Continuum
Mechanics

for Modeling Simulation & Design

OA Fakinlede

The Course, Learning Resources &
Your Responsibility

The Course, Continuum Mechanics, is being moved from a Post-Graduate level, to meet you at
300 Level. This is the first set at the University of Lagos to be taught this way. There may not be
many universities starting this course at such a low undergraduate class. You are the first set to
have this opportunity at 300 level. In that sense you are lucky.

Continuum Mechanics can be thought of as the grand unifying theory of engineering science.
Many of the courses taught in an engineering curriculum are closely related and can be obtained
as special cases of the general framework of continuum mechanics. The balance laws of mass,
momentum and energy that are derived in the context of specific material constitutions are
natural laws that are natural laws and independent of these contexts. This fact is easily lost on

most undergraduate and even some graduate students.

Continuum Mechanics

; : Rheology
Salid Mechanics Fluid & Thermal Mechanics
\i

| Plasticity | @ Soft Materials

h 2
[Strength of Materials] >—[Thermoelasticity]
|

—[Theory of Structures]_

Plates & Shells

—[Fatigue Analysis]—’—[Fracture Mechanics] Hvdrostatics

i |
Fluid Mechanics][Slur'ries. Mixtures, ett:.]

- - Aerodynamics
Biomechanics

' Hypersaonic Fluws]

]

b Tribology

Acoustics

[Plant & Animal Tissues]

il

From the picture above, you will see that many of the other things you will learn on your road to

becoming an engineer are rooted in Continuum Mechanics. If you look carefully, you will see that

these things are not written on a clean sheet of paper. A blank mind cannot absorb them. The
language it speaks is called Tensor Analysis, you need Software to practice and engage more
challenging problems; then Simulation will help you deploy the knowledge gained to design
virtually in order to save prototyping costs. In this set of courses, we take you through all these
stages to enrich your knowledge. The approach here is to optimize your time so to learn things
the shortest way and remain focused on doing engineering with your knowledge. Engineering is
the application of Science to create technology products and services. It is rooted in theory. If
you do not organize the learning of theory very well, you end up with full heads and no products
as we have been doing. If you leave theory and simply do “practicals”, you end up with half-baked
crafts trade —again, no serious products. We are offering you an approach to avoid both extremes
and learn, in order to do engineering correctly.

What you will learn here will alter your view about some of the other courses you will take on
your way to a degree in engineering. If you do your part, you will be given skills, tools and
knowledge that are directed at making you productive people that can change the narrative of
dependency and hopelessness that has been Africa’s story.

In my last year as dean of this faculty, | had the privilege to welcome your seniors when they

started their program here. | quote from that welcome address:

“I want you to be ambitious. One of the biggest problems of the African mind is the absence of serious
ambition. Once a Naija man can be a little better than his neighbor, he appears satisfied! If there is no

electricity, and you get a small noise maker that helps you to watch Manchester United, you are already in

heaven! You seem to forget that the same electricity is available to young people in Singapore 24 hours a
day! And that there is absolutely no reason why Enyimba, the people’s Elephant, cannot be more popular
than Manchester United! What do they have? Football grass fields, one ball, 22 men and hundreds of
thousands of passionate fans! With some clever marketing, this nets them more money than crude oil in its
most comfortable price regimes, can get Nigeria. More depressing is that the City State of Singapore, smaller
in population and size than Lagos, can actually consume over 60% of Nigeria’s oil! That is the meaning of
industrialization! It is lack of ambition that will cause a Minister of Aviation to steal two jeeps! Two jeeps!
Even for all their rapacity, our thieves are not sufficiently ambitious! Why, for example, cannot the Minister
of Aviation ensure than Nigeria can buy 100 of the latest wide body jets such as A380 or B777 and then steal
two of them at the cost of nearly 1 billion dollars each! But once they can drive two jeeps in a convoy and
use sirens to chase others from the road, even if they cannot comfortably get to where they are going, they

are already satisfied!”

http://oafak.com/2016/01/welcome-address-to-the-set-of-2020/
http://oafak.com/2012/06/against-manchester-united/

This first chapter is an attempt, not just to remind you what you already know in vector analysis;
it is designed to make you deepen your understanding of this most basic of tools in learning
continuum mechanics, and prepare the way for tensor theory. If you understand vectors deeply,
you have no problem in understanding tensors. When you are struggling along in the latter, the
problem often comes from shallow understanding of vectors. Let your ambition be greater than
just getting a good grade in this course. We have much more than that to offer you. You can be
a real engineer that creates a future for yourself, make a comfortable living and help others to

become successful. That is our goal. What is yours?

Learning Resources

The first resource you will meet is your lecturer. We have prepared for you. You will quickly see
that this is not “just another course”. We will listen to you; please ask us questions because we
will answer you. When we cannot find the answer immediately, we will tell you. We don’t know
everything, but we know where we can find useful information to help you.
The book. There are seven chapters. You are only covering chapters 1-3 in 300 level. If you do it
well, things get easier as you go along. If not, it will keep getting more difficult. Please start early
and do not fall behind. This is a marathon!
Q&A. There are usually at least sixty problems in each chapter. Some have more than one
hundred. ALL problems are solved. They are to give you practice and further elucidate the theory.
Some of the questions are to be programmed. Our language and environment of choice is
Mathematica® . Do not fear, we will be gentle with you and you WILL see that programming is
achievable and that you can thrive in it! Make an effort and ask questions when you get stuck. In
this course, you are NEVER completely stuck unless you choose to remain so! Here are the levels
of assistance you may use:

1. Your classmate that may be better in the topic or understands the material more than

you or has already gone through the particular problem. That is the first line because she

is the most easily accessible help for you.

2. Internet. It is a good idea to browse before throwing in the towel in surrender for any
issue. There is scarcely anything you want to know that something has not been written
about. You can become more knowledgeable each time you hit a roadblock.

3. Interactive materials. The book, the slides, Q&A, video, audio and other things that we
shall deploy to teach this course are all available online. You can post questions and we
will respond as appropriate. Please use this resource thoughtfully. You can reach your

lecturer at her address she will give you. You can also ask me questions www.oafak.com

specifying the issue that is problematic: page number or question number. If a matter is
a general problem, we will do an addendum to explain it better.

4. Mathematica. You can get a lot of help on Mathematica from the installation itself. There
is an enormous amount of teaching, examples and documentation once you have it
installed. Again, you can ask us questions if you have difficulty using it. You can also join

the Mathematica Stack Exchange Group on the Internet to post questions and read

answers to other questions.
Feedback on the way you use the materials are also welcome as they help us improve. That can

help the next set as we give them even better materials.

Your Responsibility

The first responsibility you have is to receive and act on instructions for this course. We do not
like to say things more than once. They will be written, and you can go and be looking as many
times as you like. Dates and times for assignments are given. Materials to cover before coming
to class are specified. Please, make things easy for everybody, read and act on instructions.

The second is actually a superset of the first. Be ambitious! There are many people that have had
good grades in university and still ended up in dependency upon their families and friends. Your
case can be different, not just because you prayed for a miracle, but because you simply work
hard! Aim at understanding; passing and getting good grades will accompany that in this
course. Everything you are taught is geared towards design and product making. Be ambitious to

be the best engineer you can be and make a difference.

http://www.oafak.com/
https://mathematica.stackexchange.com/questions/96437/curl-of-a-second-order-tensor

Coming to class unprepared, coming late and disturbing the class with hypocritical greetings, are

even worse than not coming at all! Come to class, come on time, come prepared! Come!!
... and, finally ...

Welcome to the course on continuum mechanics. We are ready and have been waiting for you!
We enjoy the course and we hope to infect you with our enthusiasm for it. We hope that,

together, wd shall have a good ride.

OA Fakinlede

oafak@unilag.edu.ng
Lagos, July 8, 2019

About the Author

Omotayo Abayomi Fakinlede received BSc Eng at the University of Lagos in 1377 and PhD from the University of Alberta in 1385, Both degrees are in
Mechanical Engineering. He taught at the Mechanical Engineering Department of University of llorin 1980-1398, was director of Energy Information
Systems at the Energy Commission of Nigeria until his present stint at the University of Lagos where he has been head, Systems Engineering and
more recently, dean of the Faculty of Engineering. He is currently Professor of Systems Engineering with interests in Mechanics. Design and
Analysis.

mailto:oafak@unilag.edu.ng

Vectors: Elementary Principles &
Computations Practicum

“God made the integers, all else is the work of man.” — Leopold Kronecker

MetaData

The prose, video, slides and the Q&A in this chapter are directed at scoring the following points:

1. A set of linearly independent vectors is a set where one member cannot be expressed as a linear
combination of the others.

2. When you have the maximum number of such vectors in a set, all other vectors in that space can be
expressed as linear combinations of the members of this set. The set of orthonormal vectors, {i, j, k}, we
are used to in the Cartesian form is only one kind of such a set. Occasions will arise that will make other
linearly independent vectors useful to know.

3. When a set is complete — having the maximum number of linearly independent vectors, it is said to form a

basis of the vector space that it spans. These words are codes to express the fact that they can be used to

represent any other vector in the space. All that will be needed is the set of scalar weights (or scaling factors)
of the basis vectors will represent each vector.

4. These scalars are called components of the specific vectors represented. Once they are found, with the
basis in mind, we use them instead of the vectors they represent because analyses are easier done with the
components.

5. #4 above can lead to confusing the vector with its matrix representation. The components of a vector are
meaningless unless we specify the basis vectors underlying the representation. This is where the vector,
and as we shall see later, the tensor objects, significantly differ from the matrices they look like.

6. The number of vectors constituting a basis spanning the space is the dimension of that space.

7. We gain valuable compactness using the index notation and the Summation Convention. Mastering it early
is a great advantage for later work.

8. Other topics treated include Coordinate transformations, Dyads and Rotations. General Curvilinear
coordinates are introduced as an advanced topic that can be omitted at first reading.

9. The chapter ends with a brief introduction to Software (Mathematica) the we use to avoid tedium and helps
to tackle more challenging problems than could be easily done manually or with a calculator.

10. Mathematica is one of two important software for the series of lectures and courses. Students that start
early with the software will gain a lot of ground, will find that the subject helps to learn the software and
the software makes learning the subject easier. There will be a lot of examples you CANNOT easily do
manually. Those that postpone learning the software are already failing! The best time to learn is at the

beginning! You gain a lot and should never be behind!

Notation

In this chapter, we shall be dealing with vectors and scalars. We adopt the following notation

from elementary set theory:

Table 1. Notation

a”B ER a and [belong to the space of real numbers. Or simply, « and S are real
numbers.

v,weELE v and w belong to (are members of) the Euclidean vector space [E This is a
set of vectors that allow the definition of the dot product. In three
dimensions, it also allows the definition of the cross product.

5t

0ijy O]

ijr

€ijk

ijk
e*, ik
e, €, €5, ...

81, gz; gs;
g' g8’

gurgii

VXV
VXV XV

Kronecker Delta, Mixed Kronecker Delta; Coefficients of the Identity tensor

Alternating, Levi-Civita Symbol. Also the coefficients of the Alternating tensor

covariant and contravariant alternating tensor components

ONB (Ortho-Normal Basis Coordinate System) Base Vectors

Covariant Base vectors

Contravariant Base Vectors

Covariant and contravariant metric tensors, Non-Cartesian identity tensor

components

Real space; Set of real numbers

Real Vector Space

Product Vector Space. Pick two vectors or one from each space, that is an
element of the product space. For example, If u,v € V, u X v = w could be
written as the transformation from the product space, V X V - V while u -
v=wisV XV - R from the same product space to the real space. An
example of VXV XV — Ris the scalar triple product. While

VXV XV > Vistypified by the vector triple product operation.

Euclidean Vector Space. A real vector space in which the inner product is

defined. In 3-D, a vector product can be defined.

Belongs to, member of.

Euclidean Point Space. Where we live. Where objects we are interested in
physically reside. It is related to a vector space. It is NOT a vector space. Its

elements are points.

\v4 Shorthand representing “for all ... ”

X Binary operator for Dyad or Tensor Product
= There exists
Introduction

A vector, roughly speaking, is an abstract representation of quantities that have magnitude,

direction and sense. In this chapter, we start by repeating, in a summary form, several of the

established notions of what a vector is, and what operations are valid for them with one another

\
\
\ . .
L I— Direction
AN
\

Magnitude
Sense

Figure 1. Vector magnitude, direction and sense

and with scalars. These are essentially

repetitions of the way you have been taught
Vector Theory thus far. It will be seen later that
there are other ways of learning the subject.

From our knowledge of Mechanics and similar
remind us of forces,

subjects, vectors

velocities, moments, angular velocities,

displacements and several quantities that
have, in common, the fact that “magnitude” or
“size” is not sufficient to quantify them; we
for full

must add direction and sense,

characterization. A plane area, for example,

can be thought of as a vector quantity if we add the outwardly drawn unit normal to its full

description. In that case, the line of the normal is the direction, and the fact that it is “outward”

is the sense. The inward normal is the opposite vector in the same direction.

This idea is widely applicable and props up in virtually everything we do. A more abstract — hence

more widely applicable definition will be given later. It is very well and good to be clear on the

meaning of the elementary notions at the outset. More accurate definitions will still include this

as a special case as we shall see.

10

In figure 1, the length of the line gives us the magnitude of the vector; the direction of the line
gives us the direction of the vector while the arrowhead indicates the sense of the vector.
Furthermore, we assume that two vectors are equal if they have the same magnitude and are
directed the same way.

Defined in this way, a vector may represent a force, an acceleration, a moment of an angular
velocity. While these quantities are divers and represent vastly different things, in so far as each
requires a magnitude, as well as a direction and a sense for full representation, the concept of a

vector can be used to represent each; and we gain valuable analytical ability for doing so.

Vectors: Basic Properties

Equality of Vectors.
Two vectors are equal if their magnitudes, represented here by the b/

lengths of the arrows, are equal, and they are pointing in the same

AN
AN

direction. Accordingly, in figure 2,
C
a=b+c
. . Figure 2. Equal, opposite
While the three vectors are parallel, and of equal magnitude as they ectors
are contained within the same parallel lines, and they are not all
pointing in the same direction. Two vectors that are equal and parallel but pointing in different
directions are negatives of each other:

a=b=-c (1D

It also follows that, —a = —b = c.

Vector Scaling.
b We assume that the spacing lines in figure 3 are separated from each
a other by one unit as shown. Vector a has a magnitude of one unit. If
the lengths of b, c and d are 3, 3.5 and 2 respectively, then we have

A that, b = 3a; ¢ = —3.5a; and d = —2a —the signs being dictated by

. . the sense in which they are pointing. These vectors are all scaled
Figure 3. Vector Scaling

versions of a. The scaling factors are real numbers and are therefore

11

called “scalars” for this reason. One property of a vector we often take for granted is that it is
something that can be scaled. These relationships are the operation of “multiplication by a

scalar” or scaling of vectors. From this relationship, it is clear, for example, that,

3
= e 2
b =3a 3.5c (2)

in which case, c is a scaled version of b, the scalar in this case being ey This means they are
not only scaled versions of a but also scaled versions of one another as the last example shows.
The negative of a vector is simply the scaling of the same vector by a scalar value of —1. Scaling

with a value of unity retains the original vector.

Vector Addition, Subtraction.

Vectors can be added or subtracted from each other. The parallelogram law of addition governs
this operation:

In the two figures below, we have vectors a and b. To effect the parallelogram law of addition,
we place the tail of a at the tip of b or vice versa. In either case the resultant shown is the addition

of the two vectors by the parallelogram rule.

b

a a+b

Figure 4. Parallelogram Rule

In Figure 4b, the same law is applied; this time to vectors a and —b. Hence, subtracting vectors

is simply effected by the addition of its negative to the other as shown.

Scaled Projections or Scalar Product.

As we have seen previously, we can scale a vector by simply multiplying it by a scalar. Another
important operation for vectors is the scaled projection also called the “Scalar product”. Before
we define this, observe that there is a fundamental difference between a scalar product on the

one hand, and multiplication by a scalar on the other. Disambiguating these is very important

12

and simple: Multiplication by a scalar takes place between a real number, (called a scalar or a
scaling factor) and a vector; the result of the operation is a new vector, in the same direction as
before with a sense dictated by the sign of the scalar multiplier. The scaling may increase or
decrease magnitude, depending on the value of the scaling factor. In the multiplication by the
scalar a € R,

b =aa (3)

a = 1 leaves the length unchanged, 0 < |a| < 1 creates a decrease in length, while |a| > 1
increases the length.
On the other hand, scalar product is an operation that takes place between two vector operands:

If a and b are both vectors, then the scalar quantity,

l=a-b (4)
Is the scalar product of a and b. This product is also 4
called the dot product on account of the operator “-” Q ““\\
used to represent it. In order to define this product and é’o J A s ~

~

/
/
/
-,
/
/

O
=
give it a geometric meaning, consider vectors a and b in 'Q\ /
X /

figure 5. Here, we project a line from the tip of vector a

.
P

§ -

perpendicular to vector b as shown. There is another — g o
(§)

line from the tip of vector b to a (we needed to elongate \\a\\ C
a to make this possible). We examine the product of the Figure 5. Components and Scalar product
projection of a on b and the magnitude of vector b:

l|a]| cos @ X ||b]|.
Comparing this with the product of the projection of b on a and the magnitude of vector; we find
they are equal:

lla]l cos a x [|b]| = |[b]| cos a x ||a]| (5)

The result on both sides of the equation is a scalar quantity. It is a product consisting of the two

vector magnitudes and the angle between them, the largest value occurs when the angle is zero.

13

There is a shorthand for expressing this idea: It is called a scalar product. The scalar equality is
defined as the scalar product of the two vectors, that is,

a-b = |allllbll cos a (6)

If ||b]| = 1, thatis, b is a vector of unit magnitude, also called a Unit Vector, then this quantity is
the projection of vector a on the direction of b. The converse is also true when a is a unit vector.
This product is called a Scalar Product with the emphasis on the scalar result of the operation. A
dot between the two vectors is the symbolic expression of a scalar product of two vectors. As a
result of this, scalar products have the nickname, “Dot Product” reminding us of the fact that we
let everybody know that the product we want is the one that produces scalar result and we use

the dot to signify that intention.

