 cos 𝜙 + sin 𝜃 sin 𝜙 cos 𝜙 + 0 = 0 
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𝐞𝜃 ⋅ 𝐞𝜙 = −sin 𝜙 cos θ cos 𝜙 +  sin 𝜙 cos θ cos 𝜙 + 0 = 0 

So that they are pairwise orthogonal. 

1.38 Begin with the Cartesian position vector, 𝐑 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤,  use the transformation 

equations to find the Spherical position vector, 𝐑 = 𝜌𝐞𝜌(𝜃, 𝜙),where 𝐞𝜌 ≡

sin 𝜃 cos 𝜙 𝐢 + sin 𝜃 sin 𝜙 𝐣 + cos 𝜃 𝐤. (b) By partial differentiation with respect to the 

coordinate variables, produce the set {
𝜕𝐑

𝜕𝜌
,

𝜕𝐑

𝜕𝜃
,

𝜕𝐑

𝜕𝜙
}.and show that it is a  set of 

orthogonal vectors. 

𝜕𝐑

𝜕𝜌
= 𝐞𝜌, 

𝜕𝐑

𝜕𝜃
= 𝜌

𝜕𝐞𝜌

𝜕𝜃
= 𝜌

𝜕

𝜕𝜃
(sin 𝜃 cos 𝜙 𝐢 + sin 𝜃 sin 𝜙 𝐣 + cos 𝜃 𝐤) 

= 𝜌(cos 𝜃 cos 𝜙 𝐢 + cos 𝜃 sin 𝜙 𝐣 − sin 𝜃 𝐤) ≡ 𝜌𝐞𝜃. 

𝜕𝐑

𝜕𝜙
=  𝜌

𝜕𝐞𝜌

𝜕𝜙
=  𝜌

𝜕

𝜕𝜙
(sin 𝜃 cos 𝜙 𝐢 + sin 𝜃 sin 𝜙 𝐣 + cos 𝜃 𝐤) 

=  𝜌(− sin 𝜃 sin 𝜙 𝐢 + sin 𝜃 cos 𝜙 𝐣) 

≡ 𝜌 sin 𝜃 𝐞𝜙. 

From these, we can see that {
𝜕𝐑

𝜕𝜌
,

𝜕𝐑

𝜕𝜃
,

𝜕𝐑

𝜕𝜙
} = {𝐞𝜌, 𝜌𝐞𝜃, 𝜌 sin 𝜃 𝐞𝜙}. Obviously, the magnitudes are 

{1, 𝜌, 𝜌 sin 𝜃} respectively. Consequently, this basis set can be normalized to {𝐞𝜌, 𝐞𝜃, 𝐞𝜙} 

1.39 The dot from the left. Given that 𝐮, 𝐯, 𝐰 ∈ 𝔼, Show that 𝐮 ⋅ (𝐯 ⊗ 𝐰) = (𝐰 ⊗ 𝐯)𝐮 

The result on both sides is a vector. Testing a scalar product with 𝐲 ∈ 𝔼: observe that  

𝐮 ⋅ (𝐯 ⊗ 𝐰)𝐲 =  (𝐮 ⋅ 𝐯)(𝐰 ⋅ 𝐲) 

and,  

[(𝐰 ⊗ 𝐯)𝐮] ⋅ 𝐲 = (𝐰 ⋅ 𝐲)(𝐮 ⋅ 𝐯) 

The two are equal on account of the commutativity of the dot products. 

This is a general result for tensors. A dot from the left gives the same result at contracting with 

the tensor transpose from the right as seen here. 
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1.40 Given that 𝐮, 𝐯, 𝐰 ∈ 𝔼, Show that 𝐮 × (𝐯 ⊗ 𝐰) = (𝐮 × 𝐯) ⊗ 𝐰 

First observe that the result will be a tensor. Operating it on 𝐲 ∈ 𝔼, we have, 

[𝐮 × (𝐯 ⊗ 𝐰)] 𝐲 = (𝐰 ⋅ 𝐲)(𝐮 × 𝐯) 

And on the right, we have  

[(𝐮 × 𝐯) ⊗ 𝐰]𝐲 = (𝐰 ⋅ 𝐲)(𝐮 × 𝐯) 

As was required. 

1.41 Given the rotation tensor,  

𝐐 = [𝐞1, 𝐞2, 𝐞3] [
0.84339393538 0.389796451909 0.36979101642
−0.2752066485 0.90450849718 −0.325769364916

−0.461462859127 0.172982960416 0.87013155617
]

⊗ [

𝐞1

𝐞2

𝐞3

] 

Find the axis of rotation and the angle of rotation. 

Hint: The cross product of any vector with the axis of rotation will be on the normal 

plane of rotation. The angle of rotation is between the rotated vectors on this plane. 
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Operate this rotation on 

any vector along the axis of 

rotation, there will be no 

change in the vector. For all 

such vectors, a rotation has 

the same effect as an 

Identity tensor. Let 𝐯𝑎 =

𝛼𝐞1 + 𝛽𝐞2 + 𝛾𝐞3 be the 

unit vector along the axis of 

rotation. Since 𝐯𝑎 as a unit 

vector; its magnitude, 

‖𝐯𝑎‖ = √𝛼2 + 𝛽2 + 𝛾2

= 1 

We select two vectors, 𝐮1 = 𝐞1 and 𝐮2 = 𝐞1 + 𝐞2 − 2𝐞3 

𝐰1 = 𝐯𝑎 × 𝐮1 and 𝐰2 = 𝐯𝑎 × 𝐮2 

Both lie on the normal plane to the axis of rotation. We now rotate these two vectors and obtain,  

𝐲1 = 𝐐𝐰1, 𝐲2 = 𝐐𝐰2, and 

 𝐳1 = 𝐐T
𝐰1 

all of which lie on the normal plane to the axis of rotation. Clearly, each of these is inclined at right 

angles to 𝐯𝑎. We use the condition on two of these with the constraint on the unit vector to find 

the unknown 𝛼, 𝛽 and 𝛾 in the Solve[] function call shown.  

There are many solutions – most involving complex numbers. We concentrate on the real 

solutions. The two non-trivial solutions give the same unit vector (same direction, opposite sense. 

We are now able to test the rotation angle of this tensor on each of the two vectors transformed 

to its plane: The angles between (𝐐𝐰1, 𝐰1), as well as the angle between (𝐐𝐰𝟐, 𝐰2) are both 

equal to 𝜋/5 the angle of rotation of the tensor about 𝐯𝑎. 

Note: The converse of this problem, to find a tensor that performs a given rotation about a given 

axis, is solved in Q2.74 after a deeper treatment of rotation tensors. 
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1.42 Begin with the Cartesian position vector, 𝐑 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤,  use the transformation 

equations, 𝑥 = 𝜉𝜂, 𝑦 =
1

2
(𝜉2 − 𝜂2) and 𝑧 = 𝑧 to find the parabolic cylindrical position 

vector, 𝐑 = 𝜉𝜂𝐞1 +
1

2
(𝜉2 − 𝜂2)𝐞2 + 𝑧𝐞3, (b) By differentiating partially with respect to 

the coordinate variables obtain the set {
𝜕𝐑

𝜕𝜉
,

𝜕𝐑

𝜕𝜂
,

𝜕𝐑

𝜕𝑧
}.and show that it is a set of 

orthogonal vectors, right-handed but not orthonormal. 

 The basis vectors are packed in columns of 

the gradient. We did not need to transpose 

here because in this case, there is symmetry.  

𝜕𝐑

𝜕𝜉
= 𝐞𝜉 = 𝜂𝐞1 + 𝜉𝐞2 

𝜕𝐑

𝜕𝜂
= 𝐞𝜂 = 𝜉𝐞1 − 𝜂𝐞2 

𝜕𝐑

𝜕𝑧
= 𝐞z = 𝐞3 

The norms of the vectors are: 

‖𝐞𝜉‖ = ‖𝐞𝜂‖ = √𝜉2 + 𝜂2, ‖𝐞𝑧‖ = 1 

The dot products yield pairwise zeros 

showing orthogonality. The magnitudes 

display no normality so the basis vectors are 

NOT orthonormal. 

If these vectors are taken in the order, 𝐞𝜂, 𝐞𝜉, 

and 𝐞𝑧, then the system is right-handed as,  

𝐞𝜂 × 𝐞𝜉 = 𝐞𝑧;  𝐞𝜉 × 𝐞𝑧 = 𝐞𝜂;  𝐞𝑧 × 𝐞𝜂 = 𝐞𝜉 . 

1.43 Create an orthonormal system out of the Parabolic Cylindrical coordinate bases and 

show the coordinate surfaces. 

 Dividing the right-handed orthonormal set with the respective magnitudes, we have the 

orthonormal set:  
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{
𝜉𝐞1 − 𝜂𝐞2

√𝜉2 + 𝜂2
,
𝜉𝐞1 + 𝜂𝐞2

√𝜉2 + 𝜂2
 ,1} 

1.44 Begin with the Cartesian position vector, 𝐑 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤,  use the transformation 

equations, 𝑥 = cosh 𝜉 cos 𝜂 , 𝑦 = sinh 𝜉 sin 𝜂 and 𝑧 = 𝑧 to find the elliptic cylindrical 

position vector, 𝐑 = cosh 𝜉 cos 𝜂 𝐞1 + sinh 𝜉 sin 𝜂 𝐞2 + 𝑧𝐞3, (b) By a differentiating 

partially with respect to the coordinate variables obtain the set {
𝜕𝐑

𝜕𝜉
,

𝜕𝐑

𝜕𝜂
,

𝜕𝐑

𝜕𝑧
}.and show 

that it is a set of orthogonal vectors, right-handed but not orthonormal. 

𝐑 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 

= cosh 𝜉 cos 𝜂 𝐞1 + sinh 𝜉 sin 𝜂 𝐞2

+ 𝑧𝐞3 

after substituting for 𝑥, 𝑦 and 𝑧. 

Differentiating with respect to each 

coordinate variable is more easily 

accomplished by simply taking the 

gradient with respect to these variables. 

Mathematica populates the matrix with 

the basis vectors as rows of the 

transposed gradient in Out[11]. 

𝜕𝐑

𝜕𝜉
= 𝐞𝜉 = (sinh 𝜉 cos 𝜂)𝐞1

+ cosh 𝜉 sin 𝜂 𝐞2 

𝜕𝐑

𝜕𝜂
= 𝐞𝜂 = − cosh 𝜉 sin 𝜂 𝐞1

+ sinh 𝜉 cos 𝜂 𝐞2 

𝜕𝐑

𝜕𝑧
= 𝐞z 

 

The norms of the basis vectors are: 
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‖𝐞𝜉‖ = √(cosh 𝜉 sin 𝜂)2 + (sinh 𝜉 cos 𝜂)2, 

‖𝐞𝜂‖ = √(cosh 𝜉 sin 𝜂)2 + (sinh 𝜉 cos 𝜂)2 

‖𝐞𝑧‖ = 1 

The dot products yield pairwise zeros showing orthogonality. The magnitudes display no 

normality so the basis vectors are NOT orthonormal. If these vectors are taken in the order, 𝐞𝜉, 

𝐞𝜂, and 𝐞𝑧, then the system is right-handed as,  

𝐞𝜉 × 𝐞𝜂 = 𝐞𝑧;  𝐞𝜂 × 𝐞𝑧 = 𝐞𝜉;  𝐞𝑧 × 𝐞𝜉 = 𝐞𝜂 . 

1.45 Create an orthonormal system out of the Elliptic Cylindrical coordinate Bases and show 

the coordinate surfaces. 

Dividing the right-handed orthogonal base vectors set 

with the respective magnitudes, we have the 

orthonormal set: 

 
(sinh 𝜉 cos 𝜂)𝐞1−cosh 𝜉 sin 𝜂𝐞2

√(cosh 𝜉 sin 𝜂)2+(sinh 𝜉 cos 𝜂)2
, 

cosh 𝜉 sin 𝜂𝐞1+sinh 𝜉 cos 𝜂𝐞2

√(cosh 𝜉 sin 𝜂)2+(sinh 𝜉 cos 𝜂)2
 , 𝑧 

Coordinate surfaces. From a similar code to the one in the 

text, we have the coordinate surfaces shown. 

 

1.46 Begin with the Cartesian position vector, 𝐑 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤, use the transformation 

equations, 𝑥 = 𝑎 sinh 𝜉 sin 𝜂 cos 𝜙 , 𝑦 = 𝑎 sinh 𝜉 sin 𝜂 sin 𝜙 and 𝑧 = cosh 𝜉 cos 𝜂 to (a) 

find the prolate ellipsoidal position vector,  

𝐑 = 𝑎 sinh 𝜉 sin 𝜂 cos 𝜙 𝐞1 + 𝑎 sinh 𝜉 sin 𝜂 sin 𝜙 𝐞2 + 𝑧 cosh 𝜉 cos 𝜂 𝐞3, 

(b) By differentiating partially with respect to the coordinate variables obtain the set 

{
𝜕𝐑

𝜕𝜉
,

𝜕𝐑

𝜕𝜂
,

𝜕𝐑

𝜕𝑧
}.and (c) show that the basis vectors form a set of orthogonal vectors 
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1.47 Obtain the results in Q1.38 by Mathematica code 

The basis vectors can be seen as the 

rows of the transpose of the gradient 

operation. Mutual orthogonality is 

demonstrated by taking the pairwise 

dot products and obtaining zero.  

The result for the first two vectors did 

not initially appear to be zero. A 

Simplify function sets this right as can 

be seen in the code. 
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1.48 Obtain the result in 1.12 using Mathematica 

 The alternating tensor component, 𝑒𝑖𝑗𝑘 is 

implemented as LeviCivitaTensor[]. The result here is 

the same as Q1.12 as expected. 

1.49 Given the vectors 𝐚 = 3𝐞1 + 𝐞2 − 2𝐞3 and 𝐛 = 𝐞1 − 3𝐞2 + 4𝐞3. Use Mathematica to 

find (a) the dyad 𝐚 ⊗ 𝐛, and (b) tr(𝐚 ⊗ 𝐛) 

 The functions TensorProduct[] and Tr[] perform the 

two operations directly. The result can be compared 

to Q1.34 

1.50 Use the component form in equation 23 to show that the trace of a dyad is the scalar 

product of its operands. 

 Given vectors 𝐚 = 𝑎𝑖𝐞𝑖 and 𝐛 = 𝑏𝑗𝐞𝑗, From Equation 23, we find that the dyad product, 

written in component form is, 

𝐚 ⊗ 𝐛 = 𝑎𝑖𝑏𝑗𝐞𝑖 ⊗ 𝐞𝑗 

The trace of this, 

tr(𝐚 ⊗ 𝐛) = tr(𝑎𝑖𝑏𝑗𝐞𝑖 ⊗ 𝐞𝑗) 

= 𝑎𝑖𝑏𝑗 tr(𝐞𝑖 ⊗ 𝐞𝑗) 

= 𝑎𝑖𝑏𝑗 tr(𝐞𝑖 ⋅ 𝐞𝑗) = 𝑎𝑖𝑏𝑗𝛿𝑖𝑗 

= 𝑎𝑖𝑏𝑖  

Which is the scalar product of 𝐚and 𝐛. 
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1.51 Given the vectors 𝐚 = 3𝐞1 + 𝐞2 − 2𝐞3, 𝐛 = 𝐞1 − 3𝐞2 + 4𝐞3 and 𝐜 = −𝐞1 − 4𝐞2 + 𝐞3. 

Use Mathematica to demonstrate that the dyad operation is NOT commutative by 

finding (a) (𝐚 ⊗ 𝐛)𝐜, and (b) (𝐛 ⊗ 𝐚)𝐜. 

 The two operations as the 

code shows are not the same. 

This clearly demonstrates 

that, we cannot assume 

equality 𝐛 ⊗ 𝐚 does not 

produce the same result as 

𝐚 ⊗ 𝐛 when they are both operating on the same vector. This means that, in general, 

𝐚 ⊗ 𝐛 ≠ 𝐛 ⊗ 𝐚 

1.52 Given the vectors 𝐚 = 3𝐞1 + 𝐞2 − 2𝐞3 𝑎𝑛𝑑 𝐛 = 𝐞1 − 3𝐞2 + 4𝐞3. Use Mathematica to 

find (a) 𝐚 ⊗ 𝐛 and (b) 𝐛 ⊗ 𝐚. Tell the relationship, if any, between 𝐚 ⊗ 𝐛 and 𝐛 ⊗ 𝐚 

 Looking at the results generated by 𝐛 ⊗ 𝐚 and  𝐚 ⊗ 𝐛 in the code here, it is clear that  

𝐚 ⊗ 𝐛 = (𝐛 ⊗ 𝐚)T 

Consequent upon this 

observation, we can also see 

that the diagonal elements 

are the same. It also follows 

that 

tr(𝐚 ⊗ 𝐛) = tr(𝐛 ⊗ 𝐚)T 

So that the trace operation is 

Not affected by changing the 

operand order in the tensor 

product. 
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1.53 Begin with the Cartesian position vector, 𝐑 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤, use the transformation 

equations, 𝑥 = 𝑎 cosh 𝜉 cos 𝜂 cos 𝜙 , 𝑦 = 𝑎 cosh 𝜉 cos 𝜂 sin 𝜙 and 𝑧 = cosh 𝜉 cos 𝜂 to 

(a) find the oblate ellipsoidal position vector,  

𝐑 = 𝑎 cosh 𝜉 cos 𝜂 cos 𝜙 𝐞1 + 𝑎 cosh 𝜉 cos 𝜂 sin 𝜙 𝐞2 + 𝑎 sinh 𝜉 sin 𝜂 𝐞3, 

(b) By differentiating partially with respect to the coordinate variables obtain the set 

{
𝜕𝐑

𝜕𝜉
,

𝜕𝐑

𝜕𝜂
,

𝜕𝐑

𝜕𝑧
}.and (c) show that the basis vectors form a set of orthogonal vectors 

 

 

1.54 Given the rotation tensor,  

𝐐 = [𝐞1, 𝐞2, 𝐞3] [
0.84339393538 0.389796451909 0.36979101642
−0.2752066485 0.90450849718 −0.325769364916

−0.461462859127 0.172982960416 0.87013155617
]

⊗ [

𝐞1

𝐞2

𝐞3

] 

Find the set of coordinate axes {𝛏1, 𝛏2, 𝛏3} that 𝐐 rotates {𝐞1, 𝐞2, 𝐞3} to. Demonstrate 

that 𝐐 = 𝛏𝑖 ⊗ 𝐞𝑖. 
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 For each 𝐞𝑖 the vector  

𝛏𝑖 = 𝐐𝐞𝑖 

1.55 Use Equation 31 to show that 𝑒121 = 0 

 From equation 131, we have, 

𝑒𝑖𝑗𝑘 ≡ |

𝛿1𝑖 𝛿1𝑗 𝛿1𝑘

𝛿2𝑖 𝛿2𝑗 𝛿2𝑘

𝛿3𝑖 𝛿3𝑗 𝛿3𝑘

| 

so that, substituting and swapping columns 1 and 3,  

𝑒121 = |

𝛿11 𝛿12 𝛿11

𝛿21 𝛿22 𝛿21

𝛿31 𝛿32 𝛿31

| = − |

𝛿11 𝛿12 𝛿11

𝛿21 𝛿22 𝛿21

𝛿31 𝛿32 𝛿31

| 

Since a determinant changes sign when two columns are swapped. This fact is already 

obvious from the fact that two columns are identical.  

This is the same argument whenever any two indices in 𝑒𝑖𝑗𝑘 coincide. 

1.56 Find the parametric equation of a straight line in 3D. Hence draw the intersecting 

surfaces for the points 𝐀(1,2,1), 𝐁(1,2,2) as well as the position vector 𝐎𝐁 
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 Point 𝐀(1,2,1) is the intersection of the 

planes, 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 1; Point 

𝐁(1,2,2) lies at the intersection of the 

planes, 𝑥1 = 1, 𝑥2 = 2 and 𝑥3 = 2. 

Position vector 𝐎𝐁 joins 𝐁 to the origin.  

This line has the equation, 

𝑥1 − 0

1 − 0
=

𝑥2 − 0

2 − 0
=

𝑥3 − 0

2 − 0
 

Or, 

𝑥1 =
𝑥2

2
=

𝑥3

2
= 𝑡  

Where 𝑡 = 0 is the origin, and 𝑡 = 1 is 

point 𝐁. At any other point on the line,  

𝑥1 = 𝑡 , 𝑥2 = 2𝑡, and 𝑥3 = 2𝑡. This line is drawn by the command, 

 

because 0 ≤ 𝑡 ≤ 1. This line and the four surfaces can be plotted as in the attached 

code: 
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1.57 𝑥1 =eformation equations for Spherical Polar Coordinates arGiven that the trans

Find the spherical coordinates of the  𝑥3 = cos 𝜃and  𝑥2 = 𝜌 sin 𝜃 sin 𝜙 𝜌 sin 𝜃 cos 𝜙

Cartesian points 𝐀(1,2,1), 𝐁(1,2,2) 

 We observe that the two points are both in the first octant with the Cartesian coordinate 

points all positive. We solve the sets of equations, 

𝜌 sin 𝜃 cos 𝜙 = 1, 𝜌 sin 𝜃 sin 𝜙 = 2, 𝜌 cos 𝜃 = 1 

and  

𝜌 sin 𝜃 cos 𝜙 = 1, 𝜌 sin 𝜃 sin 𝜙 = 2, 𝜌 cos 𝜃 = 2 

This Mathematica code, 

Gives, for points 𝐀(1,2,1), 𝐁(1,2,2) respectively {𝜌 → 2.449489742783178, 𝜙 →

1.1071487177940904, 𝜃 → 1.1502619915109316}, {𝜌 → 3. , 𝜙 →

1.1071487177940904, 𝜃 → 0.8410686705679302}. These are the solutions for the 

first octant.  

1.58 𝑥1 =formation equations for Spherical Polar Coordinates areGiven that the trans

as well as  𝐀𝐁and  𝐎𝐀, 𝐎𝐁vectors Plot  𝑥3 = cos 𝜃and  𝑥2 = 𝜌 sin 𝜃 sin 𝜙 𝜌 sin 𝜃 cos 𝜙

the Spherical coordinate surfaces meeting the Cartesian points 𝐀(1,2,1), 𝐁(1,2,2). 

Explain how many parameters you need to use for a line and how many for a plane. Use 

the spherical transforms for 𝐀 and 𝐁 obtained in Q1.57. 
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 Lines 𝐎𝐀, 𝐎𝐁 and 𝐀𝐁 are shown in green, red and orange in the computed diagram 

shown. Observe that the two position vectors 𝐎𝐀 and 𝐎𝐁 lie in the intersections of 

cones 𝜃 = 1.1502, 0.841 and the plane 𝜙 = 1.1071. 𝐀𝐁 is the vertical line 

{𝑥 = 1, 𝑦 = 2, 𝑧 = 𝑡; 1 ≤ 𝑡 ≤ 2} 

𝐀 lies on the sphere radius 2.449, while 𝐁 lies in the sphere radius 3.0. Lines 𝐎𝐀, 𝐎𝐁 

and 𝐀𝐁 are all on the plane 𝜙 = 1.1071 as can be seen by the constancy of that 

coordinate on all three lines. The origin lies on all 𝜙-planes.  

Note that parametric plots of surfaces require two parameters while that of a line – 

linear or curved, is governed by a single parameter. Again, confirming that a line is one 

dimensional while a surface is two dimensional.  
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1.59 Plot vectors 𝐎𝐀, 𝐎𝐁 and 𝐀𝐁 as well as the coordinate surfaces meeting at the Cartesian 

points 𝐀(1,2,1), 𝐁(1,2,2). Parametrize lines by linear equations. . 

 The attached code shows the parametrized lines using the Cartesian equation for lines. 

This and the rest of the implementation is as shown in the attached code: 
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General Surfaces. The following code will be called to generate coordinate surfaces for different 

curvilinear systems in the questions that follow.  
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1.60 Generate the coordinate surfaces for the Cylindrical Polar System 

 eqns={r Cos[ϕ],r Sin[ϕ],z}; 

syms={r,ϕ,z}; 

rule={r->2.5,ϕ->π,z->2.5//N}; 

edge={{r,0,5},{ϕ,0,2π},{z,0,5}}; 

plotSurfaces[eqns,rule,edge] 
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1.61 Generate the coordinate surfaces for the Spherical Polar System 

seqns={ρ Sin[θ]Cos[ϕ],ρ Sin[θ]Sin[ϕ],ρ Cos[θ]}; 

ssyms={ρ,θ,ϕ}; 

srule={ρ->2.5,θ->π/4,ϕ->π}; 

sedge={{ρ,0,5},{θ,0,π},{ϕ,0,2π}}; 

plotSurfaces[seqns,srule,sedge] 

1.62 Generate the coordinate surfaces for the Parabolic Cylindrical System 

pceqns={ξ η,1/2 (ξ2-η2),z}; 

pcsyms={ξ,η,z}; 

pcrule={{ξ->3π/4},{η->π},{z->0}}; 

pcedge={{ξ,-π,π},{η,0,2π},{z,-5,5}}; 

plotSurfaces[pceqns,pcrule,pcedge] 

1.63 Generate the coordinate surfaces for the Cylindrical Polar System 

peqns={ξ η Cos[ϕ],ξ η Sin[ϕ],1/2 (ξ2-η2)}; 

psyms={ξ,η,ϕ}; 

prule={ξ->2.5,η->2.5,ϕ->π}; 

pedge={{ξ,0,5},{η,0,5},{ϕ,0,2π}}; 

plotSurfaces[peqns,prule,pedge] 
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1.64 Generate the coordinate surfaces for the Elliptic Cylindrical System 

eceqns={Cosh[ξ]Cos[ η],Sinh[ξ]Sin[ η],z}; 

ecsyms={ξ,η,z}; 

ecrule={ξ->0.3,η->π/6,z->1.25}; 

ecedge={{ξ,0,1.1},{η,0,2π},{z,0,2.5}}; 

plotSurfaces[eceqns,ecrule,ecedge] 

1.65 Generate the coordinate surfaces for the Elliptic System 

eeqns={Cos[ϕ] Sqrt[(1-η2) (ξ2-1)],Sin[ϕ] Sqrt[(1-η2) (ξ2-1)],ξ η}; 

esyms={ξ,η,ϕ}; 

erule={ξ->3,η->-0.5,ϕ->π/8}; 

eedge={{ξ,1,4},{η,-1,1},{ϕ,0,2π}}; 

plotSurfaces[eeqns,erule,eedge] 