Cross Product: Vector Area of a Parallelogram
Consider the rectangle, figure 6, whose base is vector u with height h as shown. Its area is
obviously

A, = base X height = ||u||h.

Triangle Il completes the parallelogram so that its slanting side is parallel to vector v. Congruency

of and Il is assured as they are both right

angled triangles. Removing | gives the

SC

parallelogram, keeping it and removing 11

gives the rectangle. The rectangle is

therefore of the same area as the
parallelogram. But h = ||v]| sin 8. Area of Figure 6. Area of a Parallelogram
the parallelogram is therefore,

Ap = Ay = |[ull|lv]|sin6 (7)

For two vectors, u and v, we imbue the above scalar area with a direction. We choose this
direction to be the outwardly drawn normal to the plane containing u and v which is also the

direction of movement of a right threaded screw rotated from vector u to v. Let the unit vector

14

along this normal be e. We define the cross product of u and v as the vector area of the
parallelogram formed by the two vectors such that,

uxv=A=A4,e=|ullvl|sin6e (8)
We have just completed the definition of the vector
product between two vectors! As before, there is a special
symbol for showing that you are carrying out a vector
product between two vectors; it is the usual multiplication

sign. We refer to it as the “cross symbol”. It is therefore

customary to give the vector product the name of the Figyre 7. Direction of Unit Vector e
operator symbol used to signify it. You are free to call it

Vector Product or Cross Product.

Note that we have defined three kinds of products. They are scaling, scalar product and vector
product. They have other names. The set of names we have also introduced here are coined from
the operator symbols to represent them. Given that « is a scalar, and that a and b are vectors,

the following table depicts the operations we have defined thus far:

Table 2. Products with vectors

Scalar b =a«a Vector b in the same direction Scaling
Multiplication as a. Scaled to the value of

a. Sense depends on the sign of
a

Scalar Product | a-b = ||a]|||b]| cos @ | Result is a scalar value. Here a is | Dot Product,
the angle between the two Inner Product
vectors.
Vector Product uxv=A=A4e Result is a vector value. It’s Cross Product
magnitude is the scalar area of
the parallelogram formed by the
vectors. Here a is the angle
between the two vectors.

= |lull|[v]| sina e

Observation.
The above table has one important implication: “product” or “multiplication” of vectors has at
least three meanings. (A fourth meaning will be introduced later in this chapter). To simply say,

take a product, when referring to vectors, is therefore ambiguous. It is important that a specific

15

product be specified unless the context explicitly makes the product in question transparent. It
is often necessary to therefore qualify which of the four products we have in mind explicitly. This
is the reason why they have different operator symbols in the first place. Note that while other
products take place between two vectors; the first, multiplication by a scalar, takes place
between a vector and a scalar or vice versa.

Furthermore, while the other products listed are commutative, the vector product (and tensor
product also as we shall see) is not commutative. The vector direction of the product reverses

when the operands are swapped. More of this later.

Linear Independence, Basis Vectors

In the first instance, we further assume that this vector is contained in a plane. Suppose we
introduce two new vectors a and b. The only thing we require is that these two should not be
collinear; their directions are different. We do not, for example, require these two new vectors
to have unit magnitude; neither do we require them to be orthogonal, but they are not collinear.
We will argue that these two vectors can be used to

y = ﬁb express any other vector on the plane in the sense

that we only need two scaled versions of them to
add up to any other vector. If we succeed in
showing that, we then say that the two vectors span
the space given by the plane. This idea of spanning
comes from the fact that we can always select two
scaling factors for the two vectors. With these, we
can represent any vector as the weighted sum of

the two vectors using the two scaling factors (or

Figure 8. Representing a vector by Linearly scalars)

Ind dent vect . .
naependent vectors At the tip of the vector f, we draw a line parallel to

b. At the tail of the same vector, we draw another line parallel to a. It is easy to see that the
vectors X and y, chosen along these lines are parallel to a and b respectively. Consequently, we

may write that X = aa; andy = fb where a and 8 are the scaling factors (real numbers that can

16

be positive or negative). From the forgoing, we see clearly that any vector f on this plane can be
expressed as
f=x+y
=aa+ (b ©)
a.f € R. Where the above shorthand simply means that the scaling factors belong to the class
of real numbers.
The proviso that the two vectors MUST not be collinear is paramount. If they were collinear, it
would not be possible to guarantee that every vector in this plane can be so represented. We
hereby conclude by this geometrical arrangement that in a 2-D plane, the maximum number of
vectors that can be used in this way is two because a third vector can be expressed in terms of
the other non-collinear two.
Another way of expressing the fact that these two vectors can be used, with appropriate scalars,
in a weighted addition, to represent any other vector, is to say that the set {a, b} forms a basis
for the plane in question.
Notice that it is a basis. There could be other pairs that can equally form a basis for this plane.
One such famous pair is the coordinate unit vectors {i,j} that have unit magnitude and are
directed (orthogonal to each other) along the x and y —axes in a Cartesian system of coordinates
when the plane in question is the x — y plane. There are several ways you can obtain the vectors
to form the basis in any plane. One thing they must have in common is that it MUST not be
possible to express one as a scaled version of another. When that condition is satisfied, we say
that the vectors are Linearly Independent. A set containing the maximum number of linearly
independent vectors is what you need to form a basis in any situation.
A further observation about the basis vectors. It is possible to complete the parallelogram with
the other two sides parallel to the basis vectors. One geometric way to check if the vectors truly
form a basis (equivalently, are linearly independent), is that the parallelogram formed must have
a non-zero area. Given that @ is the angle between the two vectors, the area of this parallelogram
is given by the base times the perpendicular height,
A = |lalllib]l sin6 = |la x b| (10)

Hence, we can say that any two vectors such that a X b # o can be used as basis in a 2-D plane.

17

Linear Independence, 3-Dimensional Space

In three-dimensional space, we must require, in addition to the fact that our three vectors be
non collinear, they must not all be contained in the same plane. If this condition is not satisfied,
they will not be able to represent the vectors that are not contained in the plane. We hereby
introduce the set of vectors {a, b, ¢} that are not collinear and not coplanar as shown in figure

1.3 below.

Figure 9. Linear Independence, 3D

The first two basis vectors {a, b} are drawn on the x — y plane. The third vector, ¢ is shown in
pink and drawn near the z —axis. A typical vector in this 3-D space can be constructed as shown
in the directed line in yellow. In order to represent this vector in terms of the three basis vectors,
construct the plane containing vectors, ¢ and f. Drop a line from the tip of f to the x — y plane
containing {a, b}parallel to vector f. Call the vector image of f on the x — y plane x. The vector
on this oblique plane, parallel to cis called y. The fact that x on the same plane as a and b means
we can, as we just did in the 2-D case represent it by the two basis vectors in that plane.
Therefore, we can easily find a.f € R such that,
x=aa+ (b (11)

We recall that y is parallel to ¢, hence, 3y € R such that, y = yc. Consequently, any 3-D vector
f can be expressed as,

f=aa+ pb+yc (12)

18

The set, {a, b, ¢} forms a basis for the 3-D space. A tetrahedron formed by joining the tips of this

set of basis vectors has a base that is half the size of the parallelogram base.

Dimensionality of Space

One Dimension
A collection or a bag full of vectors, which when each is uniquely identifiable is all we mean by a
set of vectors. Somehow, some influential people feel we should call a set of vectors, a vector

space. Consider the collection, or vector space in the picture below.

Figure 10. One Dimensional Vector Space

Imagine it goes on both sides such that we have many elements in the set. If we take one vector
in the list, call it a; any other vector b can be represented as a scalar multiple of a. Alternatively.
Given any other vector b in the vector space, the equation
aa+fb=o0 (13)

can always be solved for b provided 5 # 0, this equation can be simplifiedto b = —%a. In which
case, once we have identified vector a, all we need to represent any other vector in the space is
the scalar — %, which can take fractional, decimal, positive or negative values, as a multiple of a.
We express this fact by saying that “vector a spans this space”. It forms a basis of this space from
the fact that every other vector can be expressed by a scalar multiplier of a; and the dimension

of this space is one because only one vector is needed to span the space. It is just a basis because

we could have chosen any other vector to perform this function. Therefore, there could be other

bases. A different choice of basis leads to different set of choices for the scalar —%to define

define each element in the new basis. The fact that any basis we correctly select contains only

one vector what makes this a one-dimensional vector space.

19

Two-Dimensional Space
Consider another bag, collection or set of vectors (Figure 11) as shown below. Here, all the
vectors are contained in a single flat plane. We showed earlier that any two non-collinear vectors,
say a and b among these can be chosen in such a way that the other vectors in the vector space
can be expressed in terms of scalar multiples of the two. We also showed further that once these
are chosen, any other vector X can be expressed as a sum of scaled versions
x =aa+ b (14)

of this two so that, a and b that have been so chosen have formed a basis of the vector space.
Furthermore, given any vector c in the space, the equation,

aa+fb+yc=0 (15)
can be solved for ¢ provided y is not zero.
This means that the maximum number of
linearly independent vectors in this space is
two. This makes the plane a two-
dimensional vector space. In such a space,
the maximum number of linearly
independent vectors you can have is two.

There is no uniqueness about the choice, as

another two non collinear vectors may as

‘ well have been chosen. .
_p

Three Dimensions

."\
}\i

The arguments above can be carried to three
Figure 11. Two Dimensional Vectors dimensions. A geometric interpretation can
be given. With a more accurate

mathematical definition of vectors, we can even go to higher dimensions. Once we are past three
dimensions, however, a geometric interpretation will no longer be possible, but the concept can

remain useful for analytical purposes.

The maximum number of linearly independent vectors in a three-dimensional space is three.
These will, in addition to not being collinear, they MUST NOT all be coplanar. That means that

once you have four or more vectors, one will be expressible in terms of the other three.

Components in Different Bases

Up till this point, you may have taken for granted, the fact that you could express any vectors in
terms of the basis vector set {i, j, k} or {e;, e,, €3} which are orthogonal unit vectors along the
three coordinate axes in a Cartesian system of coordinates. Two properties of these vectors are
that they are mutually orthogonal and that they have unit magnitudes are quite useful. They not
only allow you to express any given vector in terms of these basis vectors, they also, by these
attractive properties of normality (unit magnitude) and orthogonality (being at right angles bgto
one another) make the computation of the coordinates along the basis vectors very simple.
Despite this, it is important to note that, we DO NOT have to require these properties in order to
conclude that a set of vectors can form a basis. What we have proved here is that, in three
dimensions, a set of linearly independent vectors (orthogonal or not, normalized or not) can form
a basis set. Any other vector in the space, as we have shown above, can be expressed in terms of
their components along these vectors. The method of computing their components along these
axes may be more difficult; the fact remains they can be found.

It turns out that occasions will arise when we will no longer require our basis vectors to be
orthonormal. However, the linear independence requirement will always be made because it is
only linearly independent vectors that can form a basis for any space. Orthonormal sets form
basis; not all basis vector sets are orthonormal; Orthonormal sets are linearly independent; not

all linearly independent sets are orthonormal.

21

Volume of a Tetrahedron
The area of the triangular base of the tetrahedron (Figure 12)

formed by three vectors a,b and c is half the parallelogram

formed by the same vectors. Hence this base is %a X b with the

B
\\b
vector area directed at the normal to this plane. If we take the dot
product of this with vector ¢, we have obtained the base times
a height. However, for a tetrahedron, or any volume obtained by a
. flat area lofted linearly to a single point is one third of this as we
Figure 12. Volume of a
Tetrahedron shall show (See Q&A 1.14). Consequently, a tetrahedron formed

by the three vectors has the volume

V—1(1 xb) laxb o =2a-bxcl (16)
—-3 221 C = 6 a C|l = 6 a C

As before, linear independence requires that the volume of this tetrahedron be nonzero. That

means that no two of them can be colinear, and the three cannot be coplanar.

Volume of a Parallelepiped

A parallelepiped (Figure 13) with sides
bound by vectors u,v and w with u
subtending an angle 6 on the
horizontal plane while w is inclined at

angle a to the vertical axis. The base

area

A= |[u]l|[v]lsin8 = [||u x v||

Vertical height, h, of the object is ||w]|

Figure 13. Volume of a Parallelepiped

cos . Volume therefore is
V = Ah = ||lu x v||||w]| cos

= |luxv- wl. 17

22

Orthonormal Basis (ONB) Vectors

It is often (not always) convenient to use the Cartesian System of coordinates. We can choose a
convenient set of linearly independent vectors that are unit vectors and mutually orthogonal to
one another. Instead of the calling this set {i, j, k} it is found more convenient to refer to them
as {e;, e,, e3}. In this case, e; X e, - e; = 1. The base vectors of the coordinate system is now
an indexed object. We can depict the as e;, e, and e;. We could also have written, e;,i = 1,2,3
ore;,i=1,..,3.
If you are going to be severe and argue that this change in the method of representation does
not amount to much; let us politely disagree: Imagine you have ten of them. In the earlier case
you have to write, {i,j,k,1,m,n, 0, p, q,r }. If there are 30, then you will run out of symbols and
may need to look for another naming strategy. For indexed objects, the answer is very simple:
e, i=1,..10,0re; i =1,...,30 are equally easy! By the time we add the parsimony afforded
by the summation convention, (next section) it will gradually become clear that there is no
comparison in the ease of usage between indexed objects and regular symbol usage.
A typical vector f can be written in terms of the basis vectors as,
f=aa+pfb+yc=ae; +a,e,+ase; (18)

The scalars a4, a,, asin this case are easily found by taking the dot product of the equation with
€1,

f-e, =a,e,-e;+a,e,-e; +aze;-e; =a,. (19)
And we can similarly take products with e, and e; respectively and obtain that, a, = f - e,, and

a3=f'e3.

The Einstein Summation Convention

We introduce an index notation to facilitate the expression of relationships in indexed objects.
Whereas the components of a vector may be three different functions, indexing helps us to have
a compact representation instead of using new symbols for each function, we simply index and
achieve compactness in notation. As we later deal with higher ranked objects (for example,
tensors), such notational conveniences become even more important. We shall often deal with

coordinate transformations requiring such indexing.

23

When an index occurs twice on the same side of any equation, or term within an equation, it is
understood to represent a summation on these repeated indices the summation being over the
integer values specified by the range. A repeated index is called a summation index, while an
unrepeated index is called a free index. The summation convention requires that one must never
allow a summation index to appear more than twice in any given expression.
Consider the following set of transformation equations between variables sets,
{x1,x2,x3} or x;,j = 1,....3 and {y1, ¥, y3} or yi, k = 1, ...,3.

Y1 = Q11X + AgpXp + Ag3X3

Y2 = Qp1X1 + Az2X3 + Az3X3 (20)

Y3 = a31X; + A3pX; + A3z3X3

We may write these equations using the summation symbols as:

=
I
INgE

-
1l
[y

aqjXj

azjXj

Ny
I
M=

~
1l
oy

(21)

asjXj

&
I
INgE

-
1l
[y

In each of these, noting the repeated indices that can be made to signify summation, we can
invoke the Einstein summation convention, and write that,

Y1 = AqjXj; Y2 = QAzjXj; Y3 = UzjX; (22)
Finally, we observe that y,, y,, and y; can be represented as we have been doing by y;, i =
1,2,3 so that the three equations can be written more compactly as,

yi =a;jx;, =123 (23)

Please note here that while j in each equation is a dummy index, i is not dummy as it occurs once
on the left and in each expression on the right. We therefore cannot arbitrarily alter it on one
side without matching that action on the other side. To do so will alter the equation. Again, if we

are clear on the range of i, we may leave it out completely and write,

24

Vi = a;X; (24)
to represent, more compactly, the transformation equations above. It should be obvious there
are as many equations as there are free indices.

If a;; represents the components of a 3 X 3 matrix A, we can show that,
a;jajx = by (25)
where B = [bij] is the product matrix AA.

To show this, apply summation convention and see that,

Table 3. Summation convention

N

aq11Qq1 T A12031 + Q13031

]
Bl
- 2 a11042 + A1207; + A1303; by,
- 3 a11Q93 T A12023 + A43033 bi3
_ 1 A21011 1 Q220721 T Q3031 ba1
_ 2 a21012 + Q2057 + A2303; by,
_ 3 (21013 1 Q22023 T Ap3033 by3
1 a31041 T 32021 t A3303; bs1
2 a310a12 1 a3202; + A33a3; bs,
3 a31043 T A32073 t A33033 b33
The above can easily be verified in matrix notation as,
a1 aiz\ /11 Q12 Q13 bi1 biz by
AA =|az A3 || @21 Q22 Qz3 | =|by; by, by3|=B (26)
asq asz3z/ \az1 Az d04szs bs; b3, bss
In this same way, we could have also proved that,
a;jayj = by 27)

Where B is the product matrix AAT. Note the arrangements could

intuitive.

Points to note:

sometimes be counter

1. Anindex must not be repeated more than once in any term. A repeated index is called a
dummy index.

2. Dummy indices are mutable. Changing one pair to another pair, unused index, in the
object does not change value. For example, apay; = a,Q4j = Apam; = a104; +

azazj + a3a3j
3. IMPORTANT: Because of #2, use a pair of new dummy variables to avoid situations that
could have caused more repeats than allowed.

Also do not forget that the Einstein summation convention is a matter of convenience, allowing
us to avoid writing too many summation symbols. The meaning of the expressions and equations
are not affected by the correct use of this convention. A great deal of reduction in written terms
can be achieved, nevertheless.

Orthonormal vector components again

In a previous section, we introduced the orthonormal basis vectors, e;, i = 1,2,3 With respect to
this basis, we can express vectors v, w in terms of the basis as, v = v,e; + v,e, + v;e; = v;e;,
w = w;e;. The summation sign is no longer needed because of the summation convention. Each

v; is called the component of v, while w; is called the component of w
The Kronecker Delta. §;;
The Kronecker delta is a symbol with two indices. The value attained depends on the values of
the indices. In our case, each can assume values ranging from 1 to 3. The value of the symbol
itself depends, not so much on the indices directly, but on their equality or non-equality. When
the indices are equal, the Kronecker Delta takes the value of one; otherwise, its value is zero.
Here are all possibilities:
011 =1,812=0,8;3=0
6,1 =0,0,,=1,08,3=0 (28)
031 =0,083,=0, 633 =1
These nine equations can be summarized in the simple form:

1, ifi =j
0, otherwise.