1.66 Generate the coordinate surfaces for the BiPolar System 

beqns={a Sinh[v]/(Cosh[v]-Cos[u]),a Sin[u]/(Cosh[v]-

Cos[u]),z}; 

bsyms={u,v,z}; 

brule={{u->π/8,a->2},{v->π/12,a->2},{z->0,a->2}}; 

bedge={{u,0,2π},{v,-π,π},{z,-5,5}}; 

plotSurfaces[beqns,brule,bedge] 
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1.67 Generate the coordinate surfaces for the Conical System 

beqns={a Sinh[v]/(Cosh[v]-Cos[u]),a Sin[u]/(Cosh[v]-Cos[u]),z}; 

bsyms={u,v,z}; 

brule={{u->π/8,a->2},{v->π/12,a->2},{z->0,a->2}}; 

bedge={{u,0,2π},{v,-π,π},{z,-5,5}}; 

plotSurfaces[beqns,brule,bedge] 

1.68 Generate the coordinate surfaces for the Prolate Spheroidal System 

pseqns={a Sinh[ξ]Sin[η]Cos[ϕ],a Sinh[ξ]Sin[η]Sin[ϕ],a Cosh[ξ]Cos[η]}; 

pssyms={ξ,η,ϕ}; 

psrule={{ξ->1.5,a->.2},{η->π/4,a->.2},{ϕ->π/2,a->.2}}; 

psedge={{ξ,0,2},{η,0,π},{ϕ,0,2π}}; 

plotSurfaces[pseqns,psrule,psedge] 

1.69 Generate the coordinate surfaces for the Oblate Spheroidal System 

eqns={r Cos[ϕ],r Sin[ϕ],z}; 

syms={r,ϕ,z}; 

rule={r->2.5,ϕ->π,z->2.5//N}; 

edge={{r,0,5},{ϕ,0,2π},{z,0,5}}; 

plotSurfaces[eqns,rule,edge] 
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1.70 Parametrize and plot the line joining points 𝐀(1,2, −5) to 𝐁(3,3,0) 

The vector  

𝐯𝐀𝐁 = (3 − 1)𝐞1 + (3 − 2)𝐞2 + (0 − (−5))𝐞3 

= 2𝐞1 + 𝐞2 + 5𝐞3 

Consider a Cartesian point (𝑥, 𝑦, 𝑧) on the line; position 

vector, of this point is 𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3. For 𝐫 

to be on this line, we must have 

𝐫 = 𝐫𝐀 + 𝛼𝐯𝐀𝐁 

for scalar 𝛼  since 𝐯𝐀𝐁 = ‖𝐯𝐀𝐁‖𝐮 where 𝐮 is the unit 

vector along 𝐀𝐁. 

𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3

= 𝐞1 + 2𝐞2 − 5𝐞3

+ 𝛼(2𝐞1 + 𝐞2 + 5𝐞3) 

From which we have, 

𝛼 =
𝑥1 − 1

2
= 𝑥2 − 2 =

𝑥3 + 5

5
 

The equations, 𝑥1 = 2𝛼 + 1, 𝑥2 = 𝛼 + 2 and 𝑥3 = 5𝛼 − 5 parametrize the line. A 

ParametricPlot3D[ ] function call is all that is needed to give effect to this. 

1.71 For an upward-facing cone with half-angle 𝜋/6, parametrize and plot using (a) Cartesian 

based equations in the range, 0 ≤ 𝑥1 ≤ 3, 0 ≤ 𝑥2 ≤ 3 (b) Cylindrical Polar and (c) Spherical 

Polar Coordinates. (d) Explain any discrepancies. 

(a) For an inclined half angle 𝛼 the 𝑧 component of any point on the cone can be obtained from, 

𝑧2 = (cot2 𝛼)(𝑥2 + 𝑦2). We can parametrize by the variables 𝑥 and 𝑦 such that 

√(cot2 𝛼)(𝑥2 + 𝑦2) replaces 𝑧. 
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(b) In Cylindrical Polar coordinates, 𝑥1 = 

(c) 𝑟 cos 𝜙 , 𝑥2 = 𝑟 sin 𝜙, and 𝑥3 = 𝑟 cot 𝛼 for an 

included half-angle 𝛼. The ParametricPlot3D 

function call in the identifier cone3 shown above 

implements these parameters 

(d) In spherical coordinates,  

𝑥1 = 𝜌 sin 𝜃 cos 𝜙 , 𝑥2 = 𝜌 sin 𝜃 sin 𝜙, and 𝑥3 =

𝜌 cos 𝜃. The 𝜃=const coordinate surface is a cone 

including a half-angle 𝜃.  Parametrization is 

therefore straightforward. This cone3 is exactly the 

same as cone2 for cylindrical polar. Hence a figure 

is not included for it.  
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(e) . The last figure in this answer is the combination of the two different cones. Observe that 

the first cone is clipped by the rectilinear coordinate planes of the Cartesian system. It is 

possible to correct this by adding more code. But as the expected cone results from the other 

two coordinate parametrizations, they are more suited to the construction and require less 

code lines to obtain the expected result. For completeness, here is the comparison: 

The top of the Cartesian Parametrized cone can be clipped with plot option,  

1.72 Find three common points on the planes, 2𝑥1 + 𝑥2 + 3𝑥3 = 10, 𝑎𝑛𝑑 𝑥1 − 𝑥2 + 𝑥3 = 0. 

 

 

Adding the two equations, we have, 

3𝑥1 + 4𝑥3 = 10 

Any point on this line, satisfying the equation of both planes, must lie on both. Let 𝑥3 = 0, 

𝑥1 =
10

3
. The point (

10

3
,

10

3
, 0). Let 𝑥3 = 1, 𝑥1 = 2. Here 𝑥2 = 𝑥1 + 𝑥3 = 3 so that (2,3,1) 

also lies on the intersecting line. By testing 𝑥1 = 0, we find that, (0,
5

2
,

5

2
) also lies at the 

intersection. 

1.73 Given that the point (2,3,1) is a common point on the planes, 2𝑥1 + 𝑥2 + 3𝑥3 =

10, 𝑎𝑛𝑑 𝑥1 − 𝑥2 + 𝑥3 = 0, (a) Find the line of intersection of the two planes, (b) 
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parametrize and plot the intersection line and (c) parametrize and plot the two planes to 

demonstrate the answer to (a) above. 

Clearly, the vector normals to the two planes are 2𝐞1 + 𝐞2 + 3𝐞3 and 𝐞1 − 𝐞2 + 𝐞3 respectively. The 

intersecting line is the line parallel to the cross product of these and passes through the common 

point (2,1,3) that lies on both planes. The code below finds this vector and constructs the parametric 

equation of the line using it. Parametrizing each plane is done here using the values of 𝑥1 and 𝑥2 and 

evaluating 𝑥3 for each plane:
1

3
(10 − 𝑥2 − 2𝑥1), 𝑥2 − 𝑥1 respectively. Each equation is therefore 

parametrized by the values of 𝑥1 and 𝑥2. 

1.74 Show that the planes 2𝑥1 + 𝑥2 + 3𝑥3 = 10, 𝑥1 − 𝑥2 + 𝑥3 = 0 𝑎𝑛𝑑 𝑥1 + 𝑥2 + 𝑥3 = 6 meet 

at the point (2,3,1). Demonstrate this by plotting the planes and the intersecting point. 

 To find the point of intersection of the three 

planes, we solve the three linear equations, 

2𝑥1 + 𝑥2 + 3𝑥3 = 10, 𝑥1 − 𝑥2 + 𝑥3 =

0 𝑎𝑛𝑑 𝑥1 + 𝑥2 + 𝑥3 = 6. The point of 

intersection is indeed the point (2,3,1). In the 

code below, the parametric plotting of the three 

planes is quite straightforward. To plot the point, 

we use the same equation as if we were plotting 

a line. A dummy range is included to avoid error 

warning. The red dot is the plot of point (2,3,1)-

the intersection of the three planes. 
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General Curvilinear Systems 

The Venerable Cartesian coordinate system has been our friend since high school. Its simplicity 

and accessibility at such an elementary level of our education rely on some properties that endow 

it with advantages over every other system of coordinates in use. Some of these are: 

1. Cartesian coordinate surfaces are triplets of planes intersecting at the coordinate point. 

Moving from point to point, these triplets of planes remain parallel to the triplets planes 

at any other point: They therefore have the same normal vectors respectively. 
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2. As a consequence of #1 above, the coordinate curves, also meeting at the coordinate 

points, are straight lines that intersect orthogonally with one another. 

3. When the base vectors are chosen, as they usually are, to be of unit magnitude, they 

remain unchanged from point to point. In Cartesian coordinates, the basis vectors, 𝐞1, 𝐞2 

and 𝐞3 are orthonormal and constant. 

What is a Coordinate System? 

If at every point in the Euclidean point space, we define three continuously differentiable 

functions, 𝜉1(𝑥1, 𝑥2, 𝑥3), 𝜉2(𝑥1, 𝑥2, 𝑥3), 𝜉3(𝑥1, 𝑥2, 𝑥3), we can say that 𝜉𝑖 , 𝑖 = 1, … ,3 as a set, 

constitutes a coordinate system. For spherical polar coordinates, for example, the {𝜉1, 𝜉2, 𝜉3} 

function set are {𝜌, 𝜙, 𝜃} where  

 

𝜉1 = 𝜌(𝑥1, 𝑥2, 𝑥3) = √(𝑥1)2 + (𝑥2)2 + (𝑥3)2 

𝜉2 = 𝜙(𝑥1, 𝑥2, 𝑥3) = tan−1
𝑥2

𝑥1
 

𝜉3 = 𝜃(𝑥1, 𝑥2, 𝑥3) = tan−1
√(𝑥1)2 + (𝑥2)2

𝑥3
 

(98) 

Of course, the origin of coordinates is excluded here as 𝜉2 and 𝜉3 are undefined at that point. 

We can obtain similar functions for the other coordinate systems we have defined. Using 

superscripts for the coordinate variables, we may write, 

 𝜉𝑖(𝑥1, 𝑥2, 𝑥3), 𝑖 = 1, … ,3 (99) 

are the coordinate functions, the values at each point, the coordinate variables, and while 

equations, 𝜉𝑖(𝑥1, 𝑥2, 𝑥3) = 𝑐𝑜𝑛𝑠𝑡,  𝑖 = 1, … ,3 give us the coordinate surfaces which are spheres 

for 𝜌(𝑥1, 𝑥2, 𝑥3) = 𝑐𝑜𝑛𝑠𝑡, planes through the origin for 𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑐𝑜𝑛𝑠𝑡 and conical 

surfaces with vertical axes (𝑧 − 𝑎𝑥𝑖𝑠) and subtending half angles 𝜃 for 𝜃(𝑥1, 𝑥2, 𝑥3) = 𝑐𝑜𝑛𝑠𝑡. The 

intersections of pairs of planes give us the coordinate curves. The name, Curvilinear is a 

portmanteau from “curve-line” indicating that what used to be lines for Cartesian are now 

replaced by curves in these kinds of systems. Unlike the Cartesian systems, we now have, 

1. curved surfaces for the coordinate surfaces. The curved surfaces are also in triplets. The 

normal on each surface is firstly a variable even on a particular sheet. Is also varies from 

sheet to sheet. The normal on each surface is a 3-D spatial field. 
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2. In the spherical coordinates example, that we have chosen, the surfaces as well as the 

coordinate curves meet at right angles. In general, curvilinear coordinates cannot be 

assumed to possess this orthogonal curvilinear quality. These base vectors can normalized 

even so, they still vary in direction from point to point. 

3. As we shall see, the basis vectors, for general orthogonal systems, cannot be guaranteed 

to be unit vectors.  

In a curvilinear coordinate system, we deal with curved coordinate surfaces instead of coordinate 

planes, curved coordinate lines and basis vectors that are not orthogonal, not normalized and 

not constant. It is no wonder that our interactions with such systems have been rather small until 

this level of education. Furthermore, it clear why we would never use such a system unless there 

are significant advantages to be gained by so doing. It turns out that there are problems that are 

unnecessarily complicated in their presentation unless we change to some curvilinear system. 

One example we already saw was the cone problem of Q1.74. The edge of the cone became 

jagged when we used Cartesian coordinates and we had to programmatically clip it off to make 

the parametric drawing there look like a cone! In many other cases, the difficulties become much 

more significant. When we look at the problems of bending of circular rods and beams, 

formulations in Cartesian coordinates are just not the way to go! 

The rest of this chapter details the ingenuous ways by which, most of the results and ease we 

derive from working with simple orthonormal Cartesian systems accrue in such coordinate 

systems.  

Base Vectors 

Recall that to form a basis for any Euclidean space, you need three linearly independent vectors. 

In problems Q1.38, 1.42, 1.44, 1.46 and 1.47, we were able to generate basis vectors for different 

curvilinear systems by simply differentiating the position vector, 𝐫. We generalize this procedure 

and find the respective basis vectors. We will also show that these vectors are tangents to the 

coordinate curves in any system curvilinear or not.  

Consider neighboring points 𝐏(𝜉1, 𝜉2, 𝜉3 ) and 𝐐(𝜉1 + 𝛿𝜉1, 𝜉2, 𝜉3 ) along 𝜉1 on a coordinate 

surface describing a curvilinear system as shown in figure 20. Let point 𝐎 be the origin so that 

𝐫 = 𝐎𝐏, and 𝐫 + 𝛿𝐫 = 𝐎𝐐 so that 𝛿𝐫 = 𝐏𝐐. 



117 
 

Consider the quotient, 

𝐏𝐐

‖𝐏𝐐‖
≈

𝛿𝐫

𝛿𝜉1
 

which, in the limit,  

 

𝐠1(𝜉1, 𝜉2, 𝜉3) ≡ lim
𝛿𝜉1→0

𝐏𝐐

‖𝐏𝐐‖
 

= lim
𝛿𝜉1→0

𝛿𝐫

𝛿𝜉1
 

=
𝜕𝐫

𝜕𝜉1
 

(100) 

 

is clearly the tangent vector to the coordinate curve 𝜉1 at the point 𝐏. We can similarly form the 

other basis vectors and obtain, 

 

𝐠2(𝜉1, 𝜉2, 𝜉3) ≡
𝜕𝐫

𝜕𝜉2
 

𝐠3(𝜉1, 𝜉2, 𝜉3) ≡
𝜕𝐫

𝜕𝜉3
 

(101) 

The basis vectors tangent to the remaining coordinate curves. 

We do not yet specify the nature of the function, 𝐫(𝜉1, 𝜉2, 𝜉3). We only know that they are, in 

general, nonlinear. As we noted earlier, we are not able to assume the Cartesian relationship and 

write, 

 𝐫(𝜉1, 𝜉2, 𝜉3) ≠ 𝜉1𝐠1 + 𝜉2𝐠2 + 𝜉3𝐠3 = 𝜉𝑖𝐠𝑖 (102) 

Figure 21. Curvilinear Basis 
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This linear expression for the position vector in terms of the coordinate functions only occurs in 

Cartesian systems. The position vector is only known to be a function of the coordinate variables. 

Using multivariate calculus, we can write the differential for the nonlinear function, 𝐫(𝜉1, 𝜉2, 𝜉3): 

 

𝑑𝐫(𝜉1, 𝜉2, 𝜉3) =
𝜕𝐫

𝜕𝜉1
𝑑𝜉1 +

𝜕𝐫

𝜕𝜉2
𝑑𝜉2 +

𝜕𝐫

𝜕𝜉3
𝑑𝜉3 

= 𝐠1𝑑𝜉1 + 𝐠2𝑑𝜉2 + 𝐠3𝑑𝜉3 

= 𝐠𝑖𝑑𝜉𝑖 . 

(103) 

𝐠𝑖, 𝑖 = 1, … ,3 vectors from the choice of 𝜉𝑖 , 𝑖 = 1, … ,3 as continuously differentiable functions,  

𝜉𝑖 are necessarily non-colinear and non-coplanar, so they form a proper basis for the curvilinear 

system.  

Transformation Properties of 𝝃𝒊and 𝐠𝒊 

Imagine we selected another set of functions, {𝜂1, 𝜂2, 𝜂3}. This could be a different 

transformation, say to oblate spheroidal coordinates. Since we have the six functions, 

𝜉𝑖(𝑥1, 𝑥2, 𝑥3), 𝑖 = 1, … ,3 ,and  𝜂𝑗(𝑥1, 𝑥2, 𝑥3), 𝑗 = 1, … ,3, it should be possible to obtain either the 

one set of differentials if the other set is given; or other set of tangential basis vectors if the one 

is given. In order to do this, we need the transformation equations from one set to another.  Let 

us begin with the coordinate differentials: 

We first express one set of variables in terms of the other set. We can use the functional forms, 

which we assume to be invertible to achieve this, 𝜉𝑖 = 𝜉𝑖(𝜂1, 𝜂2, 𝜂3). From multivariate calculus, 

𝑑𝜉1 =
𝜕𝜉1

𝜕𝜂1
𝑑𝜂1 +

𝜕𝜉1

𝜕𝜂2
𝑑𝜂2 +

𝜕𝜉1

𝜕𝜂3
𝑑𝜂3 

𝑑𝜉2 =
𝜕𝜉2

𝜕𝜂1
𝑑𝜂1 +

𝜕𝜉2

𝜕𝜂2
𝑑𝜂2 +

𝜕𝜉2

𝜕𝜂3
𝑑𝜂3 

𝑑𝜉3 =
𝜕𝜉3

𝜕𝜂1
𝑑𝜂1 +

𝜕𝜉3

𝜕𝜂2
𝑑𝜂2 +

𝜕𝜉3

𝜕𝜂3
𝑑𝜂3 

Or, more compactly,  

 𝑑𝜉𝑖 =
𝜕𝜉𝑖

𝜕𝜂𝑗
𝑑𝜂𝑗  (104) 

Inverting the relationships, we have, 𝜂𝑖 = 𝜂𝑖(𝜉1, 𝜉2, 𝜉3 ), taking the differential as before, we can 

find that, 
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 𝑑𝜂𝑗 =
𝜕𝜂𝑗

𝜕𝜉𝑘
𝑑𝜉𝑘 (105) 

 

Now, we look at the basis vectors. Recall from equation (103) that, 𝑑𝐫(𝜉1, 𝜉2, 𝜉3) = 𝐠𝑖𝑑𝜉𝑖 . If the 

basis vector obtained in the same way when coordinates are expressed in terms of set of 

functions, {𝜂1, 𝜂2, 𝜂3} are 𝛄𝑖, 𝑖 = 1, … ,3, then we can similarly write that, 

 
𝑑𝐫(𝜂1, 𝜂2, 𝜂3) =

𝜕𝐫

𝜕𝜂1
𝑑𝜂1 +

𝜕𝐫

𝜕𝜂2
𝑑𝜂2 +

𝜕𝐫

𝜕𝜉3
𝑑𝜂3 

= 𝛄𝑗𝑑𝜂𝑗 

(106) 

So that,  

 

𝐠𝑖𝑑𝜉𝑖 = 𝛄𝑗𝑑𝜂𝑗  

=  𝛄𝑗

𝜕𝜂𝑗

𝜕𝜉𝑘
𝑑𝜉𝑘 

(107) 

or,  

 

𝐠𝑖(𝜉1, 𝜉2, 𝜉3) =
𝜕𝜂𝑗

𝜕𝜉𝑖
 𝛄𝑗(𝜂1, 𝜂2, 𝜂3) 

𝛄𝑗(𝜂1, 𝜂2, 𝜂3) =
𝜕𝜉𝑖

𝜕𝜂𝑗
𝐠𝑖(𝜉1, 𝜉2, 𝜉3) 

(108) 

 

Combining equations (104) and (105),  

 
𝑑𝜉𝑖 =

𝜕𝜉𝑖

𝜕𝜂𝑗

𝜕𝜂𝑗

𝜕𝜉𝑘
𝑑𝜉𝑘 

= 𝛿𝑘
𝑖 𝑑𝜉𝑘  

(109) 

 

showing that the transformation matrices are inverses of each other. 

The transformation of the coordinate differentials is called contravariant while its inverse, for the 

basis vectors is called covariant. Mathematically covariant and contravariant transformations are 

as defined by their two different transformation equations. The fact that the two equations are 

different provides enough justification for naming them differently. There is an amount of 

discussion on the web about the deeper meaning of this choice of words “covariant” and 

“contravariant”. *** want to tackle this? *** 
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Another set of base vectors. 

In the last section, we saw that the points in a curvilinear system meet at the intersection of three 

coordinate surfaces which are not necessarily planes. At this same point, there are also three 

coordinate curves, which are not necessarily straight. We showed that three linearly independent 

vectors,  

 𝐠𝑖(𝜉1, 𝜉2, 𝜉3) ≡
𝜕𝐫

𝜕𝜉𝑖
 (110) 

which transform covariantly, form a basis for (or equivalently, spans) the space. Once we have 

an expression for the position vector, we can easily compute these basis vectors by 

differentiation. We also showed that these vectors are tangent to the coordinate curves at the 

point they intersect and define each point in the Euclidean point space. Figure 21 depicts the 

triplet of surfaces meeting to form the point 𝐏; it also concurrently shows the triplet of lines also 

meeting to form the same point. We note again that the latter triplet are simply the intersecting 

curves of the pairs of surfaces at the same point as can be seen clearly in the diagram. The 

gradient of a surface is normal to the surface. If we can obtain the gradients at point 𝐏 of the 

three surfaces meeting to define it, then we have another set of three vectors, non-colinear, non-

coplanar, and therefore also spans the same vector space! Let us do the Math for this, shall we. 

Figure 22. Intersecting curves 
and surfaces at a point 
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To make things very easy, we shall do using the Cartesian coordinate system as starting point. 

The only thing that will change here is that we shall use raised symbols for components (from the 

fact that we already know that their differentials transform contravarantly) and lowered indices 

for the base vectors (tangential to the coordinate curves, and therefore covariant). From 

equation (98) and (99), the three coordinate surfaces, 𝜉𝑖(𝑥1, 𝑥2, 𝑥3), are functions of 𝑥1, 𝑥2 and 

𝑥3. From multivariate calculus, we can write, 

 

𝑑𝜉𝑖 =
𝜕𝜉𝑖

𝜕𝑥1
𝑑𝑥1 +

𝜕𝜉𝑖

𝜕𝑥2
𝑑𝑥2 +

𝜕𝜉𝑖

𝜕𝑥3
𝑑𝑥3 

=
𝜕𝜉𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗  

= (
𝜕𝜉𝑖

𝜕𝑥𝑗
𝐞𝑗) ⋅ (𝑑𝑥𝛼𝐞𝛼) 

= (grad 𝜉𝑖) ⋅ 𝑑𝐫 

(111) 

We now invoke equation (103), and, using curvilinear coordinate system, substitute  

𝑑𝐫(𝜉1, 𝜉2, 𝜉3) = 𝐠𝑖𝑑𝜉𝑖  

so that,  

 

𝑑𝜉𝑖 = (grad 𝜉𝑖) ⋅ 𝑑𝐫 

= (grad 𝜉𝑖) ⋅ 𝐠𝛼𝑑𝜉𝛼 

= 𝛿𝛼
𝑖  𝑑𝜉𝛼 

(112) 

where  

 𝛿𝛼
𝑖 = {

1, if 𝑖 = 𝛼
0, otherwise 

 (113) 

is the mixed Kronecker Delta. We now define the contravariant basis vector, 

 𝐠𝑖 ≡ grad 𝜉𝑖 , 𝑖 = 1, … ,3 (114) 

It is a straightforward matter to show that the transformation equations for this vector is 

contravariant in nature. To do this, let us, once again consider another set of curvilinear 

coordinates, {𝜂1, 𝜂2, 𝜂3} which gives us two sets of triplet functions. the six functions, 

𝜉𝑖(𝑥1, 𝑥2, 𝑥3), 𝑖 = 1, … ,3 ,and  𝜂𝑗(𝑥1, 𝑥2, 𝑥3), 𝑗 = 1, … ,3, it should be possible to obtain one set 

of gradients if the other is supplied. We shall do so at once. Start again from the coordinate 

transformation equations (105),  
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𝑑𝜂𝑖 =
𝜕𝜂𝑖

𝜕𝜉𝑗
𝑑𝜉𝑗 = (grad 𝜂𝑖) ⋅ 𝑑𝐫 

=
𝜕𝜂𝑖

𝜕𝜉𝑗
(grad 𝜉𝑗) ⋅ 𝑑𝐫 

(115) 

from which it follows from the arbitrariness of  𝑑𝐫 that  

 grad 𝜂𝑖 =
𝜕𝜂𝑖

𝜕𝜉𝑗
grad 𝜉𝑗  (116) 

Showing, by their transformation equations, that the basis vectors formed from the surface 

normal vectors are themselves contravariant.  

Reciprocal Basis Vectors.  

The argument so far shows that for any curvilinear system of coordinates, there are at least two 

methodical ways to select our sets of basis vectors. Take the tangents of the coordinate curves 

at the point, we obtain a set of basis vectors,  

𝐠𝑖(𝜉1, 𝜉2, 𝜉3) ≡
𝜕𝐫

𝜕𝜉𝑖
  

or, we could take the normal to the surfaces at the point on interest, and obtain, 

𝐠𝑖(𝜉1, 𝜉2, 𝜉3) ≡ grad 𝜉𝑖  

Which is another set of basis vectors. Equations (112) to (114) further show that the 

relationship, 

 𝐠𝑗 ⋅ 𝐠𝑖 = 𝐠𝑖 ⋅ 𝐠𝑗 = 𝛿𝑖
𝑗
 (117) 

holds between the two sets of basis functions. This is called the reciprocity relationship. The two 

sets called reciprocal base vectors. The set obtained from tangents to the coordinate surfaces 

transforms covariantly, the other, obtained from the normals to the coordinate surfaces 

transforms contravariantly. This fact is sometimes used to refer to the reciprocal bases as 

covariant and contravariant bases respectively.  