The Kronecker Delta, for reasons that will later become obvious, is called the substitution
symbol. We will later also see that they are the components of the Identity Tensor when referred
to Cartesian coordinates.

Consider the scalar product of two Cartesian base vectors, €;and e;.

26

ce = {12 (30)
This is precisely the same as the definition of the Kronecker Delta! It is therefore clear that
e -e =0 (31)
Foranyv eV,
vV = v;e; (32)

is the vector expressed in component form using the summation convention. Taking the inner
product of the above equation with the basis vector e;, we have

v: ej =v;e; ej = vl-Sl-j

(33)
= v101j + V,0,; + V303
We now examine the value of both sides for different values of j:
J=1v-e; = 1,61+ V,0;j + V3035 = V1611 + V20,1 + V383, = vy;
J=2,v-e;= 1181 +v;0;; + V305 = 1101, + V0, + V363, = v, and
J=3,v-e3 = 11013 + V0,3 + V3033 = V3
In all cases, therefore,
v-e =v; (34)

which contains the expressions for v, v,, and v3 as we allow j = 1,2,3 in the above equation.

Substitution Symbol

The epithet of “substitution symbol, as applied to the Kronecker Delta is the result of the above
result: v;6;; = v;! It is a general rule: When you have the product of the Kronecker Delta and
another object with which it shares an index, the result of that product is to remove the
Kronecker Delta and allow a substitution of the symbol that was not shared as in this expression.

Look at the following examples:

SaB 61’0: S ip

Tijk0jq Tiak

81j0q;j Sia

8:;6i; 8iy = 6jj = 811 + 032 + 633 =3

N

7

€ijj = Cikk

The Alternating Levi-Civita Symbol.

Consider the following determinant of Kronecker Deltas,

61i 615 Ouk
eijk = Py 5zj 62k, where the indices [,j and k, varying column to column, can take the
83; 035 O3
values 1,2 or 3. Clearly, the values i = 1,j = 2 and k = 3 gives the determinant,
611 612 O13 1 0 O
€ijk = €123 = |021 022 O3 =[0 1 0[=1 (35)
831 03, 033 0 0 1

once we apply the definition of the Kronecker Deltas, it is clear that this is the determinant of

the Identity Tensor. A simple check reveals the fact that

€123 = €31 = €312 =1 (36)
€132 = €321 = €213 = —1
and the value of this quantity is zero in every other case as can be checked by a simple
determinant expansion. Those cases include situations when one or more of the indices is equal
to another.

We can arrive at the same relationship if, going row-wise, we define

67*1 6r2 67*3
erst = |0s1 052 Os3 (37)
8t1 Oz O3
Again, just as the previous case,
€123 = €31 = €312 =1
(38)

€132 = €331 = €213 = —1
with all the other cases returning zero. In either of these cases, the symbol, e;j or e,s as we
have defined it, is called the Levi-Civita or Alternating Symbol. An even permutation of its
symbols retains sign while any odd permutation negates the sign. This behavior can be predicted
from the knowledge of determinants. A row or column swap negates sign while two row or

columns swaps becomes a double negation of sign and gives positive. Consequently, even

28

permutations result in sign preservation while odd permutations negative. It is said to be
perfectly anti-symmetric.
Continuing with the determinant interpretation, equality of the indices denotes a determinant

with repeated rows or columns. Clearly, we have zero value for such a determinant.
Products of Alternating tensors
Consider the product, e,z e;ji of the alternating symbols — the determinants we just defined. We

will proceed to show that,

6ri 6rj 6rk
erscCijk = |Osi Osj Osk (39)
O Ot Ok

The definition of e;;; and of §;; immediately shows that,

611: 51] 51’(61'1 61'2 61"3
Cijk = 82 62] 82k ,and ey = (051 b5z O3
631' 63] 63k 6t1 6t2 6t3
The product,
61'1 61"2 61"3 61i 61] 61](
€rstCijk = 051 OG5z O3 82 62j B2k
8t1 O Op3l|63; O35 O
6r161i + 6r262i + 6r353i 6ra5aj Srasak
= Ssaaai Ssadaj Ssasak
6ta6ai 6ta6aj 6ta6ak
6ri Srj 6rk
= 65i 65j 65k
Oti Otj O

(We showed the first working only; as an exercise, work the others out). We now consider a
situation when one of the indices of the alternating symbols in a product are the same. To do

this, we begin from the above result:

Given that
51‘1’ Srj Srk

ersteijk = |0si Osj Osk| we now show, by setting t — k in this expression, that
Ot Oty Ok

€rskCijk = 5ri55j - (Srj(ssi (40)

29

Clearly, not forgetting that repetition of an unknown index signifies a summation,
6ri 6rj Srk 611' 6rj 6rk 6ri Srj 6rk

€rsk€ijk = 6si 65j 65k = 651' 65j 6sk = 6si 65j 651{
Ori Okj Ok Ori Okj 011+ 832 + 833 Ori Okj 3
Expanding the equation, using the third row, we have:
Srj 6rk 6ri 6rk Sri Srj
65j 65k 651' 6sk 65i 65j
= 6ki(6rj65k - 65j6rk) - 6kj(6ri6sk - Ssidrk)
+ 3(6ri6sj - 6si6rj)

= 6rj65i - 65j6ri - 6ri65j + Ssisrj + 3(6ri65j - 65i6rj)
= _2(6ri65j - 6si6rj) + 3(6ri65j - Ssisrj)
= 6ri6sj - 6si6rj

€rskCijk = O - 5kj

It is instructive to observe the two terms in the last expression. Notice that there is a change in
partners in the pairs. This observation, if we remember, means that once we can form one term,
the other is a simply an index pairing exchange.

We now proceed to look at the example where two of the indices of the alternating symbols in
the product are the same. Beginning from our most recent result, equation 15, that

€rskCijk = Srissj - Ssidrj (411)

We proceed to show that e, jxe;jx = 26,;.
In the equation, e,gce;jx = 6,;05; — 650, j sets — j, we have,
erjkeijk = 6ri0jj — 6ji0y;
= 36y — Oy (42)
= 26,

Component Form of Products of Vectors

Invoking the Einstein summation convention and using the Cartesian system of coordinates, we
can write the component form of vectorsa = a;e;, b = b;e;. We can go ahead to write the scalar

and vector products in their component forms:

30

Scalar, Dot Product
To find the component form of the scalar product, let us remember the meaning of the scalar
product as it applies to unit basis vectors. €; - €;is a projection of a vector to a direction
perpendicular to it whenever i # j. This projection has the value of zero; it vanishes. When i = j,
we are projecting a vector unto itself. This gives the value of unity since it is a unit vector that has
been project. Clearly therefore, e; - €; = §;;. Consequently,
a-b=(ae) - (bje;)

= a;bje; - ; = a;b;6;; 43)

= a;b;

= a;b; + ayb, + azbs
Which is the meaning of the compact form, a;b;. (Note: It is correct that b;e; = bje;. Any dummy
index would be ok. However, using the first would have led to a;b;e; - e; which would not only
violate the summation convention ruled that no index be repeated more than once in any term.

It would also have led to wrong results).
Vector, Cross Product.
axb = (a;¢;) x (bse))
= a;bje; X ¢; (44)
= ejra;bjey
The last step requires us to show that the cross product of the base vectors, e; X e; = ¢;j, €.

This important result comes from a compendium of repeated application of the definition of the

€ijk€xk

cross product as shown in the table below:

I

13 1x1sin90 (—ez) €13k€k = €131€1 t €132€; + €13383 = —€;
[2 e Xe;=ej; €12k€k = €121€1 + e122€; + e1p3€3 = €3
2 3 e, Xe3 =e; €23k€x = €231€1 T €338, + e333€3 = €
3 1 e; Xe; =e; €31k€x = €311€; t e31,€; + e3j3e3 = €;

31

1 1 e; xe; =0 €11k€x = €111€1 + €126, + e113e3 =0

2| 2 e;xe; =0 €22k€ = €221€1 + €22€; + €323€3 =0
2 1 e, Xe; = —e; €21k€k = €211€1 T €212€; + 31363 = —€3
3 2 e; Xe; =—e; €32k€r = €321€1 t €322€; + €333€3 = —€;
3 3 e;xXe3 =0 e33k€ = €331€1 + €332€; + €33383 =0

Note that we only need to specify the i and j values as there is indexing into all the values of k
because it is a dummy index in the above expression.
Expansion of the vector product is straightforward:
axb=eabjey
= e123a1b,€3 + e132a1b3€; + e331a,b3€1 + €313a,b1€3 + e31,a3b1€; + e331a3b,€4
= a,b,e; — a,bze, + a,b;e; — a,b,e; + azb;e, — azb,e;
By avoiding repeated indices, we gain speed in ignoring zero elements in the expression.
You will see that only the six non-vanishing values of e;, appear in the expression here. We gain
valuable time and avoid unnecessary evaluation by following a simple strategy:
1. Once the firstindex, i = 1, only two non-zero cases exist: j = 2,k =3 andj =3,k =2
2. Wheni = 2, again, only two non-zero cases exist: j = 3,k =1andj =1,k = 3
3. Lastly, when i = 3, again, only two non-zero cases exist: j = 1,k = 2and j = 2,k = 1.
Using this approach, it becomes unnecessary to write 27 terms when 21 of them vanish. Instead,
we can pick out only the six non-vanishing terms.
We can also make e, the subject of the formula starting from the equation,
e; X e = e e (45)
Multiplying both sides by e;;,, we have,
€ija€i X € = €;jg€;jxex = 20iqe) = 2€,
so that,

1 1
e, = Eeijael- X € = Eeaijei X € (46)

32

The Dyad

We are used to producing scalars or vectors by taking a product of two vectors. One exceedingly
important object that you can also produce from taking such a binary product is a Tensor.
Naturally, we shall call such a product a “Tensor Product”.
Its symbol, &, is not a dot or a cross. It is a symbol that may look strange. That symbol combines
the product sign and a circle. It is called a dyad operator. Therefore, as before, a tensor product
also has a nickname, “the Dyad”, or a “Dyad Product”.
The dyad is defined by the result of its action on a vector. Consider the dyad a @ b. Its action on
a vector cis defined as follows:
(@a®b)c=(b-c)a (47)

That is, it produces a vector in the direction of its first argument scaled by a factor of the scalar
product of its second argument with the vector it acts upon. A dyad, as we shall see, is a tensor.
The most elementary tensor you can get is the dyad product of two base vectors: e; & e;
The tensor product of two vectors can be expressed in terms of this dyad base:

a®b = (ae;) @ (bje;) = abje; @ e; (48)
The summation convention still applies so that it is easy to see that the above expression contains
nine components.
Observe immediately that, in 3D, just as you express a vector in terms of three basis vectors,
there are nine base dyads for expressing every tensor: e; ® e, e; ® e, e; ez e, ®
e, e, Re,e,®ez e;Q e, e;Qe, e;RQe;
To find the components of a tensor is to find nine scalar coefficients to these base dyads. Just as
a dot product is called an “inner product”, a tensor product is called an “outer product” or a

“Kronecker product”.

Binary, Ternary Operations

We will introduce tensors more formally in the next chapter. For our purpose here, remember
that with two vectors, we have defined three different products that may result. These are: scalar
or dot product; vector or cross product; tensor or dyad product. This means that, unlike scalars,

you DO NOT simply “multiply” two vectors. To say that creates an ambiguity because we have

33

these three possible results: a scalar, a vector or a tensor. The specific product we have in mind
MUST be specified. While the statement, “multiply two scalars” is sensible, the same statement,
applied to two vectors, is ambiguous. When we are dealing with vector multiplication, we must
disambiguate by being specific on which vector multiplication or product we have in mind. We
do this in prose, we also do it in the equation in which vector products are involved. The
disambiguation method is the sign, dot, cross or the dyad circle on a product sign that signifies a
tensor product. It is therefore an incomplete specification of product, to simply concatenate two
vectors, to signify a product, as you would be permitted to do when dealing with two scalar
variables or numbers. Given that ¢ and f are scalars, and that u,v and w are vectors, the
following table provides examples of products explaining why some may be ambiguous

statements requiring more information to be correct:

Product Right or wrong Comments

au Correct Scaling a vector, multiplication of a scalar and a vector;
No explicit sign required

upfv Error up is a scaled vector whose product with v is ambiguous.
Possible additional information can make it (ug) v,
u X (Bv), or u ® (Bv). They have different meanings
that cannot be reliable guessed unless you supply the
needed information a priori.

Pa Correct Product of two scalars; No explicit sign required

vu Error Product of two vectors; v-u#vxXu#v_@u
Explicit disambiguating sign required. We note here that
certain authors imply this simple concatenation as the
way they represent the tensor product, v ® u. In most
current Literature on the subject, the tensor or dyad sign
is the preferred way to represent this product. We retain
that more popular convention here and subsequently.

B(uxv) Correct Vector product of two vectors gives a vector. Multiplying
this result by a scalar does not require another sign. The
order of the scaling is NOT important:

puxv)=Fuxv=uxpv=_uxv)p
The order of the appearance of the vectors is inviolable:

34

Bluxv)#pvxu=vxpu#*uxv)p

u-va Correct The dot product of a vector with a scaled vector. No
ambiguity is created with the location of &; u - va, (ua) -
v, or au - Vv all mean the same thing.

pu-vxwa Correct Scalar triple product with vector scaling along. Result is
the same as (Ba)u-vxw= (fa)uXv- -w

pfuxvxw Error Vector triple product with vector scaling along. Vector
product is not associative:
pux (vxw) =g -wyv-pL{u- v)w
fuXvVv)Xw
= f(u-w)v— BV -wu
Parentheses are required to show which product is
intended.

uvew Error vVRwW)u#ulvQ w)

UXv_xyw Correct Treat the vector cross as a tensor, then obtain the LHS:

UXV)Qw=ux(vVQw)
The two different interpretations evaluate to the same
value.

More on the Tensor Product

Given vectorsa = q;e; and b = bjej, we may use matrix notation, in two different ways, and

write,
]
a = [el, ez, e3] aZ = alel + azez + a3e3 = al'el'
[a3]
o (49)
b = [bli bz, b3] € = b161 + b2e2 + b3e3 = b]e]
| €3]
Thedyada @ b = a;bje; Q e; which can be given in its full component form as,
a ® b = aibjei ® ej (50)

35

The matrices of scalars can cross the dyad sign because only one product is defined for scalars.
For vectors, the case is different. Three different products are defined between two vectors. We

must always be consistent with the product involved. The matrix for the dyad a @ b is

a,by a;b, a,bs
[a®b] = [azbl a,b, a2b3] (51)
asb, aszb, asb;
The dyad itself is,
a,by a.b, a,bs]r€y
a®b=/[e,e;e;]® [a2b1 a,b, azbsl [eZI (52)
a3b1 a3b2 a3b3 e3
or,
a,by a,b, a,bs €1
a®b=[e e, e;] [a2b1 asb, a2b3] X [eZI (53)
a3b1 a3b2 a3b3 e3
The matrix representation of the vector is a is
a;
[a] = [azl or [b]T = [by, by, bs]. (54)
as
The vectors, in component form are expressed as,
a; €1
a=aqae; =[e; e, e;] [az] orb = bje; = [by, by, b3] [ez]. (55)
as €3

The matrix elements will change if we change the basis vectors to which the vector or dyad is
referred. Again, as you can see, the matrix representations, in all cases, are not the same as the

tensor or the vector.
Trace of a Dyad

A very important linear operation on a dyad is the trace operation. It turns a dyad into a scalar

guantity. It is achieved by simply changing the dyad operator into a dot as follows:
tr(a X b) = aibj tr(ei (02 e])
= a;b; (e; - ;)

= aibj 611

(56)

== aibi == albl + azbz + a3b3.

A simple observation will show that this is the sum of the diagonal elements

36

aby
a,b,

a3b3]
of the dyad matrix representation as shown above. There is more to say about linearity, linear

operators and linear functions in the next chapter.

Coordinate Transformation

Consider a set of Cartesian coordinate orthonormal vectors, {e4, €;, €3} shown in blue in figure
1.4. These vectors are position vectors at {1,0,0},{0,1,0} and {0,0,1} respectively. Consider
another orthonormal system, shown in pink, whose unit vectors are oriented as shown in the
figure. Let these unit vectors be {&;, &, &3}. The set {eq, e, €3}, since they are orthonormal, are
also linearly independent. Consequently, each
member of the set, {&;, &,, &3} can be expressed
in terms of the basis vectors in {eq, €5, e3}. (We
note that the opposite is also possible: we could
express the original vectors in terms of the
rotated system). Taking these vectors one by
one, we may write,

§1 = aeq + fiex +y1€3

§2 = azeq + Brez +yze3
e, &3 = azeq + fze; +yse;3

The coefficients can be found by taking the dot products as usual. Note that we can gain more

compactness and use only one symbol for all the nine coefficients if we adopt this simple
arrangement: Let @; = a;1, f; = aip, and y; = a;3. The three equations can therefore be written
more compactly as,
§i = a;jej (57)
We can find each of the nine coefficients by taking the scalar product of this equation with e,:
§i-eq=a;jej e, =06y = Qg (58)
Or, a;; = & - e;.These linear equations can always be inverted and we may have the converse:

ej = b & (59)

37

B = [bij] is obviously the inverse of the coefficient matrix A = [aij]. This inverse relationship
can be obtained easily using the indicial notation. Starting with §; = a;;e;, we could substitute
for e; and write,
§i = a;jej = a;;bj & (60)
Taking scalar products again, we have,
§i - & = 0iq = a;jbj &y - &4

= aijbjq

= (aije;) - (aapep) (61)

= @ijAapdip

= @;jAqj

These equations in matrix form can be written as,
I=AB=AAT (62)
Showing that the inverse transformation matrix is the transpose of the original transformation.
The inverse transformation can now be re-written, using this result:
e = b8 = ay;&k (63)
So that, in a transformation of from one orthonormal system to another, if
& = a;;€;j,
then
e; = a;;§;
because the inverse of the transformation is simply its transpose.
Example.
Show, in two dimensions that the rotation, RT = € X Ej gives the coordinates of a fixed vector

in rotated coordinates.