The arguments so far beg a question: Does the same duality occur only in Cartesian systems? Are 

there covariant and contravariant bases in the Cartesian system? The short answer is “yes”, there 

are covariant and contravariant bases in any coordinate system you select. Remember that we 

have a simple rule to compute these vectors. In the one, we simply differentiate the position 
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vector. For a Cartesian coordinate system, recall that for any point 𝐏(𝑥1, 𝑥2, 𝑥3), the position 

vector, 

𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝒙𝟑𝐞3 = 𝑥𝑖𝐞𝑖 

Differentiating with respect to the coordinate variables, 

 𝐠𝑖(𝑥1, 𝑥2, 𝑥3) ≡
𝜕𝐫

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
(𝑥𝑗𝐞𝒋) = 𝛿𝑖

𝑗
𝐞𝒋 = 𝐞𝑖 (118) 

Similarly, taking the gradients, 

 𝐠𝑖(𝑥1, 𝑥2, 𝑥3) ≡ grad 𝑥𝑖 = (
𝜕

𝜕𝑥𝑗
𝑥𝑖) 𝐞𝒋 = 𝛿𝑗

𝑖𝐞𝒋 = 𝐞𝑖. (119𝑏) 

Figure 23 Covariant & Contravariant Basis Vectors 
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So we have the long answer to the question: There are covariant as well as contravariant bases 

in Cartesian. They coincide with each other and with the familiar orthonormal basis of the 

Cartesian system. 

The conclusion we draw from here is that, once the systems becomes curvilinear, there is a 

separation between the covariant and contravariant bases. A separation that cannot be seen in 

the Cartesian coordinate system. The following set of drawings (Try out the full Mathematica 

Demonstrations as shown in the code)  

Reciprocity & Orthogonality 

We can now address the issue of the angular inclinations of the basis vectors. Here we are 

completely free in our choice of three functions to form a coordinate system. All we must ensure 

is that the coordinate curves form linearly independent vectors when differentiated; and the 

normals to the coordinate planes are not co-planar nor co-linear. Nothing was said about the 

Figure 24 Curvilinear basis animation code 
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possibility of orthogonality among the triplets. To ensure linear independence, it can be proved 

that once the functions chosen are continuously differentiable, the linear independence, and 

hence spanning of the 3D Euclidean space is assured. 

Irrespective of the angles between the triplets of vectors, based on tangents or normal, spanning 

the curvilinear system, the reciprocity relationship holds. There is always orthogonality between 

each covariant vector and its respective contravariant vector as follows: 

 

𝐠𝑖 ⋅ 𝐠𝑗 = 𝛿𝑖
𝑗

⇒ 

𝐠1 ⋅ 𝐠1 = 1; 𝐠1 ⋅ 𝐠2 = 0; 𝐠1 ⋅ 𝐠3 = 0; 

 𝐠2 ⋅ 𝐠1 = 0; 𝐠2 ⋅ 𝐠2 = 1; 𝐠2 ⋅ 𝐠3 = 0; 

𝐠3 ⋅ 𝐠1 = 0; 𝐠3 ⋅ 𝐠2 = 0; 𝐠3 ⋅ 𝐠3 = 1; 

(120) 

This fact is demonstrated in the pictures shown in figure 22. An animation of this is available in 

the code accompanying Figure (24) 

In the first case, the coordinate basis chosen are inclined at an obtuse angle to each other as 

shown in red. Notice that these are tangential lines to the coordinate curves. In this 2D 

representation, the curves shown are also cross sections of the coordinate surfaces. The normal 

to these surfaces are shown in green. When the coordinate tangents are obtuse, the coordinate 

normal are acute. A closer look shows that there is pairwise orthogonality as predicted by the 

reciprocity relationship in Equation (117). As we move along any coordinate curve, these 

orientations continue to change while maintaining the reciprocity.  

This situation subsists for the case when the tangent basis vectors are acute. Here the normal 

basis vectors are in an obtuse angle relationship. Again, as before, a pairwise orthogonality 

prevails between the covariant and contravariant basis vectors.  

In the middle case, we look at two cases where the coordinate curves are approximately 

orthogonal. The two sets of basis vectors are almost indistinguishable from each other. When 

there is perfect orthogonality, the lines of action of these vectors are identical. If they are 

normalized, then the vectors themselves are identical. The Mathamatica code in figure 23 

demonstrates this relationship fully. 
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In a curvilinear system, a vector now has two possible representations: One with covariant bases 

and contravariant components and the other with contravariant bases with covariant 

components. For any ∀𝐯 ∈ 𝔼, 

 𝐯 = 𝑣𝑖𝐠𝑖 = 𝑣𝑖𝐠𝑖  (121) 

 

are two related representations in the reciprocal bases. Taking the inner product of the above 

equation with the basis vector 𝐠𝑗, we have 

 𝐯 ⋅ 𝐠𝑗 = 𝑣𝑖𝐠𝑖 ⋅ 𝐠𝑗 = 𝑣𝑖𝐠
𝑖 ⋅ 𝐠𝑗 (122) 

which gives us the covariant component,  

 𝐯 ⋅ 𝐠𝑗 = 𝑣𝑖𝑔𝑖𝑗 = 𝑣𝑖𝛿𝑗
𝑖 = 𝑣𝑗 . (123) 

The substitution property of the mixed Kronecker delta remains the same as that of the Cartesian 

Kronecker Delta. In the same easy manner, we may evaluate the contravariant components of 

the same vector by taking the dot product of the same equation with the contravariant base 

vector 𝐠𝑗: 

 𝐯 ⋅ 𝐠𝑗 = 𝑣𝑖𝐠𝑖 ⋅ 𝐠𝑗 = 𝑣𝑖𝐠𝑖 ⋅ 𝐠𝑗 (124) 

so that, 

 𝐯 ⋅ 𝐠𝑗 = 𝑣𝑖𝛿𝑖
𝑗

= 𝑣𝑖𝑔𝑖𝑗 = 𝑣𝑗 (125) 

The nine scalar quantities, 𝑔𝑖𝑗 ≡ 𝐠𝑖 ⋅ 𝐠𝑗 as well as the nine related quantities 𝑔𝑖𝑗 ≡ 𝐠𝑖 ⋅ 𝐠𝑗 play 

important roles in the coordinate system spanned by these reciprocal sets of basis vectors as we 

shall see. They are called metric coefficients because they metrize the space defined by these 

bases by quantifying distances and angles. 

Define  

 √𝑔 ≡ 𝐠𝑖 ∙ 𝐠𝑗 × 𝐠𝑘 (126) 

 

and  

 𝜖𝑖𝑗𝑘 = √𝑔𝑒𝑖𝑗𝑘 (127) 

We can obtain the relationship, 

 𝐠𝑖 × 𝐠𝑗 = 𝜖𝑖𝑗𝑘𝐠𝑘 (128) 

as follows: 
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Note that  𝐠1is orthogonal to 𝐠2 and 𝐠3. Therefore  

 𝐠2 × 𝐠3 = 𝛼𝐠1 (129) 

as their cross product MUST lie parallel to 𝐠1 where 𝛼 is a scalar to be found. Taking the scalar 

product of both sides, we have, 

 √𝑔 = 𝐠1 ⋅ 𝐠2 × 𝐠3 = 𝛼𝐠1 ⋅ 𝐠1 = 𝛼 (130) 

Similarly,  

𝐠2is orthogonal to 𝐠3 and 𝐠1, and  𝐠3is orthogonal to 𝐠1 and 𝐠2, it follows that 𝐠2 × 𝐠3 =

𝐠1, 𝐠3 × 𝐠1 = 𝐠2, and 𝐠1 × 𝐠2 = 𝐠3. Equation (128) captures these cases with the other six that 

vanish in a single expression as we saw in the ONB case. 

Given that 𝑔 = det 𝑔𝑖𝑗 of the covariant metric coefficients, it is not difficult to prove that 

 𝐠𝑖 ∙ 𝐠𝑗 × 𝐠𝑘 = 𝜖𝑖𝑗𝑘 ≡ √𝑔𝑒𝑖𝑗𝑘 (131) 

 

The dual of the expression, the equivalent contravariant equivalent also follows from the fact 

that, 

 𝐠𝑖 × 𝐠𝑗 ⋅ 𝐠𝑘 = 𝜖𝑖𝑗𝑘 =
1

√𝑔
. 𝑒𝑖𝑗𝑘 (132) 

Solved Problems 1.2 

1.81 Given that, 𝐠1, 𝐠2 and 𝐠3 are three linearly independent vectors and satisfy 𝐠𝑖 ⋅ 𝐠𝑗 = 𝛿𝑗
𝑖, show 

that 𝐠1 =
1

𝑉
𝐠2 × 𝐠3,  𝐠2 =

1

𝑉
𝐠3 × 𝐠1,   and 𝐠3 =

1

𝑉
𝐠1 × 𝐠2,  where 𝑉 = 𝐠1 ⋅ 𝐠2 × 𝐠3 = √𝑔. 

a It is clear, for example, that 𝐠1 is perpendicular to 𝐠2 as well as to 𝐠3 (an obvious fact because 

𝐠1 ⋅ 𝐠2 = 0 and 𝐠1 ⋅ 𝐠3 = 0), we can say that the vector 𝐠1 must necessarily lie on the cross 

product 𝐠2 ×  𝐠3 of 𝐠2 and 𝐠3. It is therefore correct to write, 

𝐠1 =
1

𝑉
𝐠2 × 𝐠3 

where 𝑉−1is a constant we will now determine. We can do this right away by taking the dot 

product of both sides of the equation with 𝐠1 we immediately obtain, 

𝐠1 ⋅ 𝐠1 = 𝑉−1 𝐠1 ⋅   𝐠2 ×  𝐠3 = 1 
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So that,    𝑉 =  𝐠1 ⋅   𝐠2 ×  𝐠3 

the volume of the parallelepiped formed by the three vectors 𝐠1, 𝐠2,  and 𝐠3 when their origins 

are made to coincide. 

Basis Vectors for Curvilinear & Cartesian Coordinates 

The Cartesian basis vectors and the covariant curvilinear basis can represent any vectors in the 

3D vector space. In particular, they can mutually form basis for each other. Accordingly, 

 
𝐞𝑖 = 𝛼𝑖

𝑙𝐠𝑙  

𝐠𝑖 = 𝛽𝑖
𝑙𝐞𝑙  

(133) 

Substituting for 𝐠𝑙, we have, 

 𝐞𝑖 = 𝛼𝑖
𝑗
𝛽𝑗

𝑚𝐞𝑚 = 𝛿𝑖
𝑚𝐞𝑖 (134) 

which gives,  

 𝛼𝑖
𝑗
𝛽𝑗

𝑚 = 𝛿𝑖
𝑚. (135) 

Furthermore, 

 

𝐠𝑖 ∙ 𝐠𝑗 = 𝛽𝑖
𝑙𝐞𝑙 ⋅ 𝛽𝑗

𝑚𝐞𝑚 

= 𝛽𝑖
𝑙𝛽𝑗

𝑚𝛿𝑙𝑚 

= 𝛽𝑖
𝑙𝛽𝑗

𝑙  

(136) 

Which means that the determinant of the matrix, . 

 [𝑔𝑖𝑗] ≡ [𝐠𝑖 ∙ 𝐠𝑗] = det [(𝛽𝑖
𝑙)

2
]. (137) 

The scalar triple product of the covariant base vectors, in terms of its components in the Cartesian 

basis vectors can be found: 

 

𝐠1 ⋅ 𝐠2 × 𝐠3 = (𝛽1
𝑙𝐞𝑙) ⋅ (𝛽2

𝑚𝐞𝑚) × (𝛽𝑖
𝑛𝐞𝑛) 

= 𝛽1
𝑙𝛽2

𝑚𝛽𝑖
𝑛𝐞𝑙 ∙ 𝐞𝑚 × 𝐞𝑛 

= 𝛽1
𝑙𝛽2

𝑚𝛽𝑖
𝑛𝑒𝑙𝑚𝑛 

= det[𝛽𝑖
𝑙] 

= √𝑔 

(138) 

as previously defined. Combining Equations (137) and (138) it is clear that,  
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 det[𝑔𝑖𝑗] = [𝐠1 ⋅ 𝐠2 × 𝐠3]2 = 𝑔. (139) 

We further observe that 

 𝐠𝑖 ⋅ 𝐠𝑗 × 𝐠𝑘 = √𝑔𝑒𝑖𝑗𝑘 = 𝜖𝑖𝑗𝑘 (140) 

a fact that becomes clearer from the results of SP 1.85 below. For the contravariant base vectors, 

we have, 

 𝐠𝑖 ⋅ 𝐠𝑗 × 𝐠𝑘 = 𝜖𝑖𝑗𝑘 (141) 

When we are back to Cartesian coordinates, 𝛽𝑖
𝑙 of equation (137) becomes 𝛿𝑖

𝑙, 𝐠1 ⋅ 𝐠2 × 𝐠3 = 1, 

and, 

 𝐠𝑖 ⋅ 𝐠𝑗 × 𝐠𝑘 = 𝜖𝑖𝑗𝑘 = 𝐠𝑖 ⋅ 𝐠𝑗 × 𝐠𝑘 = 𝜖𝑖𝑗𝑘 = 𝑒𝑖𝑗𝑘 (142) 

as the distinction between covariant and contravariant basis vectors vanish. 𝑔𝑖𝑗in Cartesian 

coordinates, this becomes the identity tensor, and its determinant, 

 det[𝑔𝑖𝑗] = [𝐠1 ⋅ 𝐠2 × 𝐠3]2 = 𝑔 = 1. (143) 

Computation Method for Reciprocal Base Vectors 

The nine reciprocity relationships in Equation (117) can be expressed in matrix form. If we pack 

the covariant base vectors, 𝐠𝑖, 𝑖 = 1, … ,3 into the columns of a matrix, in order for the reciprocity 

relationship to hold, the contravariant vectors 𝐠𝑗 , 𝑗 = 1, … ,3 are the rows of its inverse. The 

converse is also true: If we compute the contravariant basis vectors and pack them into the 

columns of a matrix, the rows of its inverse are the covariant basis vectors. 