38

Figure 14. Vector rotation

Answer: In the figure 14, Let the original coordinates be O x; x, and imagine that we are leaving
the vector OP which is presented as v = a;e; where e;and e, are unit vectors along O x; x, If
the coordinates are rotated to O y; y, such that the same vector now becomes v = b;§; where
§.and &, are unit vectors along the O y; y, system. These will be the new coordinates after the
rotation of coordinates to this point.

Clearly, OA = a; and OB = a,. We need to find the lengths , OA”" = b, and OB"" = b,. We drop
perpendicular lines to the lines O y; and O y, meeting them at A"’ and B''respectively. It is clear
that OA’ = a, cos a. Furthermore, AA""" = a, sin @ because PA is the hypotenuse of a right

i

angled triangle APA'"with angle « at APA""' And it is easy to see that AA’A"'A’" is a rectangle.
Its opposite sides are equal, consequently, the length
OA" =b; = a,cosa + a,sina.
=a,(§; - e) +ay(§; - e;)

as we note that e is the unit vector along Ox;while & is the unit vector along Oy, therefore, &, - e; =

(64)

€1 1|1le1]| cos @ = cos a. Similarly, e, is the unit vector along Ox, so that &, - e, = ||&]|||e2]| cos B =
sina. B" is the foot of the perpendicular from point P to the O y,-axis. BB'is parallel to PB"". B’
is the foot of the perpendicular from B to PB”'. By the same arguments as before, BB'B"'B’" is
also a rectangle. Clearly,
OB" = b, = —a, sina + a, cos a.
=a,(&;-e) +a,(§; - e;)

The rotation tensor is: RT = e; ® §&;. Hence, we have:

(65)

39

RTv = (e] X Ej)aiei
= aiej(ij . ei).
Expanding for this two-dimensional case, we have:

R'v = el(al(zl cep) +ay(§ - ez)) t+ e, (%(Ez cep) +ay(§;- ez)) (67)

which is exactly what we have obtained by simple geometry.

(66)

The Euclidean Point Space

The 3D Euclidean Point Space we live in is where all engineering objects of interest to us reside.
This space contains point locations that can be occupied by a location in an object at a particular
time. It is often of interest to be able to do several things:

1. Locate the point in an unambiguous way,

2. Relate the point to one or more other points in its vicinity, and

3. Define quantities that take up values of interest at that point.

* Temperature map of this classroom (one thousand thermometers)

* Temperature distribution, Temperature field.

* Tensor Fields

Cartesian & Other Coordinate Systems

Our coordinate systems so far have very interesting features: They are based on spatially
constant unit vectors orthogonal to each other. These are called Rectangular Cartesian or
Orthonormal Base (ONB) Systems. We have seen that we are only required to have, for basis
vector sets to span a space, that they are linearly independent.

ONBs are more than linearly independent; their orthonormal attributes make the computation
of coordinates for any vector referred to them, very easy to obtain. There are other advantages:

* We can refer the room to a set of Cartesian coordinates (x, y, z).

* |n this system, each location is represented by three ordered numbers. The first
represents the x coordinate, the second the y coordinate, and the third, the z coordinate
respectively.

* The basis vector setis {i, j, k} or {e;, e,, €5}. These are along the constant coordinate lines

which are straight line intersections of the coordinate planes as shown below.

40

* Following Mathematica® code implements this idea (Type it and see for yourself).
In locating point P(xy, y;,2;) above, we constructed three coordinate planes:
* A dark colored plane perpendicular to the x —axis,
* A purple plane perpendicular to the y —axis, and

* A purple plane perpendicular to the z —axis.

Cartl = ParametricPlot3D[{1, v, =}, {vs 0, 1.4}, {z, 8, 1.4}, PlotStyle = Red] ;
Cart2 = ParametricPlot3D[{xs; 15 z}y {%; @, 1.4}, {z; 95 1.4}, PlotStyle =+ Green] ;
Cart3 = ParametricPlot3D[{xy vs 1}y {%, @, 1.4}, {ys 0, 1.4}, PlotStyle + Yellow] ;

Show[Cartl, Cart2, Cart3, PlotRange -+ {{@, 1.5}, {0y 1.5}, {8, 1.5} }, Ticks - None]

Position Vector

* Furthermore, we can define a vector for the point location P(x;,y;,2;) .Such a vector is
defined by joining the point P to the origin to form the vector OP represented by the line
shown.

* The vector whose magnitude s
defined by the length of OP, and
whose direction is indicated by the
direction of OP, a Position Vector.

* We defined a vector (a member of the
Euclidean Vector Space, that is now
embedded in the Euclidean point
space of our daily experience.

* The latter contains just points,
the former is a collection of
objects that obey certain rules
that make wus label them
“vectors”.

* This particular one is not just a

vector, it is a position vector

because it is the point

Figure 15. Cartesian Coordinate Surfaces

41

P(x4,y1,2,) that gave birth to it. At any other point we define by three numbers, we

can also get a position vector in this simple way.
Notice several things that are attractive in the Cartesian system we have described.

* Each coordinate surface is a plane. The three defined at a particular point are respectively
parallel to the three you can define at any other point.

* Each coordinate lines: the intersection of these planes that are parallel to the axes are
similarly parallel straight lines at all points in the system.

* The basis vectors — usually defined as unit vectors along the axes, are always the same at
any point in the Cartesian system. It does not matter where the point P is located, the
basis vectors are the same unit vectors we define as (i,j and K) or (e, e,, and e3) along
the coordinate lines at the origin.

These properties combine to make the Cartesian coordinate system very simple and easy to use.
It is no wonder that it is the first coordinate system you get introduced to — for most people, as
early as secondary school!
The first important advantage of the Cartesian system is the simplicity of the expression for a
position vector. The position vector OP can be written simply as,
r=xi+y;j+zk (68)

Or, more conveniently as,

r =x,e; +x,e,+ x;e; = x;e; (69)
Where we have replaced (x4, y1,2,) by (x4, x5, x3) so we may benefit from the compactness of
the Einstein’s summation convention. This expression is linear in the coordinate variables. There
are two other hidden reasons why this coordinate system is so simple and easy to use. It may not
be obvious that the simple expression of the position vector we have here is possible only in the
Cartesian system.
In other coordinate systems, the position vector is usually a much more complicated function of
the coordinate variables and the basis vectors. In general, if we do not assume that we are using

the Cartesian system,

r = r(ay, ay, a3, 81,82 83) (70)

42

where a;, i = 1,2,3 are the coordinate variables and g;, i = 1,2,3 are the basis vectors. The
simple linear form we have for the Cartesian case, as we shall see is a rare exception and a special
case. The functional for of the position vectors can be complicated.

A second reason that the Cartesian system is so easy, useful and pervasive is the related fact of
the constancy of the basis unit vectors. To illustrate this, imagine we continue with our thought
experiment to get a temperature map for the room, then we have a scalar field T (x,, x5, x3) . If
we have a vector function defined at each point, then we get a vector field v(x,, x,, x3) .We can
easily write the vector field in terms of three scalar fields that we call its components; hence, we
may write,

V(xy, x5, x3) = v1(x1, %2, x3)€1 + v (X1, X3, X3) €5 + V3(Xq, X, X3) €3 (71)

Where v; (x4, x5, x3), i = 1,2,3 are the components of the velocity vector. The fact that the basis
vectors e;, i = 1,2,3 neither varies temporally nor spatially means that differential and integral
calculus with the Cartesian system take a particularly easy form. Differentiating the above
equations, whether with respect to time or to space, we simply focus on the functions,
v; (x4, X3, X3) and ignore the constants e;, i = 1,2,3!

A third reason for the simplicity of the Cartesian system is in the fact that the three numbers
representing the coordinates are of the same dimensionality.

The numbers, x4, x,,and x5 (coefficients of the basis vectors) for the coordinates of P are all
lengths. They are all the same dimension. There is nothing compelling you to use lengths for your
coordinate variables in a coordinate system.

Observation: A partial differentiation of the position vector with respect to the coordinate
variables yield the basis vectors for the coordinate system as shown here:

r=»x.€eq + Xy€o + X3e3 = Xiei

or , (72)
O—Xi =€l = 1,2,3.

This applies to the other coordinate systems as well.
In fact, the two next most popular systems — the Spherical and Cylindrical systems use a
combination of lengths and angles! If you are not careful, and you use these coordinate systems

just the way you do the Cartesian, your first error might be that you are adding quantities of

43

different dimensions and units in the same expression and will be guaranteed to obtain wrong

results.

Coordinate Points & Coordinate Surfaces
In 3D Euclidean Point Space, each coordinate system is defined by three coordinate variables.
(é1,€,,&3). When each takes a value, say, &; = a; where each «; is a real number, then we have
the point (a4, @, a3). We can write this point in at least two other ways: ¢, = a;, i = 1,...,3 or
as (&, = ay, &, = a,,é3 = a3). For each, é; = a;, we have defined a coordinate surface. In the
case of Cartesian coordinates, given any three a; € R,i = 1,2,3, we have x; = a;, defining a
plane with normal along the e axis, x, = a5, defining a plane with normal along the e,axis and
X3 = a3, which is a plane with normal along the e; axis. It is easy to see that at the point of
intersection, these three planes meet at right angles. The coordinate system is, for this reason,
orthogonal.
This coordinate system is also linear in the sense that the normal do not change as you change
the values of a;; that is, as you move from point to point, the normal to the coordinate planes
remain the same vector as at any point.
The other coordinate systems we will look at are not linear in this sense. They are CURVllinear.
We limit ourselves to curvilinear systems that remain orthogonal. In these systems, the following
ideas remain unchanged:

1. Foreach¢; = a;, we define a coordinate surface;

2. The coordinate point, §; = a;, i = 1, ...,3 is the intersection of the three surfaces;

3. Thetangents to these surfaces are mutually orthogonal.
In contradistinction from the Cartesian system, these surfaces do not have constant normal as
you move from point to point. This difference is NOT trivial, as we shall see. The first curvilinear

system we shall consider is the Cylindrical Polar coordinate system as follows.

Cylindrical Polar Coordinates

In the cylindrical system, we select the three numbers that we shall use to represent a typical
point P using a different strategy. We select two lengths and an angle. Since we already are quite

used to the Cartesian system, let us first note that the third coordinate in the Cylindrical Polar

44

System is shared with the Cartesian. Even if we represent it with a different symbol, note that
the z-coordinate as well as the K, e or e, essentially remain the same in both Cartesian and the
Cylindrical Polar system.
Begin with our familiar Cartesian system of coordinates. We can represent the position of a point
(position vector) with three coordinates x4, x5, x3 (€ R) such that,

r =x.e; +x,e, +x3e;3 = x;€; (73)
That is, the choice of any three scalars can be used to locate a point. We now introduce a

transformation (called a polar transformation) of {x;, x,} = {r, ¢} suchthat,x; = rcos¢, and

x, = rsin¢ .Note also that this transformation is invertible: 7 = \/x? + x3,and ¢ = tan_1§

1

With such a transformation, we can locate any point in the 3-D space with three scalars {r, ¢, z}
instead of our previous set {x;, x,, x5} .Our position vector is now,

r=rcos¢ppe, +rsingpe,+ze, =re, + ze, (74)
where we define e,, = cos ¢ e; + sin ¢ e, ,e;, is no different from e; or K. In order to complete
our triad of basis vectors, we need a third vector, ey -In selecting ey ,we want it to be such that

{er, ey, ez} can form an orthonormal (pairwise orthogonal and individually normalized) basis. Let

ey =<¢e; +ne; (75)

To satisfy our conditions, ey - e, =0 ,ey - €, = 0 (automatically satisfied by not choosing a

different third coordinate) and W =1

It is easy to see that e, = —sin ¢ e; + cos ¢ e, satisfies these requirements. {er, €y, ez} forms
an orthonormal (that is, each member has unit magnitude and they are pairwise orthogonal)
triad just like e;, i = 1,2,3 .

The transformation we have just described can be given a geometric interpretation. In either
case, it is the definition of the Cylindrical Polar coordinate system.

Unlike our Cartesian system, we note that {er(qb), ey (), ez} as the first two of these are not

constants but spatial variables dependent on angular orientation. e, remains a constant vector

as in the Cartesian case.

45

Geometric Interpretation

The coordinate system just described requires us, as before, to select three ordered numbers to
uniquely represent a point in the Euclidean point space. The first is a length, r, the second, an
angle ¢, and the third, a length, z. These are the coordinate variables.

Recall that in the Cartesian case, the coordinate planes have equations, x; = const, x, = const,
and x3 = const giving us three planes that intersect at the point defined by those three values
of the constants used.

In a similar way, the coordinate planes in the Cylindrical Polar are: (¢§; = a;) r = const
describing a cylinder with the z-axis as its axis, (§, = a,) ¢ = const describing a plane through
the axis and another plane, (¢35 = a3) z = const describing a plane that is perpendicular to the

cylinder axis. This is as shown in the figure 15.

-~

c1 = ParametricPlot3D[{Sin[¢], Cos[&], 2z}, {d, @, m}, {z, 1.5, 3.5}, PlotStyle - Red] ;

c2 = ParametricPlot3D[{rSin[m /3], r Cos[m /3], z}, {rs @ 2}, {Z, 1.5, 3.5}, PlotStyle - Green] ;
c3 = ParametricPlot3D[{r Sin[¢], r Cos[d], 2}, {ds @y 2}, {ry 8.5, 2.5}, PlotStyle -+ Yellow] ;
Show[c1, c2, c3, PlotRange -> {{@, 1.4}, {0, 1.5}, {1, 2.5}}, Ticks - None]

We can obtain the basis vectors by differentiation of the position vector:
r=rcos¢pe, +rsingpe, +ze, =re, + ze,

or or or (76)
= re¢; a_Z =e,

P
The basis vectors obtain by differentiation also compels dimensional consistency, but they are
no longer orthonormal even though they
remain mutually orthogonal.
Mistakes to avoid
Two easy mistakes that can be made are:
1. That the Cylindrical position vector is
re.(p) + pey + ze, which is a simplistic
copy of the Cartesian formula. This is

wrong in at least two ways. For one thing,

it is dimensionally incorrect because the Figure 16. Cylindrical Polar Coordinate Surfaces

46

unit of the middle basis component is an angle while the other components are measuring
lengths. Secondly, we cannot obtain the Cartesian result from this via a coordinate
transformation.

2. That the basis vectors are constants. They are NOT all constants. e,.(¢) and e (¢) are both

functions of ¢ unlike in the Cartesian case, but e, is a constant like the Cartesian case.

Spherical coordinates

The spherical Polar coordinate system selects its three ordered triplets with yet another strategy.
This can be explained by the same transformation route we started. Continuing further with our
transformation, we may again introduce two new scalars such that {r, z} - {p, 8} in such a way
that the position vector,
r=re, +ze,=psinfe,.+pcosbe, =pe, (77)
Here, r = psinf, z = pcos6. As before, we can use three scalars, {p, 6, ¢} instead of
{r, ¢, z}. In comparison to the original Cartesian system we began with, we have that,
r=xi+yj+zk= psinfe,+pcosbe,
= psinf (cos¢i+singj)+ pcosfk

78)
= psinfBcosgi+psinfsingj+ pcosfk (
= pe,
it is clear that the unit vector
e, =sinfcos¢i+sinfsingj+ cosdk. (79)

Again, we introduce the unit vector, g = cos 6 cos ¢ i +cossin¢j—sinf kandretainey =
—sin¢gi+ cos¢j as before. It is easy to demonstrate the fact that these vectors constitute
another orthonormal set. Combining the two transformations, we can move from {x, y, z} system

of coordinates to {p, ¢, 0} directly by the transformation equations, x = psin¢cos6, y =

47

psingsind and z = pcosf .The orthonormal set of basis for the {p, 0, ¢} system is
{e,(6, P).eg(6,), e4(d)}
r(p,0, ¢) = pe, (0, ¢)

I . -
WZ Showing that the position vector
..... TN, depends on the three coordinate
Co variables representing the radial
/ P
/,—f’ """""""""""" distance, p, from the origin on the
vl i g € ~\ pcosh
i, ¢ P B
X N L psinfcos¢
\ psin@
x “\\
psin@sin ¢

Figure 17. Computing Spherical Polar Components

azimuthal (great circle, longitudinal) plane inclined at an

angle 6 to the meridian plane (x — z), with a polar angle
¢ as shown below: the orthonormal basis vectors are shown at the point of interest. The

projection of the radial distance to the “equatorial” plane is also shown

Coordinate Surfaces

In spherical coordinates, the point P lies at the intersection of a spherical surface, p = const,
cone, O = const and a plane, ¢ = const. The cone and the sphere are both centered at the
origin, 0, as shown in figure 17, and the position vector lies at the intersection of the cone and
the plane, beginning from the origin and terminating at the point P. Note that the plane ¢ =
const passes through the same origin. As before, the coordinate surfaces are orthogonal as well
as the tangents to the coordinate lines that are at the intersections of the coordinate planes. Just
the same way we obtained the basis vectors by Figure 18. Spherical Coordinates
differentiation in the cylindrical system, we can obtain

the same for the spherical:

For spherical polar,

48

r=pe,(0,)

or or Or . (80)
3, = ¢ 35 = Pesi 55 = psindey

The vectors e,, e and ey, are unit vectors. The multipliers in each case are the magnitudes of

the basis vectors obtained from differentiation.

Other Coordinate Systems

There are many other ways of selecting three ordered scalars to create a coordinate system. The
ones we have seen so far are all orthogonal coordinate systems because the coordinate planes
meet at all points at right angles. Other orthogonal coordinate systems that have engineering
significance include:

Parabolic and Parabolic Cylindric

Elliptic Cylinder, Elliptic, Bipolar,

Confocal,

Prolate and Oblate spheroidal, Toroidal

The strategy of definition is similar in each case. A few:

Parabolic Cylinder Coordinate System

Parabolic Cylindrical Coordinates are (&, 7, z). Here the first two are square roots of length while
the third scalar is length. Transformation equations are: x; = én,x, = %(52 —n?) and x5 = z.

Substituting these in the Cartesian position vector,

r=xe; +x,e,+x;e; =éne; +%(52 —n?)e, + ze; (81)
Again, by differentiating this with respect to the coordinate variables, &,n,z, we obtain the
following basis vectors for the Parabolic Cylindrical System:
ne, + ¢e,; ey +ne,; ze; (82)
The table below shows a summary of position and basis vectors for these and other coordinate

systems

49

Table 4. Position & Basis Vectors for some Coordinate Systems

Cartesian, x1x,. x3

Cylindrical Polar
r,$,z

Spherical Polar

p,0,¢

Parabolic Cylindrical

&nz

Parabolic &, 7, ¢

Elliptic Cylindrical
§&n,z

Vector Spaces

X1€q1 + x,e, + xze;

re,.(¢) + ze,

pe, (6, ¢)

éney +%(€2 - 772)92 +

Ze3

nécos¢pe,
+nésinge,

1
+E(fz —n%)e;

coshécosne; +

sinh ¢ sinn e, + ze;

€,,€,,€53

e.,rey, e,

ep,eg,e¢

ne; +<e,,

§e; +ney, ze;

e; =ncospe; +nsingpe, +<e;,
e, =¢cospe; +<singe, —ne;,

ey = —nésinpe; +nécosge,

e; = sinh§ cosne; + cosh¢ sinne,,
e, = —cosh{sinne; + sinh§ cosne,,

eZ:e3

We are now in a position to provide a more exact definition of what a vector really is. What you

should observe in the following is that the definition is satisfied by our elementary notions about

vectors. However, a vector is a more abstract object than we have been looking at. The

abstraction is useful because it allows the analytical treatment of quantities that do not appear

to be similar or related to the notions brought from elementary considerations.

We begin by assuming we have a bag containing real numbers. The numbers in this bag

constitutes a collection — just like any collection of items like the dishes in your dining table, or

50

shoes in your closet. We call this collection, the set R. The set of real numbers we have just

defined, is the foundation of our vector space. It is possible to build the vector space upon a

different foundation, such as complex numbers, or rational numbers. For this reason, our

definition has indicator, “rea

III

, init.

Definition. A real vector space V is a set of elements (called vectors) such that,

1. Addition operation is defined and it is commutative and associative under V: that is, u +

vVE V, u+v=v+uu+(v+w)=(u+v)+w Vuv,weV. Furthermore, V is

closed under addition: That is, given thatu,v € V,thenw=u+v=v+u, =>w € V.

2. V contains a zero element o suchthatu+o0o=uVvVu€ V. Foreveryue V, 3I—u:u+

(—u) = o.

3. Multiplication by a scalar. For ¢, BER and u,ve V, au€e V , lu=u, a(fu) =

(af)u, (a +L)u=au+ pu, a(u+v)=au+ av.

End of definition

Note the following:

1.

51

By “under V”, we mean, so long as you are only dealing with elements of the vector space
V.

The only multiplication needed to define a vector product is scaling. Not scalar, vector nor
tensor products among vectors are needed to define a vector space. Consequently, there
are several structures that would qualify as a vector space.

Our understanding of vectors thus far is admissible here. Condition #1 is satisfied by our
parallelogram law of vector addition. The space is closed under addition because when
you add two or more vectors (extending the parallelogram law to a polygon of vectors,
the result you will get remains a vector, thus guaranteeing closure. Commutativity as well
as associativity are straightforward when we try to add more than two vectors and find
that the order of addition is immaterial.

For rule #2, note that a zero vector will be represented by a point; no length — resulting
in a magnitude of zero. The negation of a vector is simply to retain the direction but

change the sense of the arrow.

5. Rule three is merely a mathematical expression of the scaling process. It should also be

handled by the addition law when applied to scaled vectors.

The Inner Product or Euclidean Vector Space
* An Inner-Product (also called a Euclidean Vector) Space [is a real vector space that defines,
among its elements, the scalar product: for each pairu,v € E,3 [€ R such that,
l=u-v=v-u (83)
Further,u - u = 0, the zero-value occurring only when u = 0. It is called “Euclidean” because
the laws of Euclidean geometry hold in such a space. “Euclidean Geometry” is the totality of
the geometry you have done so far, including: Adding all angle of a triangle to 180 degrees,
Parallel lines never meeting, Sum of two sides of triangle always larger than the third, etc.
You will later get to know that there are other “geometries” where these things are not valid.
These are non-Euclidean geometries.
* The inner product, because of its operational representation as a dot between two vector
operands, is also called a dot product, is the mapping
"MV XV R (84)
from the product space to the real space. The notation here means nothing more than, first
expressing the fact that the operational sign to denote the Inner Product is the dot, " - ". The
“product” (V X V) is not the same meaning of multiplication of the type we are used to, but
simply expressing the fact that we took one element of a vector space, and went back again to
take another element of a vector space in order to perform the operation. And the right pointing
arrow in the expression shows that the result of the operation is a member of the Real collection,
or set: a complicated way of saying that it is a real number! If we had needed three element from
the vector space, then we would have had, VXV X V for the scalar triple product. These
operations will be written as,
"X MVXVX V- R (85)
We could also have written,
"T,,]"VXV X V>R (86)
Because we may in fact prefer this notation as it emphasizes that only the ordering of the vectors

is important, NOT the locations of the dot and the cross for the scalar triple product — showing

52

that the symbolic representation of the operation which produces a scalar result but requires a
dot and a cross, while,

"X MVXVX V-V (87)
will represent the vector triple product as it requires three vectors to produce a single vector.
Our dyads require two vectors to produce a tensor. We can write,

"Q® VXV (88)
if we represent the linear transformation that we call tensors by the symbol L.
The inclusion of a definition for the Scalar product induces the concept of length. To make it easy,
note that we have used spaces that have no concept of length — hence, it is not always necessary
to include the concept into every structure we intend to develop. As a quick example, the
thermodynamic plot of pressure to volume remains very useful even though the concept of
distance between two arbitrary points is meaningless. In case of the vector space, for our use,
the extension to the inclusion of the inner product as well as its induction of the length idea is,
though not essential, is very useful indeed.
Magnitude The norm, length or magnitude of u, denoted ||u|| is defined as the positive square
root of u - u = ||ul|2. When ||u|| = 1, u is said to be a unit vector. When u-v = 0, uand v are
said to be orthogonal.

Direction Furthermore, for any two vectors u and v, the angle between them is defined as,

cos™! (&) (89)
llullllv]]
The scalar distance d € R between two position vectors u and v
d=|u-v]. (90)
Notice that we do not include the definition of the vector product in the definition of any vector
space. The fact is that, once the concept of magnitude exists, we can define several other things
on that basis. The vector product is just one of the many consequences of the scalar product. The

latter being the more fundamental concept.

The Euclidean Point Space

Itis a good thing to get a firm grasp of the Euclidean Point Space. It is NOT a vector space because
its members are not vectors as we have defined them. There is a relationship between members
of the Euclidean point space and vectors, as we shall see. The Euclidean Point Space is the

53

ambient space in which all physical objects of interest reside. To make it simple, where you are
sitting, or standing, reading this, is a Euclidean Point Space. It is made up of points rather than
vectors.
What is a Point? On your graph paper from high school, you are used to locating points with an
ordered pair of real numbers. These are the Cartesian coordinates of the point. We are also used
to the extension of this concept to three dimensions. If x = {xy,x,,x3}, v = {y1,¥2,V3}and z =
{z,,z,,z3} are three such points, we can define the vectors joining them to a given point

o = {0,0,0} (91)
the origin of coordinates in £. The Euclidean Point Space may also be referred to non-Cartesian
systems. The three ordered numbers may no longer represent distances. They must be in correct
order. The dimensionality of a space determines the number of elements contained in the
description of a point in €
Definition: The Euclidean Point Space, £ is such that, for points x,y,z and an origin, if we

represent the vector, v joining point x to point y as v(x,y) € E, where x,y € &, then,

X

Figure 19. Euclidean Points Joined by Vectors

1. v(x,z) = v(x,y)+ v(y,z2)Vx,y,z € &, and
2. v(x,y)=v(x,z) ©®y=2zforeachx € €
End of Definition
Consequences:
From Rule 1, we can see that, v(x,x) = v(x,y) + v(y,x) = o as the vector joining a point to
itself must necessarily be the zero vector. This neutral additive concept of a zero vector in the

Euclidean POINT space leads to an additive inverse as the last equation immediately implies that,

54

vix,y) =—v(y,x)Vx,y €& (92)
In simple terms, we are stating the geometrically obvious fact that the vector joining point x to

point y is the negative of the one joining point y to point x.

The Position Vector
The question of the true nature of what is called a “position vector” can now be addressed.
Remember, all points are resident in the Euclidean Point Space. A position vector joins a point to
the origin of coordinates. It is a vector defined by the location of two points in €. Consequently,
we have,
v(x) = v(x,0) =x(0) =x—0 (93)

Where x(0),x(y) € E, that is they are vectors in the Euclidean Vector Space and we define

x(y) =x(0) —y(0) =x—-0—(y— o). (94)
The vector x(0) = X — 0 joining the point x € € to the origin is called a Position Vector. The
vector itself resides in the vector space, (in the sense that it takes its characteristics among
vectors) the points defining it dwell in the Euclidean point space. Mathematically, this is called
an embedding of a Vector Space (defining the Position Vectors) in the Euclidean Point Space
(defining the points that create them).
The distance between two position vectors becomes sensible: It is the magnitude of the vector

v(x, ¥) joining point x to point y in the Euclidean Point Space.

dix —y) = v, Il = lIxMIl = lIx =yl (95)

Software

The most important thing about this course is NOT what you can know, but WHAT YOU CAN DO
WITH WHAT YOU KNOW. Many engineering books contain computationally simple questions.
They often do not reflect the reality of the kinds of real problems you come across. The reason
for this is that it is assumed that you will do them manually with, at best, the use of a calculator.
In this course, we are changing that assumption. We assume you want to use what you are
learning. Therefore, you will use proper tools and can look at practical problems and go beyond
simplistic problems couched to make manual solutions possible. One great enabler in doing

things is appropriate software. In this course, we will be using two kinds of software. These are

55

Symbolic & Computations software, and Graphics, Simulations & Design software. We spend the
rest of this chapter giving some guidelines to what we shall use.
For Symbolics & Computations, we will support Mathematica® by Wolfram Research. It is
possible to survive the course without this software but, compared to someone who understands
how to properly use it, you will be like a person walking from Lagos to Ibadan compared to
someone travelling in a motor vehicle. Of course, if you do not get kidnapped on the way, you
may eventually get there. But the difference is not trivial. Get yourself a copy of this software in
order to do well in this course and get yourself ready for serious engineering computations in the
modern way.

Licenses can be obtained for as low as two hundred US dollars (5200.00) per user if you try to get

it as group of students. Those who have the single-board computer called Raspberry Pi are lucky

because Mathematica® version 10 is already installed. Anything higher than version 9 is good
enough for our use. Earlier versions are tolerable but get the more current one if you can.

Another software that can match Mathematica® in the ability for Symbolic Algebra is called

Maple. We will later support Maple with the next version of this material. Unfortunately, we may

not be able to help you directly in the sense that all the code examples we shall give will be in

Mathematica. A good Maple user will have little difficulty translating or writing her own code.

For Graphics, Simulations and Design, we will use Fusion 360 by Autodesk. There are several

competing software that can do similar things as Fusion 360. Our reasons for selecting this among

others are as follows:

1. Itis the most modern in the Autodesk stable for additive and subtractive manufacturing (3D
Printing and CNC Machine support). We expect these courses to lead directly to product
design and prototyping. It is better to become familiar with the current software as early in
the process, as possible. Other Autodesk software such as Autodesk Inventor, AutoCAD, etc.
are also OK. But we shall support Fusion 360 in the sense that we give examples and practical
guides when necessary using that platform.

2. The second reason is that you are entitled to a fully licensed full version of the software if you
remain a student. Go to their website and register as a student, they will direct you on how

to get a copy.

56

3. We recommend that you get yourself a computer with at least 8GB RAM and, if possible, a
graphics co-processor such as NVDIA series. Those who cannot afford top of the line
computers need not despair. Autodesk allows you to run your simulations in the cloud. That
means that your computer will mainly be used to do your design while the computationally
intensive discretization or simulations will take place on their own computers using cloud
credits. Again, these cloud credits are given to you free of charge. It is your responsibility to
ensure you have enough data facility to use these credits.

As in the case with the Symbolics and Computations software, there may be those that prefer

other software. They are welcome. But do not plan to go through this course manually. If you

are a poor student, go and sell all you have and get the correct equipment to move yourself out

of poverty! Trying to get grades in this course without knowing what to do with its contents is a

waste of your youth. Don’t try it! It will not work!

We present a quick introduction to Mathematica next. It is NECESSARY to have the software

running and not just read the notes. Each Mathematica Installation is loaded with enormous

documentation and Help system. This vary from version to version. Our work requires version 9

and later. Current version at the time of writing this is 12.0.

Mathematica

Introduction

Perhaps the easiest way to begin using Mathematica is to start a new Notebook file. You can start

using Mathematica Right away by typing

[]Untitled-1 * - Wolfram Mathematica 11.3
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
= 242
Out[1}= 4
binary form ¥/ number of primes<4 range nextprime more .. = =

Upon launching the software, in the first line, you type 2*2. The Prefix: In[1]= is generated by the

57

Mathematica Notebook Environment. It tells you that this statement is an input made by you. In
the example above, the next line is an Output: A Response by Mathematica. The happened
because | held down the Shift Key and pressed Enter at the same time. That is the way to tell

Mathematica to execute your input. Now take a look at another set of lines:

242
343
55

OutlZl= 4

3= 6

(]

Out[4}= 25
In this case, | typed 2+2 Pressed Enter, 3+3 Again Pressed Enter, 5*5 and at last pressed Shift and
Enter together. It was only at the last point that Mathematica realized | wanted to execute the
statements | had typed. It executed them one-by-one and gave me a list of results.
In the next example, | typed the same lines as above. At the end of each statement, | typed a

semicolon. See what happens:

= 24 23
3+ 3;
5%5

out[fE 25
Looks like the earlier case, everything was executed but only the result of the last statement is
shown. And even that is because | did not add a semicolon to it. This shows that we can suppress
the result of statements with the semicolon. We could have placed the statements on the same

line and get the same effect:
nfg= 24+ 25 34+ 3;5%5
Out[fl= 25
Functions & Conventions.
Mathematica contains all the elementary functions you are already familiar with: Trigonometric

functions, Exponential and Logarithmic Functions, Hyperbolic functions. In addition, it contains,

built in, perhaps all the special functions you will likely need: Gamma Function, Error function,

58

etc. are all included. Its commands and operators including control structures are all available as
functions. Before we look at specific examples, observe the important issue of notation:

ALL built in functions, constructs and structures are functions with capitalized first letters.
Consequently, Mathematica does NOT recognize that you want the following trigonometric

functions: sin x, cos x, arcsin 9. Instead, you will have to type

n[Ei= x = PL/ 3;

n[11:= Sin[x]
.."_

2

In addition to functions, it also contains constants and other scientific quantities that you may
need. The Greek symbol 7, for example, can be invoked by typing Pi but the first letter MUST be
capitalized. So MUST you capitalize the “S” in Sin as well as use SQUARE Brackets for collecting
the function arguments. Mathematica is very insistent on the kind of bracket delimiters used.
Only the Square brackets are recognized as function delimiters.

This has the consequence that you can define your variables using any names you want. You can
be sure that Mathematica is not using the name if you start your own with a lowercase letter.
Another observation here is that, whenever possible, unless you override it, Mathematica will
work in closed form and preserve full accuracy. In the above trigonometric example, we could
force a decimal output by using the Numeric call as follows:

n[121= N[5in[x], &]

ou[12= @. 866025

n[12:= N[5in[x], 6@]
Cut[13]= B.866825483784438646763723178752956185347148262690851985314827983

In the first call, we requested for a numerical rather than a symbolical output by using the N[#]
function. This function can be called by one or two arguments. Here we called by two arguments:
in the first case, we asked for six figures, in the second case we wanted 60 figures. Mathematica
has no difficulties giving us any number of figures we request. In the next example, we request

for the same operation numerically but for 600 figures:

59

In[14]= N[5in[x], 6B@]

Cut[14]= @.86682548378443864676372317875293618347148262698519853148279834897259665884544880185485738
933786242878378138787877833515149849725474994762394858277560471868242648466159511527918335
987418685854233746163258765017163345166144332533612733446891898561352356583018393879486952
4993268639929694733825173753258025375360917466048630584738018935951625415729147619799164935
9491225414435723191645867361288199229392769883397983198917683385542158689844 7189158851844
15276245883581176@835557214434799547818289854358424983644974664824214151839328438199436934
876879115865891569799649156839195351438526956684781656851853632089625

The following are some functions with the way Mathematica interprets them:

Sin [x] sinx Ensure to Capitalize first letter and use square
brackets

Integrate[a x"2,x] f a x2dx Indefinite integral. It is still necessary to let
Mathematica know which variable you are
integrating with respect to after the comma.

Integrate[a x2,{x, 0, 1}] f1ax2dx Definite integral. The range is a list showing the

0 variable of integration, beginning and end of

domain.

Log[x,b] log, b

Xy XXy The space tells Mathematica you are multiplying the
two variables whether you have declared them to be
so or not.

TensorProduct[u,v] u®v Tensor Product of two vectors. Mathematica expects

the vectors to be defined as a list of numbers.

It may surprise those who already know how to program in a High-Level language that

Mathematica does not insist that a variable be defines before usage. It can always treat it as an

undefined symbol and do the necessary arithmetic in closed form whenever it can. The next two

examples will demonstrate this:

60

In[15= Integrate[ay™2, v]

ay’

Out[15} ——

3

In[17:= M= {{a, b}, {c, d}}

Infzi):= { {@a, b}, {c, d}}
Inverse[M] // MatrixForm

outfz0l= { {a, b}, [c, d}]
Owrt[2 atrocForm=
d]
beorvad beorad
C a
bcrad bcrad

3
In In[15], the indefinite integral, [a y?dy = % as expected despite the fact that y is a variable

throughout. This is a symbolic as opposed to a numerical operation. Most of the programming
you have probably done were in numerical computations. Mathematica is capable of both
numerical and symbolic computations. In In[20], we defined a matrix as a list of undefined
variables, a, b, c and d. We then proceeded to invert this matrix. Again, Mathematica performed

the symbolic operations as expected.