This fact is used in Q1.93 and 1.95 to compute the reciprocal basis vectors once either of them is 

known. The accompanying code in those Q&A can be used for any coordinate system once we 

know the functional form of the position vector – which also defined the transformation 

equations. 

Solved Problems 1.3 

1.82 Show that 𝐠𝑗 = 𝑔𝑖𝑗𝐠𝑖 = 𝑔𝑗𝑖𝐠𝑖 and establish the relation, 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖
𝑘 

a First expand 𝐠𝑗 in terms of the 𝐠𝑖s: 

𝐠𝑗 = 𝛼𝐠1 + 𝛽𝐠2 + 𝛾𝐠3 
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Dotting with 𝐠1 ⇒  𝐠𝑗 ⋅ 𝐠1 = 𝛼𝐠1 ⋅ 𝐠1 + 𝛽𝐠2 ⋅ 𝐠1 + 𝛾𝐠3 ⋅ 𝐠1 = g𝑗1 = 𝛼. In the same 

way we find that 𝛽 = g𝑗2 and 𝛾 = g𝑗3so that, 

𝐠𝑗 = 𝑔𝑗1𝐠1 + 𝑔𝑗2𝐠2 + 𝑔𝑗3𝐠3 = 𝑔𝑗𝑖𝐠𝑖. 

Similarly, 𝐠𝑖 = 𝑔𝑖𝛼𝐠𝛼.  

Recall the reciprocity relationship: 𝐠𝑖 ⋅ 𝐠𝑘 = 𝛿𝑖
𝑘. Using the above, we can write 

𝐠𝑖 ⋅ 𝐠𝑘 = (𝑔𝑖𝛼𝐠𝛼) ⋅ (𝑔𝑘𝛽𝐠𝛽) = 𝑔𝑖𝛼𝑔𝑘𝛽𝐠𝛼 ⋅ 𝐠𝛽 = 𝑔𝑖𝛼𝑔𝑘𝛽𝛿𝛽
𝛼 = 𝛿𝑖

𝑘 

which shows that 

𝑔𝑖𝛼𝑔𝑘𝛼 = 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖
𝑘 

As required. This shows that the tensor 𝑔𝑖𝑗 and 𝑔𝑖𝑗 are inverses of each other. 

1.83 The trilinear mapping 𝔼 × 𝔼 × 𝔼 → ℝ from the product set of Euclidean vectors to the 

real space is defined by: [𝐚, 𝐛, 𝐜] ≡ 𝐚 ⋅ (𝐛 × 𝐜) = (𝐚 × 𝐛) ⋅ 𝐜. Show that [ 𝐚, 𝐛, 𝐜] =

[𝐛, 𝐜, 𝐚] = [𝐜, 𝐚, 𝐛] = −[𝐛, 𝐚, 𝐜] = −[𝐜, 𝐛, 𝐚] = −[𝐚, 𝐜, 𝐛] 

a In component form,  

[𝐚, 𝐛, 𝐜] = 𝜖𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘 

Cyclic permutations of this, upon remembering that (𝑖, 𝑗, 𝑘) are dummy indices, yield,  

𝜖𝑗𝑘𝑖𝑏𝑗𝑐𝑘𝑎𝑖 = [𝐛, 𝐜, 𝐚] = 𝜖𝑖𝑗𝑘𝑏𝑖𝑐𝑗𝑎𝑘 

= 𝜖𝑘𝑖𝑗𝑐𝑘𝑎𝑖𝑏𝑗 = [𝐜, 𝐚, 𝐛] = 𝜖𝑖𝑗𝑘𝑐𝑖𝑎𝑗𝑏𝑘 

The other results follow from antisymmetric arrangements and the nature of 𝜖𝑖𝑗𝑘. 

1.84 Given that, [𝐚, 𝐛, 𝐜] ≡ 𝐚 ⋅ (𝐛 × 𝐜) = (𝐚 × 𝐛) ⋅ 𝐜. Show that this product vanishes if the 

vectors (𝐚, 𝐛, 𝐜) are linearly dependent. 
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Suppose it is possible to find scalars 𝛼 and 𝛽 such that, 𝐚 = 𝛼𝐛 + 𝛽𝐜. It therefore 

means that, 

[𝐚, 𝐛, 𝐜] = 𝜖𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘 = 𝜖𝑖𝑗𝑘(𝛼𝑏𝑖 + 𝛽𝑐𝑖)𝑏𝑗𝑐𝑘 

= 𝛼𝜖𝑖𝑗𝑘𝑏𝑖𝑏𝑗𝑐𝑘 +  𝛽𝜖𝑖𝑗𝑘𝑐𝑖𝑏𝑗𝑐𝑘 

= 0 

Note that 𝑏𝑖𝑏𝑗𝑐𝑘 is symmetric in 𝑖 and 𝑗, 𝑐𝑖𝑏𝑗𝑐𝑘 is symmetric in 𝑖 and 𝑘 and 𝜖𝑖𝑗𝑘 is 

antisymmetric in 𝑖, 𝑗 and 𝑘 Because each term is the product of a symmetric and an 

antisymmetric object which must vanish. 

1.85 For the basis vectors 𝐠𝑖, 𝑖 = 1,2,3 and their duals, 𝐠𝑗 , 𝑗 = 1,2,3 If 𝑣 = 𝐠1 ⋅ 𝐠2 × 𝐠3 and 

𝑉 = 𝐠1 × 𝐠2 ⋅ 𝐠3, show that 𝑣𝑉 = 1. 

 
Given 𝐠𝑖, 𝑖 = 1,2,3, note that 𝐠1 is perpendicular to 𝐠2 and to 𝐠3. It must be parallel 

to the vector  𝐠2 ×  𝐠3. A scalar constant 𝑉−1 must exist such that, 

𝐠1 = 𝑉−1 𝐠2 ×  𝐠3 

𝐠2 = 𝑉−1 𝐠3 ×  𝐠1 

𝐠3 = 𝑉−1 𝐠1 ×  𝐠2 

Since (dot the first with 𝐠1 to see) Now we are given that 𝑣 = 𝐠1 ⋅ 𝐠2 × 𝐠3. Using the 

above relations, we can write, 

𝐠2 × 𝐠3 = (𝑉−1 𝐠3 ×  𝐠1) × (𝑉−1 𝐠1 ×  𝐠2)

= 𝑉−2[( 𝐠3 ×  𝐠1 ⋅   𝐠2)𝐠1 − ( 𝐠3 ×  𝐠1 ⋅   𝐠1)𝐠2]

= 𝑉−2( 𝐠1 ×  𝐠2 ⋅   𝐠3)𝐠1 = 𝑉−1𝐠1 

We can now write, 

𝑣 = 𝐠1 ⋅ 𝐠2 × 𝐠3 = 𝐠1 ⋅ 𝑉−1𝐠1 = 𝑉−1𝐠1 ⋅ 𝐠1 = 𝑉−1 

Showing that, 𝑣 𝑉 = 1 as required. It is a trivial matter to show that 𝑉 = 𝐠1 × 𝐠2 ⋅ 𝐠3, 

for, if we take a dot product of the equation, 𝐠1 = 𝑉−1 𝐠2 ×  𝐠3, the result follows so 

that 𝐠1 × 𝐠2 ⋅ 𝐠3 =
1

𝐠1⋅𝐠2×𝐠3
. 
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1.86 By transforming the position vector into the coordinate system spanned by the basis 

vectors, 𝐠𝑖 defined by, 𝑑𝐫 =
𝜕𝐫

𝜕𝑢𝑖  𝑑𝑢𝑖 ≡ 𝐠𝑖𝑑𝑢𝑖, show that 𝑉 = 𝐠1 × 𝐠2 ⋅ 𝐠3 =

√𝑔, where 𝑔 is the determinant |𝑔𝑖𝑗|. 

 
Changing variables, we can write that,  

𝐫(𝑥, 𝑦, 𝑧) = 𝑥𝑖(𝑢1, 𝑢2, 𝑢3)𝐞𝑖 = 𝐫(𝑢1, 𝑢2, 𝑢3) 

So that we have new coordinates 𝑢𝑘, 𝑘 = 1,2,3. In this new system, the differential of 

the position vector 𝐫 is,  

𝑑𝐫 =
𝜕𝐫

𝜕𝑢𝑖
 𝑑𝑢𝑖 ≡ 𝐠𝑖𝑑𝑢𝑖   

the above equation, as we shall soon show, defines the basis vectors in the new 

coordinate system. The vectors 𝐠1, 𝐠2 and 𝐠3 are not necessarily unit vectors but they 

form a basis of the new system provided,  

𝑉 = 𝐠1 ∙ 𝐠2 × 𝐠3 ≠ 0 

𝐠𝑖 =
𝜕𝐫

𝜕𝑢𝑖
=

𝜕𝑥𝑘

𝜕𝑢𝑖
𝐞𝑘 

𝑉 = 𝐠1 ∙ 𝐠2 × 𝐠3 =

|

|

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2

𝜕𝑢1

𝜕𝑥3

𝜕𝑢1

𝜕𝑥1

𝜕𝑢2

𝜕𝑥2

𝜕𝑢2

𝜕𝑥3

𝜕𝑢2

𝜕𝑥1

𝜕𝑢3

𝜕𝑥2

𝜕𝑢3

𝜕𝑥3

𝜕𝑢3

|

|

= |
𝜕𝑥𝑘

𝜕𝑢𝑖
| ≠ 0 

𝑔𝑖𝑗 = 𝐠𝑖 ∙ 𝐠𝑗 =
𝜕𝐫

𝜕𝑢𝑖
⋅

𝜕𝐫

𝜕𝑢𝑗
= (

𝜕𝑥𝑘

𝜕𝑢𝑖
𝐞𝑘) ∙ (

𝜕𝑥𝑙

𝜕𝑢𝑗
𝐞𝑙) 

=
𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑙

𝜕𝑢𝑗
𝐞𝑘 ⋅ 𝐞𝑙 =

𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑙

𝜕𝑢𝑗
𝛿𝑘𝑙 =

𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑢𝑗
 

Clearly, the determinant of 𝑔𝑖𝑗 (we shall prove later that the determinant of a product 

of matrices is the product of the determinants) 

𝑔 ≡ |𝑔𝑖𝑗| = |
𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑢𝑗
| = |

𝜕𝑥𝑘

𝜕𝑢𝑖
|

2

= 𝑉2 

This means, 𝑉 = 𝐠1 ∙ 𝐠2 × 𝐠3 = |
𝜕𝑥𝑖

𝜕𝑢𝑗| =  √𝑔. We can therefore write, 
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𝐠1 ∙ 𝐠2 × 𝐠3 = 𝑒123√𝑔 

Swapping indices 2 and 3, we have, 

𝐠1 ∙ 𝐠3 × 𝐠2 = −√𝑔 = 𝑒132√𝑔 = 𝐠1 × 𝐠3 ⋅ 𝐠2 

The second equality coming from the fact that swapping the cross with the dot 

changes nothing. Lastly, swapping 1 and 3 in the last equation shows that, 

𝐠3 × 𝐠1 ⋅ 𝐠2 = −(−√𝑔) = 𝑒312√𝑔. These three expressions together imply that, 

𝐠𝑖 ∙ 𝐠𝑗 × 𝐠𝑘 = 𝜖𝑖𝑗𝑘 = √𝑔𝑒𝑖𝑗𝑘 as required. 

1.87 Given that 𝐠1 × 𝐠2 ⋅ 𝐠3 = √𝑔, where 𝑔 is the determinant |𝑔𝑖𝑗|. Show that, 𝐠𝑖 × 𝐠𝑗 ⋅

𝐠𝑘 = √𝑔𝑒𝑖𝑗𝑘 ≡ 𝜖𝑖𝑗𝑘. Conclude further that 𝐠𝑖 × 𝐠𝑗 = 𝜖𝑖𝑗𝑘𝐠𝑘 

 
Given that 𝐠1 × 𝐠2 ⋅ 𝐠3 = √𝑔, the fact that the triple product obeys the rule, 

[ 𝐚, 𝐛, 𝐜] = [𝐛, 𝐜, 𝐚] = [𝐜, 𝐚, 𝐛] = −[𝐛, 𝐚, 𝐜] = −[𝐜, 𝐛, 𝐚] = −[𝐚, 𝐜, 𝐛], combined with 

the fact that the triple product vanishes when any two of its vectors are collinear allow 

us to write that  

𝐠𝑖 × 𝐠𝑗 ⋅ 𝐠𝑘 = 𝑒𝑖𝑗𝑘√𝑔 ≡ 𝜖𝑖𝑗𝑘 

By the reciprocity rule, 𝐠𝑖 ⋅ 𝐠𝑗 = 𝛿𝑖
𝑗
, we have that, 𝐠1 ⋅ 𝐠1 = 1, 𝐠1 ⋅ 𝐠2 = 0, 𝐠1 ⋅ 𝐠3 =

0. It follows that 𝐠1 must be perpendicular to the plane of 𝐠2and 𝐠3 making it parallel 

to 𝐠2 × 𝐠3 A scalar constant 𝛼 must exist such that, 𝐠1 = 𝛼 𝐠2 ×  𝐠3. Dot product of 

both sides with 𝐠1 shows that 𝛼 = 1/√𝑔. Therefore,  

 𝐠2 ×  𝐠3 = √𝑔𝐠1 

 𝐠3 ×  𝐠1 = √𝑔𝐠2 

 𝐠1 ×  𝐠2 = √𝑔𝐠3 

These three results together can be expressed as, 𝐠𝑖 × 𝐠𝑗 = 𝜖𝑖𝑗𝑘𝐠𝑘. 