List Processing

We go a little bit further in list processing here. As we have already seen, matrices, tensors,
tables, etc. are all treated as lists in Mathematica. When Mathematica is expecting more than
one input as an argument or to be supplied to a process, the usual way is to represent these as
lists. Arguments of functions may expect lists or single variables; the context and the particular
function will determine that. Usually, a list is specified inside curly brace delimiters separated by
commas. There can be a single list, there can be a lists of lists, etc.

In[z2}:= M= {{1s 25 3}y {2y 55 6} {1y =1, 7}}
MatrixForm[M]
M[[2]]
M{[2]]1[[1]]
Tr[M]

ouzz= 111, 2,3), (4,5,6), (1, -1, 7))

61

Here the matrix is typed in as a lists of lists. Each sub list is a row of elements, is separated by a
comma just the same way as the scalar elements, the numbers, in each of the simple lists.

Consider the outputs of the other commands:

{23V MatinF o
‘12 3
4 5 6‘
V1 -1 7

The matrix form of the input matrix puts it in the familiar matrix format. We can index into the
list of lists. The first index looks at the lists in the list, while the second index addresses the
elements of the inner list. M[[2]][[1]] is for the first element in the second sub list as can be seen.
The last function takes the trace of the trace of the square matrix. It is the sum of the diagonal

elements. In this case 1 + 5 + 7 = 13 as the answer given shows.

Assignment and Equality Signs
Mathematica treats the arithmetic equality “=” in the same way most other programming
languages do. It is a good thing to note — especially if you have not programmed before that the
expression,

a=>b (96)
in Mathematica, as it is in most programming languages does NOT mean the same thing that you
have been used to in arithmetic or mathematics. It is NOT an equality; rather, it is an assignment.
It would have been more proper to have allowed it to be (as in APL and some other matrix
languages)

a<b 97)
The latter expresses the intention of the former in a clearer way: Look at the variables a and b as
storage locations in the computer. What you are doing here is that an assignment in equation 25
makes a copy of what is in location identified by the left-hand side identifier, b, and places them,
overwriting whatever was in a. Usually, whereas, the left hand of an assignment is a single

identifier, as a is in this case, the right side could be anything that can result in a value: an

62

expression, an identifier, a computation, a function returning a value. Whatever it is, once the
expression on the RHS is computed, the result is assigned to a. Equation 26 expresses what is
happening more clearly even though Equation 25 is the way Mathematica signifies an
assignment.

How then do you write an equality sign? Simply with a double equality sign! Once you see “==",

“u_n

it is an equality sign carrying the same meaning as your in usual mathematics and other

subjects.
1= Solve[{ax+by =1, x-y =2}, {% v}]
1-2b 1+2a
X - » Y
a+b a+b

In[1] above is the Solve function. It is used to solve simple equations. Its arguments are lists: a
list of the equations to be solved, followed by a list of variables you want to solve for. Here, as
you can see, the equations are:

ax+by=1x—y =2
In the second list argument, you have a list of variables, here, x,y. The answer is provided by

Mathematica in yet another list. Here we are given the values

_1+2b _1—2a
B a+b'y_ a+b

“u_n

It will be an error to have used the single “=" in the expression of the equations. Equality requires

“_n

the double “==", while the single is reserved for the assignment operation as we have

explained.

Numerical Types

All numbers are not equal Programming languages distinguish between numbers for reasons of
efficiency. Computations you want to carry out can have several possible ways. For example,
compare the two computations:

23 231

Will call for different methods. The way most programming languages work out which algorithm
to call for is the kind of number the exponent here is. If it is an integer, or if it is a real number.
The type of number also tells how big it is allowed to become in a program when variables take

different values. It is therefore good to be clear which number to use.

63

Mathematica supports the following number types:
Integer, Real, Complex and Rational. Rational numbers are quotients (unevaluated) of integers.
As much as possible, Mathematica will like to work at the highest precision and thus keep

numbers as close to the highest possible precision they can get. Consider for example, this matrix:

=M= {{1, 2}, {2, 3}};
Eigenvalues [M]
M= {{1.;, 2.}, (2.5 3.})}3
Eigenvalues [NM]

4.23607, -0.236068

You can see that in the computations here, the same figures are used for the two matrices, while
the first preserves the precision by using integers, the other gives the eigenvalues in real
numbers. The function Head[], when used to pick the numbers show they are treated as integer

and reals respectively as shown below:

n27= Head[M[[1]][[2]]]

Integer
n[28)= Head [NM[[1]]([[2]]]
Real
Two points here:

1. The type of number you want can be known to Mathematica jut by the way you write
them. For example, writing 2. instead of 2 tells Mathematica that the number is a real
type even though it could have been represented by an integer. If a matrix list contains a
real number, Mathematica can thenceforth use Real arithmetic instead of Integer to
respond to actions on the matrix (Det[], Tr[], Eigenvalues]], etc.)

2. You can find the underlying data type that Mathematica is assuming by simply using the

Head [] function with the variable concerned as argument.

64

7= 9.5 3; Times[9, 5, 3]

= 135

= Divide[Sin[x], x]
Sin x

X

In[1] above is one way to multiply three numbers. This can be done either by typing the operator
directly, or if you are using newer versions of the software, it can help you to add the times by
itself. The second method is the function call. The function Times[], does multiplication. It can
take many arguments as we can see. Division, addition, and virtually any regular operator

connects to a specific function that provides an alternative way to get perform the operation.
Simple Graphing
Consider the Plot[] function. We pass a list of functions to be plotted and another list telling Plot

the domain of interest. The latter contains the variable, start and end point:

2= Plot[{Sin[x] / x, Tan[x] / x}, {x, 0.1, Pi}]

This shows that both % aswell as ta%tend to unity as their arguments tend to zero. One comes

from below, the other from above. We selected the initial points here to avoid a zero division;
Mathematica does not care! It will automatically take the asymptotic values and it is too smart
to divide by zero if there are superior interpretations such as limiting values as we have here.
Precision and accuracy

As we have already seen, symbolic computations keep exact values. Mathematica, whenever
possible will work in this mode unless you deliberately override it. There are occasions when you
want to specify the amount of precision you want. The precision of a computation is about the

65

total number of digits in its decima representation; accuracy is about the number of places after

the decimal. When we have converted a large number to the exponent form, we are dealing with

accuracy even with the places after the decimal. The following code is instructive:

n10}= Table [With[{x = 10~ (r/3) +3/53}, {N[x, 12], N[x, {Infinity, 10}]}], {r, @, 6}] //

TableForm

1.856608377358
2.21103846362
4.69819260720
10.0566037736
21.68089506739
46.4724921097
100.856603774

1.8566083774
2.2110338464
4.698192607
10.0566037736
21.6080950674
46.472492110
100.056603774

The Help System, Documentation Center.

Are you confused about the above use of Table? Or about anything else? The Mathematica

Installation you are using has an elaborate help system that will require a whole book to explain.

Keep matters simple: just begin to use the system! To get better assistance on any command,

simply type double question marks and name the keyword as in:

t11= 22 Table

Symbol

Table[expr, n] generates a list of » copies of expr.

Tablefexpr, {i, ima}] generates a list of the values of expr when i runs from 1 to iy,

Tablelexpr, {i, imin, imax)] starts with i = iy,

Tablelexpr, {i, imin, imax, di}] uses steps di.

Tablelexpr, {i, {i1, i

...}}] uses the successive values i1, i3,

Tablelexpr, {i, imin, imax}. {j, jmin. jmax}. ---] gives a nested list. The list associated with i is outermost.

Documentation Local » | Web »
Attributes {HoldAll, Protected)
Full Name System'Table

This gives you a listing of the many ways you can call the function Table[]. The next listing helps

with the function With[]:

66

2= 22 With

With[{x = xp, ¥ = yp, -..}, expr] specifies that all
occurrences of the symbols x, y, ... in expr should be replaced by xp, 3o, -...
Documentation Local» | Web »

Attributes {HoldAll, Protected)
Full Name SystemWith

Still not satisfied? Then go directly to the documentation Center. The last Drop Menu to your
right is “Help”. It leads directly to the Documentation Center — the first among the options you
will see. Type Table. You will be rewarded with a full screen of assistance. This includes full
examples you can run directly, in situ! You don’t even need to copy them! You can even edit and
run them as many times as you like.
The longer time you spend in the documentation Center, the more familiar and competent with
the software environment you become. This is often superior to buying more books on the
subject.
Numerical Example: Rotation
Given the vectors &; = 0.843394e; + 0.389796e, + 0.369791e;, &, = —0.275206e; +
0.904508e, — 0.325769e3, and &; = —0.461463e, + 0.172983e, + 0.870132e;, where
e; = {1,0,0}; e, ={0,1,0}; e; = {0,0,1} are the Cartesian basis vectors. Show that

(@) &;,i = 1,2,3 is an orthonormal, right-handed set of vectors.

(b) Show that of the matrix, tensor Q = §; @ e; rotates vectors along the direction of the

vector, v; = 3e; + 5e, — 4e;
(c) Use any two vectors to show that the rotation angle of this tensor is %
(d) Show that this result is independent of the vectors chosen. [Hint. Use another set of

vectors and see the angle is the same — hence a property of the rotation tensor]

67

(# Question Data Entry |
Results Display Suppressed Using Semicolons &)
vy := {3.5 5.5, -4.};
e; = {1, 0,0}; e = {0, 1, 0}; e = {0, 0, 1};
£, = {0.843394, 0.389796, 0.369791} ;
£, = {-0.275206, 0.904508, -0.325769};
&3 = {-0.461463, 0.172983, 0.870132};
(# Two Arbitrary Vectors &)
v2 = {2, 1, -4};
vy = {-10, 0, 15};

€4
Figure 20. Rotation Tensor

Solution.
Figure 14 shows two arbitrary vectors, v, and v; projected to a flat disc as v',(not shown) and
v';. The vector v; is along the normal to the

disk. The solution to this problems rests on ~ Injfi= (+ Test Autonormality =)

working with dyad products. We are going to sorm| Syl
Norm[&,]|
use the result, that given any vector, v Norm[&s]
& ® e)v = (e; V)§; Dot[&1, £2]
Dot
Apart from that, much of what is left is L&z, £3]
Dot[&3, &1
computational tedium and drudgery. Here is
In[11]:= (% Test Right Handedness =)

where Mathematica comes in handy. If the Cross[€;, €3] (+ Compare to & #)

rotation is along an axis, the vector along Cross[&£;5 €3] (+ Compare to &;)
that axis will not be changed when this Sl e it
tensor is applied to it.
Letv, = 2e; + e, — 4ez and v3 = —10e; + 15e;. Let v; be normal to the disc shown such that
the projections of v, and v; are v', and v’ respectively.
From In[5] we can see that §;,i = 1,2,3 is an orthonormal set because each is of unit magnitude
and the fact that
§1:86=08-§=0 8§ =0.

To demonstrate right handedness, look at the cross products and observe that,

§1 X8 =8 §x&G =8; & x§ =8

The tensor products to derive Q = §; & e; is coded as follows:

68

in[14]:= (* Test for Axis of Rotation =)
Q = TensorProduct[£;, e;] + TensorProduct[£;, e;] + TensorProduct[£3, e3];

Q-vy
The fact that Q, as defined, rotates around v;is shown by the fact that, Qv; = v;. It makes sense

that any vector along the axis of rotation remains unchanged by the rotation.

In[16:= (* Test for Angle of Rotation #)
y2 = Normalize[Cross[vi, va]]; ya = Normalize[Cross[vy, va]];
(* Rotate yy,y: *)
W2 =Q.y25 Wi =Q.y3j
ay = ArcCos [Dot[yz, w2]]
a; = ArcCos [Dot[y3, w3]]

We cannot find the relevant angle of rotation of the vectors by examining v, and vs. They are
selected arbitrarily, therefore, are not guaranteed to be on the same plane and are not
perpendicular to the axis of rotation. In order to find vectors along the plane of the disk shown,

we observe that the normalized cross products:
vy XV, p Vi X V3
Y=o e Ay = o
INAlNALR IVATNAL

must lie on the plane of the disk shown as they are perpendicular to v, andv;, and
vz and v;respectively. We compute the rotation on the unit vectors y, and y; to obtain w, and

ws. Cosines of the angles between unit vectors (y,, w,) and (y3, w3), obtained by taking their
scalar products, give us the angle of rotation. The value shown is the Cosine of %

The last part is given as an exercise.

Solved Problems 1.1

69

In the picture,a+ b + ¢+ d = 0. Clearly,

(a+d) (b+o0)
2 2

also,

(@a+b) (c+d)
2 2

Opposite sides of the lines joining the midpoints are

parallel. This is a parallelogram.

axb= eijkajbkei = —eikjbkajei =—-bXxXa

axb=e;abey

(axb)-a=(ejrasbrer) - (ageq)
= eijkajbkaaei €y
= €k Ajbrasbiq
= eijkajbkai
= —eﬁkajbkai
= —eijkajbkai =0

The expression in symmetrical in i and j, it is also anti-symmetrical in the same two

indices at the same time. The same situation occurs on the RHS.

70

a (a) Opening the parentheses,
(a+b)-(@a—b)=a-a—a-b+b-a—b-b
=a-a—b-b
= ||l — IIb]|?
(b) Similarly,
(a+b)x(a—-b)=axa—axb+bxa—bxb
=—-axb+bxa=-axb—-—axb
=—-2axb

GiventhatVve E,a-v=b-v,Showthata=>b

We are given that Vv € E,a- v = b - v this implies,
a-v—-b-v=(@a-b)-v=0
Define the vector ¢ = a — b. The equation becomes,
c-v=|c|l||v]l cos8 = 0.
Because v can be any vector, it does not have to be perpendicular to ¢ and we can rule out the

trivial case of its being the zero vector. This leaves us with the only choice that ||c|| = 0. And, the

only vector that has zero magnitude is the zero vector. So that,

c=a—b=o,0ora=b.

n Given that for any vectorv,a X v=Db X v,Showthata=b

We are giventhat Vv € [E, a X v = b X v, Now take a dot product with a, we have that,

a-bxv=(axb)-v=0=o0-v
for all v proving that a X b = 0. This shows that a and b are collinear. We can therefore write

thatb = aa
Hence,a X v =b X v = aa X v where « is a scalar. So that

(axvi(l—-a)=0=>1=a«a
showing that a = b as was required.

71

For each free index, there is an equation:
i=1= eljijk = e123T23 + €13, 3, = To3 — T3, = 0= Ty =Ty,

=2 eypTjx = €13T13 + 331731 = T1z3 — T30 =0=>T13 =T34

i =3=e3jljx = e312T12 + 321721 =T12 = T21 = 0> T1, =T
Notice that this same expression could have been written in the full invariant form:

eijiTjxe; = 0
In this form, there is no free index, all indices are dummy. Notice that the RHS is a vector zero.
Strictly speaking, this can be fully expanded to
eijkljxe; = 0e; + Oe, + 0e; = o
= eqjrTjrer + ezjkljker + esjrTjxes
which are three equations:
e1jkljx = 0,25, Tjr = 0, €3, Tj = 0.
And this is the meaning of the single equation,
eijilie = 0

where the free index facilitates the production of the three equations. It follows that either form
of writing gives us the same set of equations if correctly interpreted. That is one reason why we
should be careful to note whether the zero we are dealing with is a scalar zero, a vector zero or

a tensor zero. It matters!

a3 Q12 413\ /A117 dz1 d3q
Q1 Az QAz3 || Q12 Az Q3

31 A3z dzz/ \A13 dz3 0433

a11a11 T Q12012 + Q13043 Q1101 + Q12032 + Q43023 411031 + 12032 + A13033
= (‘121‘111 t a22012 +A23013 Ap1031 + Q2022 + Q23023 Q1031 + Az2a3; + ‘123‘133)

a31Q11 + a32Q1 + A33Q13 A310z1 + A32022 + A33A23 A31031 t A3203; + A33033
Observe that in each cell, every term maintains the cell’s row and column numbers in their
first term.

A(row 1n0)1A(col no)1 + A(row n0)2%(col no)2 + A(row 10)3%(col no)3

Is true of EVERY cell in the above array! Look at it closely! It is also clear that we are
summing over the second number in each term. Is it not clear that we can gain a significant

amount of space if we simply writing, for the i** and j* column,

72

a;1Qj1 + A;2Qj; + 3053
And is it not obvious that this can be written, using the summation convention as,
Aj1Qj1 + Aj2Aj3 + Q303 = AjeAjg = Ak Q)i
On the right hand side, the identity matrix is,

1 0 O 6117 012 Op3
I= <0 1 0) = (821 822 523)
0 0 1 831 083z 033

Observe that anywhere the row and column numbers are the same, the value is 1. When
they are not, the value is zero. So that the typical element is §;;. Hence, we can write the
equation as,

Ak Ak = Oy

Let us first transform an arbitrary vector u;
Tu = 4e, + e,
For any scalar a, let us also transform au, since au is a vector, this transformation,
since it transforms every vector the same way, transforms to
T(au) = 4e, +e; =T # aTu
Hence, it is not a linear transformation. A tensor is a linear transformation of a vector

to another vector. The transformation is NOT a tensor.

Let us transform an arbitrary vector u;

Tu=o0
For any scalar a, let us also transform au, since au is a vector, this transformation,
since it transforms every vector the same way, transforms to
T(au) = 0 = aTu
Hence this transformation is a tensor: It transforms linearly, and from tensor to tensor.

It is the Annihilator Tensor.

Vector Cross is a tensor that operates on a vector, yielding the same vector result that
would have been obtained were there to have been a cross product on that vector.

For any skew tensor, a Dual vector is a vector that is a vector cross of the tensor.

73

A Deviatoric tensor is what remains after subtracting the spherical part of the tensor
from the tensor

A Spherical Tensor is a tensor that has the value zero in each non-diagonal element.
The diagonal elements are of equal value. It follows that the tensor can be written in

the form, al where « is a scalar, and I is the identity tensor.