1.88 Use the reciprocity rule, 𝐠𝑖 ⋅ 𝐠𝑗 = 𝛿𝑖
𝑗
 and the fact that 𝐠1 × 𝐠2 ⋅ 𝐠3 =

1

𝐠1⋅𝐠2×𝐠3
. = √𝑔 

to show that 𝐠𝑖 × 𝐠𝑗 =
1

√𝑔
𝑒𝑖𝑗𝑘𝐠𝑘 = 𝜖𝑖𝑗𝑘 . 
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By the reciprocity rule, 𝐠𝑖 ⋅ 𝐠𝑗 = 𝛿𝑖

𝑗
, we have that, 𝐠1 ⋅ 𝐠1 = 1, 𝐠2 ⋅ 𝐠1 = 0, 𝐠3 ⋅ 𝐠1 =

0. It follows that 𝐠1 must be perpendicular to the plane of 𝐠2 and 𝐠3 making it 

parallel to 𝐠2 × 𝐠3. A scalar constant 𝛽 must exist such that, 𝐠1 = 𝛽𝐠2 × 𝐠3. Dot 

product of both sides with 𝐠1 shows that 𝛽 = √𝑔. Therefore, 

𝐠2 × 𝐠3 =
1

√𝑔
𝐠1, 𝐠3 × 𝐠1 =

1

√𝑔
𝐠2, 𝐠1 × 𝐠2 =

1

√𝑔
𝐠3 

These three results together can be written as, 𝐠𝑖 × 𝐠𝑗 =
1

√𝑔
𝑒𝑖𝑗𝑘𝐠𝑘 = 𝜖𝑖𝑗𝑘 if we write 

𝜖𝑖𝑗𝑘 ≡
1

√𝑔
𝑒𝑖𝑗𝑘 . 

1.89 Given that 𝐠𝑖 × 𝐠𝑗 = 𝜖𝑖𝑗𝑘𝐠𝑘, and that, Find an expression for 𝐠𝑘 in terms of its dual 

vectors. 

 
Multiply both sides by 𝜖𝑖𝑗𝛼 and find the expression for 𝐠𝑘 

𝜖𝑖𝑗𝛼𝐠𝑖 × 𝐠𝑗 = 𝜖𝑖𝑗𝛼𝜖𝑖𝑗𝑘𝐠𝑘 

= 2𝛿𝑘
𝛼𝐠𝑘 = 2𝐠𝛼 

So that 𝐠𝑖 =
1

2
𝜖𝑖𝑗𝑘𝐠𝑗 × 𝐠𝑘 

1.90 Show that the cross product of vectors 𝐚 and 𝐛 in general coordinates is 𝑎𝑖𝑏𝑗𝜖𝑖𝑗𝑘𝐠𝑘 or 

𝜖𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐠𝑘 where 𝑎𝑖 ,  𝑏𝑗 are the respective contravariant components and 𝑎𝑖,  𝑏𝑗 the 

covariant. 

 
Express vectors 𝐚 and 𝐛 as contravariant components: 𝐚 = 𝑎𝑖𝐠𝑖, and 𝐛 = 𝑏𝑖𝐠𝑖. Using 

the above result, we can write that, 

𝐚 × 𝐛 = (𝑎𝑖𝐠𝑖) × (𝑏𝑗𝐠𝑗) = 𝑎𝑖𝑏𝑗𝐠𝑖 × 𝐠𝑗 = 𝑎𝑖𝑏𝑗𝜖𝑖𝑗𝑘𝐠𝑘. 

Express vectors 𝐚 and 𝐛 as covariant components: 𝒂 = 𝑎𝑖𝐠
𝑖  and 𝒃 = 𝑏𝑖𝐠𝑖. Again, 

proceeding as before, we can write, 

𝐚 × 𝐛 = (𝑎𝑖𝐠
𝑖) × (𝑏𝑗𝐠𝑗) = 𝜖𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐠𝑘  

Express vectors 𝐚 as contravariant components: 𝐚 = 𝑎𝑖𝒈𝑖  and 𝐛 as covariant 

components: 𝐛 = 𝑏𝑖𝐠
𝑖  
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𝐚 × 𝐛 = (𝑎𝑖𝐠𝑖) × (𝑏𝑗𝐠𝑗) = 𝑎𝑖𝑏𝑗(𝐠𝑖 × 𝐠𝑗) 

1.91 Show that the cross product of vectors 𝐚 and 𝐛 in general coordinates is 𝑎𝑖𝑏𝑗𝜖𝑖𝑗𝑘𝐠𝑘 or 

𝜖𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐠𝑘 where 𝑎𝑖 ,  𝑏𝑗 are the respective contravariant components and 𝑎𝑖,  𝑏𝑗 the 

covariant. 

 
Express vectors 𝐚 and 𝐛 as contravariant components: 𝐚 = 𝑎𝑖𝐠𝑖, and 𝐛 = 𝑏𝑖𝐠𝑖. Using 

the above result, we can write that, 

𝐚 × 𝐛 = (𝑎𝑖𝐠𝑖) × (𝑏𝑗𝐠𝑗) = 𝑎𝑖𝑏𝑗𝐠𝑖 × 𝐠𝑗 = 𝑎𝑖𝑏𝑗𝜖𝑖𝑗𝑘𝐠𝑘. 

Express vectors 𝐚 and 𝐛 as covariant components: 𝒂 = 𝑎𝑖𝐠
𝑖  and 𝒃 = 𝑏𝑖𝐠𝑖. Again, 

proceeding as before, we can write, 

𝐚 × 𝐛 = (𝑎𝑖𝐠
𝑖) × (𝑏𝑗𝐠𝑗) = 𝜖𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐠𝑘  

Express vectors 𝐚 as contravariant components: 𝐚 = 𝑎𝑖𝐠𝑖  and 𝐛 as covariant 

components: 𝐛 = 𝑏𝑖𝐠
𝑖  

𝐚 × 𝐛 = (𝑎𝑖𝐠𝑖) × (𝑏𝑗𝐠𝑗) = 𝑎𝑖𝑏𝑗(𝐠𝑖 × 𝐠𝑗) 

 

  

1.92 In the transformation from the (𝑥1, 𝑥2, 𝑥3) system to the (𝑟,  𝜙, 𝑍) coordinate system, 

the position vector changed from 𝐑 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 to 𝐑 = 𝑟𝐞𝑟(𝜙) + 𝑧𝐞𝑧 

where 𝐞𝑟(𝜙) = 𝐞1 cos 𝜙 + 𝐞2 sin 𝜙 + 0𝐞3. Show by partial differentiation only, that 

the basis vectors in respective coordinates are {𝐞1, 𝐞2, 𝐞3} and {𝐞𝑟 , 𝐞𝜙, 𝐞𝑧} respectively, 

𝐞𝜙(𝜙) = 𝑟
𝜕𝐞𝑟(𝜙)

𝜕𝜙
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 𝐑 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 

Differentiating with respect to 𝑥1, 𝑥2, 𝑥3 

respectively from the columns of the 

matrix in the code, the Cartesian basis 

vectors are  

𝐞1, 𝐞2, 𝐞3 

Similarly, 𝐑 = 𝑟𝐞𝑟(𝜙) + 𝑧𝐞𝑧,  

∂𝐑

∂𝑟
= 𝐞1 cos 𝜙 + 𝐞2 sin 𝜙 + 0𝐞3 

= 𝐞𝑟(𝜙) 

∂𝐑

∂𝜙
= −𝐞1𝑟 sin 𝜙 + 𝐞2𝑟 cos 𝜙 + 0𝐞3 

= 𝐞𝜙(𝜙) = 𝑟
𝜕𝐞𝑟(𝜙)

𝜕𝜙
 

 and  

∂𝐑

∂𝑧
= 𝐞𝑧 

1.93 In the transformation from the (𝑥1, 𝑥2, 𝑥3) system to the (𝑟,  𝜙, 𝑍) coordinate system, 

the position vector changed from 𝐑 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 to 𝐑 = 𝑟𝐞𝑟(𝜙) + 𝑧𝐞𝑧 

where 𝐞𝑟(𝜙) = 𝐞1 cos 𝜙 + 𝐞2 sin 𝜙 + 𝑧𝐞3. Find the reciprocal basis in the Cylindrical 

coordinate system 𝐠𝑗 ,  𝑗 = 1,2,3. [Hint: 2𝐠𝑖 = 𝜖𝑖𝑗𝑘𝐠𝑗 × 𝐠𝑘] 

 Mathematica code to make these 

differentiations easy as shown. 

It is clear that, 

 𝐠1 =
∂𝐑

∂𝑟
 

= 𝐞𝑟(𝜙) = 𝐞1 cos 𝜙 + 𝐞2 sin 𝜙 

𝐠2 =
∂𝐑

∂𝜙
= 𝑟

𝜕𝐞𝑟(𝜙)

𝜕𝜙
 

≡ 𝐞𝜙 = 𝐞2𝑟 cos 𝜙 − 𝐞1𝑟 sin 𝜙 



137 
 

and 𝐠3 =
∂𝐑

∂z
= 𝐞𝑧 = 𝐞3 

2𝐠𝑖 = 𝜖𝑖𝑗𝑘𝐠𝑗 × 𝐠𝑘 

so that  

𝐠1 =
1

2
𝜖1𝑗𝑘𝐠𝑗 × 𝐠𝑘  

√𝑔 = 𝐠1 ⋅ 𝐠2 × 𝐠3 = 𝑟 

In this double sum, only two out of the nine terms survive; these are: 

𝐠1 =
1

2
𝜖123𝐠2 × 𝐠3 +

1

2
𝜖132𝐠3 × 𝐠2 =

1

𝑟
𝑒123𝐠2 × 𝐠3 

= (𝐞2𝑟 cos 𝜙 − 𝐞1𝑟 sin 𝜙) × 𝐞3 

=
1

𝑟
(𝐞1 𝑟 cos 𝜙 + 𝐞2𝑟 sin 𝜙) = 𝐞𝑟(𝜙) 

𝐠2 =
1

2
𝜖231𝐠3 × 𝐠1 +

1

2
𝜖213𝐠1 × 𝐠3 =

1

𝑟
𝑒123𝐠3 × 𝐠1 

=
1

𝑟
𝐞3 × (𝐞1 cos 𝜙 + 𝐞2 sin 𝜙) =

1

𝑟
(𝐞2 cos 𝜙 − 𝐞1 sin 𝜙) 

=
1

𝑟
𝐞𝜙 

𝐠3 =
1

2
𝜖312𝐠1 × 𝐠2 +

1

2
𝜖321𝐠2 × 𝐠1 =

1

𝑟
𝑒123𝐠1 × 𝐠2 

=
1

𝑟
(𝐞1 cos 𝜙 + 𝐞2 sin 𝜙) × (𝐞2𝑟 cos 𝜙 − 𝐞1𝑟 sin 𝜙) = 𝐞𝑧 

The reciprocal basis vectors of the 

cylindrical coordinate system is therefore, {𝐞𝑟(𝜙),
1

𝑟
𝐞𝜙, 𝐞𝑧}. 

What we have calculated manually are the rows of the matrix whose columns are the 

covariant bases. This is obtained directly by the Mathematica function call: 
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1.94 Find the reciprocal bases for the Cartesian system. 

 To find the reciprocal or contravariant basis, we use the formula,  

2𝐠𝑖 = 𝜖𝑖𝑗𝑘𝐠𝑗 × 𝐠𝑘 

Let us call the covariant basis (it is customary to label the basis obtained by direct 

differentiation covariant) of the Cartesian {𝐢, 𝐣, 𝐤} and the contravariant basis {𝐈, 𝐉, 𝐊}. 

Now, 𝐠1 =
1

2
𝜖123𝐠2 × 𝐠3 +

1

2
𝜖132𝐠3 × 𝐠2 = 𝜖123𝐠2 × 𝐠3 so that, 𝐈 = 𝐣 × 𝐤 = 𝐢; 𝐉 =

𝐤 × 𝐢 = 𝐣; and 𝐊 = 𝐢 × 𝐣 = 𝐤. This shows that for the Cartesian system, the dual 

bases coincide and {𝐢, 𝐣, 𝐤}or {𝐠1, 𝐠2, 𝐠3} = {𝐈, 𝐉, 𝐊} 𝑜𝑟 {𝐠1, 𝐠2, 𝐠3}. Both systems are 

orthogonal and normalized. They also coincide. 

1.95 In the transformation from the (𝑥1, 𝑥2, 𝑥3) system to the (𝜌, 𝜃, 𝜙) coordinate system, 

the position vector changed from 𝐑 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 to 𝐑 = 𝜌𝐞𝜌(𝜃, 𝜙) where 

𝐞𝜌(𝜃, 𝜙) = 𝐞1 sin 𝜃 cos 𝜙 + 𝐞2 sin 𝜃 sin 𝜙 + 𝜌 cos 𝜃 𝐞3. Find the covariant bases as 

well as its reciprocal basis in the Cylindrical coordinate system 𝐠𝑗 ,  𝑗 = 1,2,3. [Hint: 

2𝐠𝑖 = 𝜖𝑖𝑗𝑘𝐠𝑗 × 𝐠𝑘] 

The position vector for the spherical system,  

𝐫𝐒𝐩𝐡 = 𝐞1 sin 𝜃 cos 𝜙 + 𝐞2 sin 𝜃 sin 𝜙 + 𝐞3 cos 𝜃 

The covariant basis can be found by differentiating the position vector with respect to coordinate 

variables. We use the Mathematica code included and obtain, 

𝐠1 =
∂𝐑

∂𝜌
= 𝐞𝜌(𝜙, 𝜃) =  𝐞1 sin 𝜃 cos 𝜙 + 𝐞2 sin 𝜃 sin 𝜙 + 𝐞3 cos 𝜃 

𝐠2 =
∂𝐑

∂𝜃
= 𝐞𝜃(𝜙, 𝜃) =  𝐞1 cos 𝜃 cos 𝜙 + 𝐞2 cos 𝜃 sin 𝜙 − 𝐞3 sin 𝜃  

= 𝜌
∂𝐞𝜌(𝜙, 𝜃)

∂𝜃
. 

𝐠3 =
∂𝐑

∂𝜙
= 𝐞𝜙(𝜙, 𝜃) 

=  −𝐞1 sin 𝜃 cos 𝜙 + 𝐞2 cos 𝜃 sin 𝜙 
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These are shown in the columns of 

bVecs in the attached code. The 

reciprocal basis vectors, as shown in 

Q1.93, are simply the rows of the 

inverse of the matrix of basis vectors 

bVecs: 

Clearly, from the Mathematica code, 

𝐠1 = 𝐞𝜌(𝜙, 𝜃),  

𝐠2 =
1

𝜌
𝐞𝜃(𝜙, 𝜃) , 𝐠3 = 𝐞𝜙(𝜙, 𝜃), 

and √𝑔 = 𝐠1 ⋅ 𝐠2 × 𝐠3 = 𝜌2 sin 𝜃 

The last result is implemented in 

the variable rootG 

1.96 Given that 

𝛿𝑖𝑗𝑘
𝑟𝑠𝑡 ≡ 𝑒𝑟𝑠𝑡𝑒𝑖𝑗𝑘 = |

𝛿𝑖
𝑟 𝛿𝑗

𝑟 𝛿𝑘
𝑟

𝛿𝑖
𝑠 𝛿𝑗

𝑠 𝛿𝑘
𝑠

𝛿𝑖
𝑡 𝛿𝑗

𝑡 𝛿𝑘
𝑡

| Show that 𝛿𝑖𝑗𝑘
𝑟𝑠𝑘 = 𝛿𝑖

𝑟𝛿𝑗
𝑠 − 𝛿𝑖

𝑠𝛿𝑗
𝑟 

 Expanding the equation, we have: 

𝑒𝑖𝑗𝑘𝑒𝑟𝑠𝑘 = 𝛿𝑖𝑗𝑘
𝑟𝑠𝑘 = 𝛿𝑖

𝑘 |
𝛿𝑗

𝑟 𝛿𝑘
𝑟

𝛿𝑗
𝑠 𝛿𝑘

𝑠| − 𝛿𝑗
𝑘 |

𝛿𝑖
𝑟 𝛿𝑘

𝑟

𝛿𝑖
𝑠 𝛿𝑘

𝑠| + 3 |
𝛿𝑖

𝑟 𝛿𝑗
𝑟

𝛿𝑖
𝑠 𝛿𝑗

𝑠|

= 𝛿𝑖
𝑘(𝛿𝑗

𝑟𝛿𝑘
𝑠 − 𝛿𝑗

𝑠𝛿𝑘
𝑟) − 𝛿𝑗

𝑘(𝛿𝑖
𝑟𝛿𝑘

𝑠 − 𝛿𝑖
𝑠𝛿𝑘

𝑟) + 3(𝛿𝑖
𝑟𝛿𝑗

𝑠 − 𝛿𝑖
𝑠𝛿𝑗

𝑟) = 𝛿𝑗
𝑟𝛿𝑖

𝑠

− 𝛿𝑗
𝑠𝛿𝑖

𝑟 − 𝛿𝑖
𝑟𝛿𝑗

𝑠 + 𝛿𝑖
𝑠𝛿𝑗

𝑟+3(𝛿𝑖
𝑟𝛿𝑗

𝑠

− 𝛿𝑖
𝑠𝛿𝑗

𝑟) = −2(𝛿𝑖
𝑟𝛿𝑗

𝑠 − 𝛿𝑖
𝑠𝛿𝑗

𝑟) + 3(𝛿𝑖
𝑟𝛿𝑗

𝑠 − 𝛿𝑖
𝑠𝛿𝑗

𝑟) = 𝛿𝑖
𝑟𝛿𝑗

𝑠 − 𝛿𝑖
𝑠𝛿𝑗

𝑟 

1.97 Show that 𝐮 × (𝐯 × 𝐰) = (𝐮 ⋅ 𝐰 )𝐯 − (𝐮 ⋅ 𝐯)𝐰. 
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 Let 𝐳 = 𝐯 × 𝐰 = ϵ𝑖𝑗𝑘𝑣𝑖𝑤𝑗𝐠𝑘. The triple product,  

𝐮 × (𝐯 × 𝐰) = 𝐮 × 𝐳 = 𝜖𝛼𝛽𝛾𝑢𝛼𝑧𝛽𝐠𝛾 

= 𝜖𝛼𝛽𝛾𝑢𝛼𝑧𝛽𝐠𝛾 = 𝜖𝛼𝛽𝛾𝑢𝛼ϵ𝑖𝑗𝛽𝑣𝑖𝑤𝑗𝐠𝛾 

= ϵ𝑖𝑗𝛽𝜖𝛾𝛼𝛽𝑢𝛼𝑣𝑖𝑤𝑗𝐠𝛾 = (𝛿𝛾
𝑖 𝛿𝛼

𝑗
− 𝛿𝛼

𝑖 𝛿𝛾
𝑗
)𝑢𝛼𝑣𝑖𝑤𝑗𝐠𝛾 

= 𝑢𝑗𝑣𝛾𝑤𝑗𝐠𝛾 − 𝑢𝑖𝑣𝑖𝑤𝛾𝐠𝛾 

= (𝐮 ⋅ 𝐰 )𝐯 − (𝐮 ⋅ 𝐯)𝐰 

1.98 Given that, 𝛿𝑖𝑗𝑘
𝑟𝑠𝑘 = 𝛿𝑖

𝑟𝛿𝑗
𝑠 − 𝛿𝑖

𝑠𝛿𝑗
𝑟 , show that 𝛿𝑖𝑗𝑘

𝑟𝑗𝑘
= 2𝛿𝑖

𝑟. 

 Contracting one more index, we have: 

𝑒𝑖𝑗𝑘𝑒𝑟𝑗𝑘 = 𝛿𝑖𝑗𝑘
𝑟𝑗𝑘

= 𝛿𝑖
𝑟𝛿𝑗

𝑗
− 𝛿𝑖

𝑗
𝛿𝑗

𝑟 = 3𝛿𝑖
𝑟 − 𝛿𝑖

𝑟 = 2𝛿𝑖
𝑟 

These results are useful in several situations. 

1.99 Show that 𝑔𝛾𝑖𝜖
𝛼𝛽𝛾𝜖𝑖𝑗𝑘 = 𝑔𝛼𝑗𝑔𝛽𝑘 − 𝑔𝛼𝑘𝑔𝛽𝑗 

 Note that  

𝑔𝛾𝑖𝜖
𝛼𝛽𝛾𝜖𝑖𝑗𝑘 = 𝑔𝛾𝑖 |

𝑔𝑖𝛼 𝑔𝑖𝛽 𝑔𝑖𝛾

𝑔𝑗𝛼 𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛽 𝑔𝑘𝛾

| = |

𝑔𝛾𝑖𝑔
𝑖𝛼 𝑔𝛾𝑖𝑔𝑖𝛽 𝑔𝛾𝑖𝑔

𝑖𝛾

𝑔𝑗𝛼 𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛽 𝑔𝑘𝛾

|

= |

𝛿𝛾
𝛼 𝛿𝛾

𝛽
𝛿𝛾

𝛾

𝑔𝑗𝛼 𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛽 𝑔𝑘𝛾

| 

= 𝛿𝛾
𝛼 |

𝑔𝑗𝛽 𝑔𝑗𝛾

𝑔𝑘𝛽 𝑔𝑘𝛾
| − 𝛿𝛾

𝛽
|
𝑔𝑗𝛼 𝑔𝑗𝛾

𝑔𝑘𝛼 𝑔𝑘𝛾| + 𝛿𝛾
𝛾

|
𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
|

= |
𝑔𝑗𝛽 𝑔𝑗𝛼

𝑔𝑘𝛽 𝑔𝑘𝛼
| − |

𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
| + 3 |

𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
| = |

𝑔𝑗𝛼 𝑔𝑗𝛽

𝑔𝑘𝛼 𝑔𝑘𝛽
| 

= 𝑔𝛼𝑗𝑔𝛽𝑘 − 𝑔𝛼𝑘𝑔𝛽𝑗 

1.100 For vectors 𝐮, 𝐯 and 𝐰, show that (𝐮 ×)(𝐯 ×)(𝐰 ×) = 𝐮 ⊗(𝐯 × 𝐰) − (𝐮 ⋅ 𝐯)𝐰 ×. 
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 The tensor (𝐮 ×) = −𝜖𝑙𝑚𝑛𝑢𝑛𝐠𝑙 ⊗ 𝐠𝑚 similarly, (𝐯 ×) = −𝜖𝛼𝛽𝛾𝑣𝛾𝐠𝛼 ⊗ 𝐠𝛽 and 

(𝐰 ×) = −𝜖𝑖𝑗𝑘𝑤𝑘𝐠𝑖 ⊗ 𝐠𝑗. Clearly, 

(𝐮 ×)(𝐯 ×)(𝐰 ×) = −𝜖𝑙𝑚𝑛𝜖𝛼𝛽𝛾𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝛽)(𝐠𝑙 ⊗ 𝐠𝑚)(𝐠𝑖 ⊗ 𝐠𝑗) 

= −𝜖𝛼𝛽𝛾𝜖𝑙𝑚𝑛𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗)𝛿𝛽
𝑙 𝛿𝑖

𝑚 

= −𝜖𝛼𝑙𝛾𝜖𝑙𝑖𝑛𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗) 

= −𝜖𝑙𝛼𝛾𝜖𝑙𝑛𝑖𝜖
𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗) 

= −(𝛿𝑛
𝛼𝛿𝑖

𝛾
− 𝛿𝑖

𝛼𝛿𝑛
𝛾

 )𝜖𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗) 

= −𝜖𝑖𝑗𝑘𝑢𝛼𝑣𝑖𝑤𝑘(𝐠𝛼 ⊗ 𝐠𝑗) + 𝜖𝑖𝑗𝑘𝑢𝛾𝑣𝛾𝑤𝑘(𝐠𝑖 ⊗ 𝐠𝑗)  

= [𝐮 ⊗ (𝐯 × 𝐰) − (𝐮 ⋅ 𝐯)𝐰 ×] 

1.101 Show that [𝐮, 𝐯, 𝐰] = tr[(𝐮 ×)(𝐯 ×)(𝐰 ×)] 

 In the above we have shown that (𝐮 ×)(𝐯 ×)(𝐰 ×) = [𝐮 ⊗ (𝐯 × 𝐰) − (𝐮 ⋅ 𝐯)𝐰 ×] 

Because the vector cross is traceless, the trace of [(𝐮 ⋅ 𝐯)𝐰 ×] = 0. The trace of the 

first term, 𝐮 ⊗ (𝐯 × 𝐰) is obviously the same as [𝐮, 𝐯, 𝐰] which completes the proof. 

1.102 Show that (𝐮 ×)(𝐯 ×) =  (𝐮 ⋅  𝐯)𝐈 −  𝐮 ⊗ 𝐯 and that tr[(𝐮 ×)(𝐯 ×)] = 2(𝐮 ⋅  𝐯) 

 (𝐮 ×)(𝐯 ×) = −𝜖𝑙𝑚𝑛𝜖𝛼𝛽𝛾𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝛽)(𝐠𝑙 ⊗ 𝐠𝑚)

= −𝜖𝑙𝑚𝑛𝜖𝛼𝛽𝛾𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝑚)𝛿𝛽
𝑙 = −𝜖𝛽𝑚𝑛𝜖𝛽𝛾𝛼𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝑚)

= [𝛿𝑛
𝛾

𝛿𝑚
𝛼 − 𝛿𝑚

𝛾
𝛿𝑛

𝛼]𝑢𝑛𝑣𝛾(𝐠𝛼 ⊗ 𝐠𝑚)

= 𝑢𝑛𝑣𝑛(𝐠𝛼 ⊗ 𝐠𝛼) − 𝑢𝑛𝑣𝑚(𝐠𝑛 ⊗ 𝐠𝑚) =  (𝐮 ⋅  𝐯)𝐈 −  𝐮 ⊗ 𝐯 

Obviously, the trace of this tensor is 2(𝐮 ⋅  𝐯) 

1.103  

  

1.104  
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1.105  

  

1.106  

  

1.107  

  

1.108  

  

1.110  

  

1.111  

  

1.112  
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1.113  
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