Let Q = (ll X) = €;jkU;€; (024 €

i=1L,k=2=>Q,, =ej35Uu3 =—u3; =3
i=1,k=3=2>Q3=e€3u, =u, =1
i=2k=3=0y; =ey3u; =—u =—4
0 3 1
-1 4 0

The trace of a skew tensor is zero. It has no spherical part. Hence, the skew tensor is

deviatoric.

a Because the subscript index is repeated, summation is implied for the full range of
acceptable values — that is, 1,2 and 3; therefore, S;; = S14 + S, + S35 =1+ 1+
3=5.

b In this case, two different indices are repeated. There is summation on both of them.

To get it right, we must apply such one by one. We do it, starting with the first
index, i, and later, after that is fully completed, we take the second index j, as follows:
SUSU = 51151] + 52152] + 531531 = 511511 + 512512 + 513513 + SZ]SZJ + 53153]
= 511511 + 812512 + $13513 + 521521 + 522522 + 23523 + 53;53;
= 511511 + 512512 + 513513 + 521521 + 522522 + 523523 + 531531 + 53253
+ 533533
=1X1+0X0+2%Xx2+0%x0+1%X1+--+0x0+3%x3=28

C Proceeding as in the earlier two examples, we write,

SikSkj = S1kSk1 + S2kSk2 + S3xSks3

74

= 511511 + 512521 + 13531 + S2kSk2 + S3kSk3

= 511511 + 512521 + S13531 + 521512 + 522522 + 523532 + S31Sk3

= 511511 + 512521 + S13531 + 521512 + 522522 + 523532 + S31Sk3

= 511511 + 512512 + S13513 + 521521 + 522522 + 523523 + 531513 + 532523
+ 533533

=1X1+0Xx0+2%Xx3+0Xx0+1Xx1+--+0x2+3X%3

=23

d Here, again, one index is repeated. A summation over all the allowable values of that
index is implied. Accordingly,
AmQm = A1a4 + ay0, +aza3 =1X1+2X2+3Xx3 =14
e This is another example of a double summation. We proceed as we have done
previously:
SmnAman = S1n01an + S2 020, + S3pa3ay
= 5114101 + 512010, + S13a103 + S2,02a, + S3pazay
= 5110101 + 5120105 + 5130103 + 5210201 + 53200, + S330,03
+ S31a3a4 + S3paza, + Szzaszaz
=1X1X1+0X1X2+2X1Xx3+0Xx2Xx1+1x2x2
+2X2X3+3X3X1+0X3X2+3X3X%X3
=59
f
As in the above example, everything unchanged except that location of m and n indices in the
first term are now revered. It is good to work this out fully manually and draw lessons from the
result. This can have far reaching effects on your understanding of other materials later.

SnmAman = Sp1@10y + Spaa2a, + Spzazay,
= 5114101 + 5210105 + S3141a3 + $p2a,a, + Spzaza,
= 5114144 + 521a1a; + 531a1a3 + 512a,01 + 522050, + S320,a3 + 5130304
+ S,3a3a, + S33a3a3
=1X1X14+0X1X24+3X1X34+0%x2Xx1+1X%X2%x2+0Xx2X%X3
+2%X3%Xx1+2X3%Xx2+3%Xx3X%X3
=59

75

The fact that the last two examples gave the same answer is NOT a coincidence. This example
may look like some easy problem that is merely tedious. However, it strikes at the very heart of
understanding the skills involved in the summation convention. These skills are not elementary
nor are they trivial. We pause a little moment to look again at the problems 2.1f and 2.1g. By the
time it fully sinks in, you will see that it should not be necessary for you to do the tedious
arithmetic to see that they MUST give the same answer. Here is the proof:
Sija;a; = Si;a;a,
Is true for the simple fact that multiplying a; and a; will always give us the same answer no
matter in what order the operands are given: multiplication is Commutative. The fact that i and
j in the above equations are repeated means that they are dummy variables. They can therefore
be exchanged for any other set of dummy variables provided we are consistent. Accordingly,
replace i by m and j by n on the left-hand side, and replace i by n and j by m on the right-hand
side, we obtain,
Smnmn = SumQman
Never forget that we are only able to arbitrarily replace variables on a side without doing exactly

the same at each object because we are here dealing with variables that have repeated

themselves and are dummy variables.

76

Volume of a Conramid.

Definition: A ConRamid is an object with a flat base of any shape that
tapers, linearly, to a point maintaining the same shape in any
horizontal section. A cone, pyramid or tetrahedron are all special
cases of a conramid.

Volume. We will show that the volume of a conramid is one third the
height times the area of the base. In doing this, we shall first
demonstrate that as the lengths vary linearly with distance from the

tip, the elemental areas vary as the square of this distance. Let us

assume that the base area is A, and the perpendicular distance between the base and the vertex
is H. We consider an element at a distance x from the vertex. To make things easy we have
selected a right angled triangle at the centerline — through the perpendicular. The breadth, b;,

and height, h;, of this triangle, compared to the image (height h, breadth b) at the base is

b
H

bex =

. The area of this triangle is therefore,

1/b \/(h bh , 1
ae =3 (5%) (57%) = 527 = g4

77

We can easily mesh the entire disk in a set of triangles as shown. In this case, the total area of
the disk at point x will be the sum of all the triangular areas:

The volume of the typical disk is,
1 2 1 2
1z (A + A, + -+ Ax“dx = D Ax“dx

where H is the height of the triangle at the base. The volume of the conramid is therefore,
A H

V=—
H? J,

5 1
x“dx =§AH

Which is one third the area of the base times the height. This applies to a cone, a pyramid or a

tetrahedron as we have assumed previously.

1.15

(axb)-(cxd)=((axb)xc)-d
=((@a-c)b—(b-c)a)-d
=@-c)(b-d)—-(b-c)a-d

(axb)-(bxc)x(cxa)=(axb)-[(bxc)-alJc—(axb)-[(bxc):c]a
=(axb)-[(bxc)-a]c
=(@xb-c)((bxc)-a)
=(axb-c)(a-bxc)

=(axb-c)?

78

(a) Writingr; = ||ry||, and 1, = ||, || In the sketch
below, let e; and e, be the unit coordinate x4
vectors for x; and x, respectively. Clearly,

Iy, =r;cosae; +rsinae,
r,=r,cosfe;+nrsinfe,

r; - 1y = [[rg|ll[rz]l cos(B — a)

= (rcosae; +rysinae,)
- (rycosf e, +rysinfey)
=71, cosar,cosfB +rysinar,sinf

so that,
cos(B —a) = cosacosfB + sinasinf

(b)

r; X 1, = [[rg]|[lrz]| sin(B — @) e;

€1) €3
=|rpcosa rysina 0
rncosfB rsinff 0

= e 1y (cosasin B — sina cos B)
~sin (8 — a) = cosa sinf — sina cos B

T, sin 8
I

Iy

g Ty sina
a
X,
. T;co8f ,
n cos a

Assume vectors D;and D, are the diagonals. The
sides are %(Dl +D;), and %(Dl —D,). The

required area is therefore,

€, €; €3
2 -1 1|=e,3-2)—e,(—6—
1 2 =3

1) +e;(4+1)
The magnitude of this is V1 + 49 + 25 = 5+/3

It is a vector area with magnitude 5v/3.

In[i7)= @ = {2, -1, 1} b = {1, 2, -3};
vArea = Cross[a, b];
sArea = Norm[vArea]
vArea // MatrixForm

outfisi 5V 3

Out[20)//MatrocForm=

1
[7
5/

a From the given result,
[(uxVv),(vxw),(wxu)]=—-(uxv) (Wxv)X(wxu)
=—(uxv)- (WQw)(vxu)
= (u X v)((w 1 v)w)

= [u, v, w]?

(wxu)Xx(wxv)=[(wxu)- vlw—[(wxu)- wlv

=[(wxu)-v]w

=[(uxv)- -wlw

=(w®w)(uxv)
Consequently,

[e,exu,exv]=e-[(exu)Xx(exv)]
=e-[(e®e)(uxv)]
=(uxv) - (e®e)e
=(uxv)-e=[euVv]

making use of the symmetry of (e ® e).

Given that u, v and w are vectors, find the values of scalars a and 8 in the

equation, (u X v) X w = au + v

80

uxyv= eijkuivjek = Sg€er
Expanding the full equation, we have that

(uxXv)Xw

CrimSkWi1€m

= CrimCijkUiVjW i€y

= (810mj — 61jOmi) UsVjWi€,

eijkuinWiej — eijkuinWjei

(uin')Ujej — (Ujo)uiel’

=(u-w)v—(v-w)u = au + v

Clearly, a = —(v-w)and 8 = (u-w)

By simple vector addition, we can representuas (n-u)n +u— (n- u)n.

Since n is a unit vector, n - n = 1. Therefore,
u=Mm-uyn+u—(n-u)n
=(m-wn+ (- -nu—((Mm-u)n
=(-uwn+nx (uxn)
=(m@®n)u+nx(uxn)

(@) ejjn (D)esmi (C)esmi (d)anj(e)di, (f)6;;0;; = 8 = 611 + 622 + 833 =3

81

(uxv)Xxw=u-w)v—(v-wu
(vxw)xu=(v-uyw— (w-u)v
wxu)xv=(w-vyu— (u-v)w

Adding the three, we findthat (U X V) Xxw+ (vXw) Xu+ (WX u) Xv=o0

This is the zero vector.
(uxv) - (wxy)=((uxv)xw)-y
=((u-w)v—(v-wu) -y
= u-w)(v-y) = (u-y)(v-w)

as required.

I, = ff (2 +z¥)o(x,y,z)dxdydz, I,; =1, = jff xyo(x,y, z)dxdydz,
v v

llo = fff (z? + x)o(x,y,z)dxdydz, I3, =1I,53 = fff yzo(x,y,z)dxdydz,
Vv Vv

I3 =153 = ﬂj xzp(x,y,z)dxdydz, I35 = ff x% + y»)o(x,y, z)dxdydz
% v

We can see that in this equation, the there is one free index, that is i and it occurs once

in every term on both sides. There is a dummy index, that is, j appearing repeated in

one term. Accordingly,
avi avi n avi n avi
=—4+v—+v,—+v
at tox, fox, C0xs

Which are, indeed, three equations one each fori = 1,i = 2 and i = 3 as follows:

a;

82

_0v, av, v, av,
ot " Vox T 2ox, " P ox,

6173 0173 av3 0173
_W-l_vla_xl-l_vza_xz-l-%a

The equation comes from the natural law of the indestructibility of masses — or mass

a,

as

balance. It is often inaccurately called a continuity equation in some texts.

@ trE = Eqptr(eq ® ep) = Eapea - €5 = EapOap = Eaq

The given equation, in component form can be written as,
Oapea & €p = A6apeq @ epEyy + 2uEpe, @ €p
Using the common bases, we can write this in terms of components only :
Oapea @ g = (A8upEwy + 2UE p)es @ €p
0;j = A8;jEyy + 2UE;;

a Multiplying both sides by E;; we have,

0ijEij = A6;jExi Eij + 2UE;E;;
By the substitution nature of the Kronecker Delta, we have that, §;;E;; = Ej; = Eyy
because j as well as k are dummy indices here. Consequently,
0jEij = AEykEj; + 2UEjE;; = AMEr)? + 2UE;E;;
Squaring both sides of the equation,
0;j0;; = (ASijEkk + 2uEi]-)(/16ijEkk + ZuEi]-)

= 228, (Exi)? + 2AuEj; + 2Aub;;E;; + 4uE; E;;

= 312(Ex)? + 4AUE;; + 4u2Ei]-Ei]-

= (Exi)?(4pd + 32%) + 4u*Ej Ey;

83

84

Given that a,,,,x™x™ = 0 for arbitrary values of x™,n = 1,2,3 then we can write,
A X" X" = —appx™x™
because zero is also a negative of itself. Swapping the roles of x™ and x™ on the RHS of
the above, we can write,
A X" X" = —ax™x™
= —Appxtx™
= —Apmx"x™
after swapping the roles of the two dummy indices. We therefore consolidate on the
LHS by writing,
A XX + A xx™ =0
(@mn + apm)x™x™ =0
Notice that the quantity in the parenthesis is always symmetric. And also note the
contraction of two symmetric tensors can only vanish if one or both tensors vanish.
Here, x™x™ is a product of arbitrary tensors. We are left with the fact that
Apn + Ay = 0
or,
Amn = —Anm

which is the definition of anti-symmetry.

Suppose it is possible to find scalars @ and 8 such that, a = ab + fSc. It therefore means

that,
[a,b, c] = e;jra;bjcy = ejj(ab; + fc)bjcy
= a’eijkbibjck ar ﬂeijkcibjck

=0

Note that b;bjcy is symmetric in i and j, ¢;bjcy is symmetric in i and k ande;jy is
antisymmetric in i,j and k Because each term is the product of a symmetric and an

antisymmetric object which must vanish.

Consider the product sum, e;j,b;bjcy in which b;b; is symmetric in i and j and e;j is

antisymmetricin i, j and k. Only the shared symmetrical and antisymmetrical indices i, j
are relevant here.

eijkbibjck = —eyjib;bjc, = —e;jbjbicy = —eyjb;bjcy, = 0
The first equality on account of the antisymmetry of e;j in i,j; the second on the
symmetry of b;b; in i, j; the third on the fact that i, j are dummy indices. These vanish
because a non-trivial scalar quantity cannot be the negative of itself.
This is a general rule and its observation makes a number of steps easy to see

transparently. Watch out for it.

In component form,

[a,b, c] = e;jra;bjcy
Cyclic permutations of this, upon remembering that (i, j, k) are dummy indices, yield,
eijkbjcra; = [b,c,a] = e;jbiciay
= e;jxCka;bj = [c,a,b] = e cia by
[b,cca]=b-cxa=-b-axXxc=—[b,a,c]

In a similar way, [a, b, c] = —[a, ¢,b], and [c,a,b] = —[c, b, a]

1.33

85

(a) In order to avoid confusion between squaring and simple indexing, we separate the
two as follows:
S =A%+ A3+ A5 = AA; + A A, + A3A5 = A4
In a similar way, the Laplacian operator for a scalar function can be expressed as follows:

9°¢ 0% 9% 9% 9%¢ P2 9

0x? 0xZ 0x% 0x,0x; 0x,0x, O0x30x3 0x;0x;

a®b = aibjei ®e]

'a1 el

= [e}, e, €3] aZ] & [b1, by, bs] [eZI

a3 €3

3x1 3x(=3) 3x4
= [el, ez, e3] 1 _3 4‘
[(=2)x1 —-2x(-3) —-2x4

€1
ol
€3

3 -9 12 €1
= [ell e2; e3] 1 _3 4’ ® eZ
-2 6 -8 €3

tr(a®b)=aibi=3—3—8=—8

€; X ej = el-jkek = € X ej = eijaea

Taking the scalar product of the above vector with ey,
€; X € € = €;j,€y - €y = €;ja0ax = €ji
Starting with e; X e, = ej €, we can also take the scalar product with e; and write,
€ € Xey =@ Xe € =€,y € = €rala = €jri = €yji

As a double swap does not alter sign.

86

lle)| = cos?¢ +sin?¢p =1
leg||” = sin? ¢ + cos?p = 1
lle,lI> =1
They are individually normalized with each having a norm or magnitude of 1. Now lets take
them in pairs:
e e, =—cos¢sing +cospsing =0
ey e, =—singx0+cos¢px0+1x0 =0
e,-e,=cosp X0+ singx0+1x0=0

So that they are pairwise orthogonal.

||ep||2 = sin? 6 cos?¢ + sin? @ sin? ¢ + cos? O

= sin? 6 (cos?¢ + sin® ¢) + cos?f =1
llegll> = cos?8 cos?¢ + cos?6 sin® ¢ + sin? O
= cos?0 (cos?¢ + sin?) +sin? 6 = 1
lleg||” = sin? ¢ + cos?p = 1
They are individually normalized with each having a norm or magnitude of 1. Now lets take

them in pairs:

87

€p ey = —singcosBcosp+ singpcosBcosp+0=0

So that they are pairwise orthogonal.

1.38

aR_ de,
90 "0 ”ae
= p(cochosqbl + cos@sin¢ j — sin O k) = peg.

(sinf cos¢i+sinfsingj+ cosfK)

R _ 9¢ _ (0 +sin6 + cos 0 k)
6¢ pad) p sinf cos¢i+sinfsingj+ cos
= p(—siné smd)l +sin 6 cos ¢ j)
= psind ey.
From these, we can see that {ZR, gg Z:} {ep, peg,psinf e¢}. Obviously, the magnitudes are

{1, p, p sin 8} respectively. Consequently, this basis set can be normalized to {ep, ey, e¢,}

The result on both sides is a vector. Testing a scalar product with y € E: observe that

u- (v@wly= (u-v)(w-y)

and,
[(W®Vu]-y=(Ww-y)(u-v)
The two are equal on account of the commutativity of the dot products.
This is a general result for tensors. A dot from the left gives the same result at contracting with

the tensor transpose from the right as seen here.

88

First observe that the result will be a tensor. Operating iton 'y € [E, we have,
[ux(v®w)]y=(Ww:-y)(uxv)
And on the right, we have

[(uXxVv) ®@wly = (W-y)(uxv)

As was required.

89

Operate this rotation on
Q = {{0.8433939353874569, 0.38979645190947854, 0.3697910164274408} ,

any vector along the axis of {-0.275206648534447, 0.9045084971874737, -0.32576936491649305} ,
{-0.46146285912746604, 0.17298296041645106, 0.8701315561749643} };
rotation, there will be no Va = {a; By ¥}5 U1 = {1, 0, 0}5 up = {1, 1, -2};

wy = Cross[va, ug]; wy = Cross[vay uz];

change in the vector. For all Y1 = Qw5 ¥ = Quwia;

z; = Transpose[Q] .wyj

such vectors, a rotation has

the same effect as an Solve[{Dot[y1s Va] == 0, Dot[z1, va] == 0, a®2+ B2+ y¥"2 == 1}, {a, B, ¥}]

(o +2.35908 107 - 2.45346x10” i, 5 - -2.55563x 10 - 7.29829x10° i,
Identity tensor. Let v, = y - -1.42522x10" - 2.75238x10" i}, {0 »2.35908x 107 + 2.45346x 10’ i,
B -2.55563x10 +7.29829x10% i, y » -1.42522x10” + 2.75238x10" i},

ae; + fe, +ye;be the

o5 -0.424264, 5 - -0.707107, ¥ - 8.565685), (o -1., f20., y 2 0.},
unit vector along the axis of a1 B0l ;‘"6"’ o ,e.?z4264, .9.79719?, Y 3 e.sessﬁsr,
o 3 -2.35908x 10" - 2.45346x 10" i, 8 » 2.55563 x 10" - 7.29829x16° i,
rotation. Since v, as a unit y »1.42522x10° - 2.75238x10" i}, (o > -2.35908x 10" + 2.45346x 10" i,
B »2.55563x1@ +7.29829x10% i, y »1.42522x10" + 2.75238x18° i)}
vector; its magnitude,

ArcCos[Normalize[w;] .Normalize[y;]] /.

||Va || =+ a? + ﬁz +)/2 {a -+ 0.4242640687119285" , 3 - 0.7071067811865477" , y - -0.5656854249492378" }
ArcCos [Normalize[w;] .Normalize[y,]] /.
= 1 {ax -+ 0.4242640687119285" , 8 » 0.7071067811865477 , ¥ -+ -0.5656854249492378" }

We select two vectors, u; = e; andu, = e; + e, — 2e3
w; =V, Xuandw, = v, X U,

Both lie on the normal plane to the axis of rotation. We now rotate these two vectors and obtain,

y1 = Qwy, ¥, = Qw,, and

Z, = QTW1
all of which lie on the normal plane to the axis of rotation. Clearly, each of these is inclined at right
angles to v,. We use the condition on two of these with the constraint on the unit vector to find
the unknown a, 8 and y in the Solve[] function call shown.
There are many solutions — most involving complex numbers. We concentrate on the real
solutions. The two non-trivial solutions give the same unit vector (same direction, opposite sense.
We are now able to test the rotation angle of this tensor on each of the two vectors transformed
to its plane: The angles between (Qw,, w;), as well as the angle between (Qw,, w,) are both
equal to /5 the angle of rotation of the tensor about v,.
Note: The converse of this problem, to find a tensor that performs a given rotation about a given

axis, is solved in Q2.74 after a deeper treatment of rotation tensors.

90

The basis vectors are packed in columns of

the gradient. We did not need to transpose

here because in this case, there is symmetry.

JR
a—€=ef=ﬂe1+fez

JR

%=en =¢e; —ne,
JR

E=e2=e3

The norms of the vectors are:

leell = lle, || = V€2 +n2 lle.ll = 1
The dot products yield pairwise zeros
showing orthogonality. The magnitudes
display no normality so the basis vectors are
NOT orthonormal.
If these vectors are taken in the order, e,, e,

and e,, then the system is right=handed as,

Inf1]:=

ut[Z2}=

ut[23}=

{24}

R=1{En, (€"2-1"2) f2, z};
cVec = Grad[R, {£, 175 2} 135

cVec // MatrixForm;
n &€ O
e 0 1

Dot[cVec[[1]], cVec[[2]]]
Dot[cVec[[2]], cVec[[3]]]
Dot[cVec[[3]], cVec[[1]]]

Norm[cVec[[1]]]
Norm[cVec[[2]]]
Norm[cVec[[3]]]

Cross[cVec[[2]], cVec[[1]]]
Cross[cVec[[1]], cVec[[3]]]
Cross[cVec[[3]], cVec[[2]]]

{0, 0, n" + £}
"E: =] a:‘

[N, £, 0)

e, Xe;=e,; e xXe,=¢e, e, Xe, =e;

Dividing the right-handed orthonormal set with the respective magnitudes, we have the

orthonormal set:

91

{591 —ne, ¢e; +ne, 1}

e+ e 2

R =xi+yj+zk == R = {aCosh[£] Cos[n], asSinh[£] Sin[nl, z};
. . cVec = Transpose [Grad[R; {55 115 2} 113

= coshé cosne; +sinhésinne,
In[11]:= Simplify[cVec] // MatrixForm

+ ze3 Dut[1 1)/ MatrxFarm=
aCos([n] Sinh[£] aCosh[£] Sin[n] @
after substituting for x,y and z. ~aCosh 2] 5inin] acCos(n) Sinhi 2] @
a a 1
Differentiating with respect to each
In[12]:=
coordinate variable is more easily Dot[cVec[[1]1, cVec[[2]]]
Dot[cVec[[2]], cVec[[3]]]
accomplished by simply taking the Dot[cVec[[3]], cVec[[1]]]
. . . In[15]= Norm[cVec[[1]]1]
gradient with respect to these variables. Norm[cVec [2]1]

. . . Norm[cVec[[3]]]
Mathematica populates the matrix with

Out{15}= \J'lnbsLaCosergj sin[n]]? + Abs[aCos[n] sinh[£]]?

the basis vectors as rows of the

Out[16}= \f'AbsLaCasthj Sin[n]]? + Abs[aCos[n] Sinh[£]]

transposed gradient in Out[11].

R ouiTE 1
a_f — i = (sinh ¢ cosn)e, In[21= Cross[cVec[[1]], cVec[[2]1]
Cross[cVec[[2]], cVec[[3]]]

+ coshésinne, Cross[cVec[[3]], cVec[[1]]]
3R ou21i= {@, @, a’ Cosh(£)*sin(n)* + a’ Cos(n)® sinh(£)?}
% =€ = —cosh{sinn e, ouz2= (aCos 7| Sinh|£], aCosh|£] Sin 7], @)

+ SinthOST] e, out23= [-alCosh[£] Sin[n], aCos[n] Sinh[£], @}
JR
—=e
oz ¢

The norms of the basis vectors are:

92

|le, || = v/(cosh & sinn)? + (sinh & cos)2

llell =1
The dot products yield pairwise zeros showing orthogonality. The magnitudes display no
normality so the basis vectors are NOT orthonormal. If these vectors are taken in the order, e,
e, and e,, then the system is right-handed as,

e:Xe,=e, e,Xe, =e; e, Xe; =e,.

1.45

Dividing the right-handed orthogonal base vectors set
with the respective magnitudes, we have the

orthonormal set:

(sinh & cosn)e;—coshésinne, coshésinne;+sinhé cosne,
/(cosh & sinn)2+(sinh & cos)2’ /(cosh & sinn)2+(sinh & cosn)? ’

Coordinate surfaces. From a similar code to the one in the

text, we have the coordinate surfaces shown.

93

cVec = Transpose[Grad[R, {&, 1y #3113

In[31= Simplify[cVec] // MatrixForm

Out[3)/MatrxForm=

-a sin(n) sinh(£) sin(é) a sin(y) sinh(£) cos(é)

In[4):=
Dot[cVec[[1]], cVec[[2]]]
Dot[cVec[[2]], cVec[[3]]]
Dot[cVec[[3]], cVec[[1]]]

Outf4l= -a’ Cos[n) Cosh[£] Sin[n) Sinh[£] +

Out[5}= @
Out[é}= @
In[7}= Simplify[%4]
Out[7T}= @

In[11]:= Norm[cVec[[1]]]
Norm[cVec[[2]]]
Norm[cVec[[3]]]

In[i}= R = {aSinh[£] Sin[n)] Cos[¢], aSinh[£] Sin[n] Sin[4], aCosh[£] Cos[n]};

a singn) cosh(£) cos(#) a sin(n) cosh(£) sin(é) a cosin sinh()
a cos(n) sinh(£) cos(é) a cos(y) sinh(£) sin(é) -a sin(n) cosh(g)

a’Cos|n) Cos o) Cosh|[£] Sin(n| Sinh[£] + a’ Cos|n| Cosh|£] Sin(n) Sin[@|? Sinh|#)

1.47

1= R = {p5in[o] Cos[d], pSin[o] 5in[é], pCos[o]};
cVec = Transpose [Grad[R, {o, &5 ¢}11;
In[3)= cVec // MatrixForm

Out[3}MatrcForm=

Cos (@) Sin[s] Sin[&) Sin[¢] Cos|[5]
plos(&) Cos[¢] pCos|[&]Sin[@] -poSin([s)
-psin[s] sin[@] pCos([¢] Sin[s] a

In[4):=
Dot [cVec[[1]], cVec[[2]]]
Dot [cVec[[2]], cVec[[3]]]
Dot[cVec[[3]], cVec[[1]]]

Outj4= -pCos[&] Sin[&] + pCos[s] Cos (@] 2 5in (&) + pCos[&] Sin[&] Sin[@] :
Out5)= @
Qut[s}= @

In[7):= Simplify [%4]
CQut[T}= @

94

The basis vectors can be seen as the
rows of the transpose of the gradient
operation. Mutual orthogonality is
demonstrated by taking the pairwise
dot products and obtaining zero.

The result for the first two vectors did
not initially appear to be zero. A
Simplify function sets this right as can

be seen in the code.

The alternating tensor component, e;;; is
In[1}= v = {4, 1, =3};
implemented as LeviCivitaTensor[]. The result here is w = -LeviCivitaTensor[3] .v
w // MatrixForm
the same as Q1.12 as expected. R —
o 3 1
-3 @ -4
-1 4 @ |

The functions TensorProduct[] and Tr[] perform the 0= a= {3, 1, -2}; b= {1, -3, 4};
dDyad = TensorProduct([a, b];
two operations directly. The result can be compared dbyad // MatrixForm
dTr = Tr[dDyad]
to Ql.34 Out12}/MatrixForm=
3 -9 12
1 -3 4]
-2 6 -8,

outi13}= -8

Given vectors a = a;e; and b = b;e;, From Equation 23, we find that the dyad product,

written in component form is,
aQb=abje; X e
The trace of this,
tr(a ® b) = tr(a;bje; @ €;)
= a;b; tr(e; ® e;)
= a;b; tr(e; - €j) = a;b;5;;
= a;b;

Which is the scalar product of aand b.

95

The two operations as the

code shows are not the same.
This clearly demonstrates
that, we cannot assume
equality b®@a does not

produce the same result as

|ﬂ[1]:= a= {3_1 1_1 Z}j h= {1, '-'3_1 4}5 C = {'-'1_1 "4_‘ 1}5

dbiyadl = TensorProduct[a, b] ;
dbiyad2 = TensorProduct[by a] ;
resOne = dbhyadl.c
resTwo = dDyad2.c

Cut4= [45, 15, 30)

cutfs= [-5, 15, -28)

a @ b when they are both operating on the same vector. This means that, in general,

a®@b+ba

96

Looking at the results generated by b @ a and a @ b in the code here, it is clear that

a®b=(b®a)T
Consequent upon this
observation, we can also see
that the diagonal elements
are the same. It also follows
that
tr@®b) =tr(b ® a)T

So that the trace operation is
Not affected by changing the
operand order in the tensor

product.

a={3,1,2};b= {1, -3, 4};
dDyadl = TensorProduct[a, b];
dDyad2 = TensorProduct[b, a];
MatrixForm[dDyad1]
MatrixForm[dDyad2]
COwtf = Wi datnxForm=
3 -9 12,
[1 -3 4
2 -6 B

Outf = JMatrixForm=
3 1 2.
[-9 -3 -5]

12 4 8

in[3}= R = {aCosh[£] Cos[n] Cos[#], aCosh[£] Cos[n] Sin[¢], aSinh[£] Sin[n]};
cVec = Transpose[Grad[R, {£, 17, #3113

In[5)= Simplify[cVec] // MatrixForm

Out[S}/MatrcForm=
aCos(n) Cos|[@®) Sinh[£] acCos(n)] Sin[@) Sinh[£] acCosh[£) Sin(n]
-aCos(@] Cosh[£] Sin[n] -aCosh[£] Sin(n] Sin[¢] aCos[n) Sinh[£]
-alCos(n) Cosh[£] Sin[¢] acCos([n) Cos[¢] Cosh[&] @

In[8):=
Dot[cVec[[1]], cVec[[2]]]
Dot[cVec[[2]], cVec[[3]]]
Dot[cVec[[3]], cVec[[1]]]

outle}= a° Cos[n] Cosh[£] Sin[x] Sinh[£] -
a’ Cos|[n) Cos[®) Cosh[£] Sin(n) Sinh[£) - a’ Cos (7] Cosh[£] Sin(n] Sin(®)*Sinh[£]

Out[T}= @
Out{8}= @

In[z):= Simplify[%6]

Out{3}= @

97

For each e; the vector

§ = Qe;
1.55
From equation 131, we have,
81; 615 Ok
eijk = |02i 025 Oak
83 035 O3y
so that, substituting and swapping columns 1 and 3,
611 612 611 811 612 011
€121 = |021 022 821 = — (621 822 621
031 03 O3 831 032 O3

Since a determinant changes sign when two columns are swapped. This fact is already
obvious from the fact that two columns are identical.

This is the same argument whenever any two indices in e;j; coincide.

1.56

98

99

Point A(1,2,1) is the intersection of the
planes, x; =1,x, = 2,x3 = 1; Point
B(1,2,2) lies at the intersection of the
planes, x; =1, x, =2 and x3 = 2.
Position vector OB joins B to the origin.
This line has the equation,

=0 x—-0 x3-0

1-0 2-0 2-0

Or,

_XZ_X3_
=g =T

Where t = 0 is the origin,and t = 1 is

t

point B. At any other point on the line,
X, =t,x, = 2t, and x3 = 2t. This line is drawn by the command,

ParametricPlot3D[{t, 2t, 2t}, {t, @, 1}, PlotStyle » Directive[Red, Thickness[0.01]

because 0 <t < 1. This line and the four surfaces can be plotted as in the attached

code:

plotStyle[color_ RGBColor] := Directive[color, Opacity[0.7], Specularity[White, 20]];
x1 = ParametricPlot3D[{t, 2t, 2t}, {t, O, 1}, PlotStyle » Directive[Red, Thickness[0.01]]];
x2 = ParametricPlot3D[{1, y, z}, {y, 0, 2.2}, {z, 0, 2.2}, Mesh - 16,
MeshStyle - Directive[Opacity[.8], Thin, Red], ExclusionsStyle -» {None, Red}, ImageSize - Large,
PlotPoints - 64, PlotStyle » Evaluate[plotStyle[Cyan]], SphericalRegion - True];
x3 = ParametricPlot3D[{x, 2, z}, {x, 0, 1.2}, {z, 0, 2.2}, Mesh -» 16, MeshStyle - Directive[Thin, Purp!
ExclusionsStyle -» {None, Red}, ImageSize - Large, PlotPoints -» 64, PlotStyle - Evaluate[plotStyle
SphericalRegion - True] ;
x4 = ParametricPlot3D[{x, vy, 2}, {x, 0, 1.2}, {y, 0, 2.2}, Mesh - 16,
MeshStyle - Directive[Opacity[1], Thin, Green], ExclusionsStyle - {None, Red},
ImageSize - Large, PlotPoints - 64, PlotStyle -» Evaluate[plotStyle[Yellow]],
SphericalRegion - True] ;
x4a = ParametricPlot3D[{x, v, 1}, {x, 0, 1.2}, {y, 0, 2.2}, Mesh » 16,
MeshStyle - Directive [Opacity[.8], Thin, Green], ExclusionsStyle -» {None, Red},
ImageSize - Large, PlotPoints - 64, PlotStyle » Evaluate[plotStyle[Yellow]],
SphericalRegion - True] ;
Show[x2, x3, x4, x4a, x1, Background - Blue]

We observe that the two points are both in the first octant with the Cartesian coordinate

points all positive. We solve the sets of equations,

psinfcos¢p =1,psinfsing =2,pcosf =1
and

psinfcos¢p =1,psinfsing =2,pcosf =2

This Mathematica code,

Solve[{p Cos[¢] Sin[&] == 1.0, pSin[é] Sin[8] = 2.0, pCos[6] = 1.0}, {ps ¢; 8}]
Solve([{p Cos[¢] Sin[©] = 1.0, pSin[¢] Sin[&] = 2.0, pCos[E] == 2.0}, {p, ¢, B}]

*** Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete s(
information.

({0 -2.44949, 0 » -2.03444, 5 5 1.99133), (o0 - -2.44949, ¢ »1.10715, 5 » -1.99133},
(052.44949, 0 » -2.03444, 5 » -1.15026), (o0 - 2.44949, ¢ -+ 1.10715, S - 1.15026) }

*+= Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete s¢
information.

({02 ~-3.,0--2.03444, 5 > 2.30052}, (0> -3., © -1.10715, & » -2.30052},
(0+3.,0-2.03444, 5 » -0.841069), (0 -+ 3., ¢ -+ 1.10715, S - 0.841069))

Gives, for points A(1,2,1), B(1,2,2) respectively {p — 2.449489742783178, ¢ —
1.1071487177940904,0 — 1.1502619915109316}, {p — 3., ¢ —
1.1071487177940904,0 — 0.8410686705679302}. These are the solutions for the

first octant.

100

Lines OA, OB and AB are shown in green, red and orange in the computed diagram
shown. Observe that the two position vectors OA and OB lie in the intersections of
cones 8 = 1.1502,0.841 and the plane ¢ = 1.1071. AB is the vertical line
{x=1y=2,z=t1<t<2}

A lies on the sphere radius 2.449, while B lies in the sphere radius 3.0. Lines OA, OB
and AB are all on the plane ¢ = 1.1071 as can be seen by the constancy of that

coordinate on all three lines. The origin lies on all ¢p-planes.

Note that parametric plots of surfaces require two parameters while that of a line —
linear or curved, is governed by a single parameter. Again, confirming that a line is one

dimensional while a surface is two dimensional.

101

102

plotStyle[color RGBColor] := Directive[color, Opacity[0.7], Specularity[White, 20]];
x1 = ParametricPlot3D[{t, 2t, 2t}, {t, 0, 1}, PlotStyle - Directive[Red, Thickness[0.0:
x1a = ParametricPlot3D[{p Sin[1.1502619915109316] Cos[1.1071487177940904] ,
o 5in[1.1502619915109316] Sin[1.1071487177940904], p Cos[1.1502619915109316] } ,
{p, 0, 2.449489742783178} , PlotStyle - Directive [Green, Thickness[0.01]]];
x1b = ParametricPlot3D[{1, 2, t}, {t, 1, 2}, PlotStyle -» Directive [Orange, Thickness[O.!
x2 = ParametricPlot3D[{2.449489742783178 Sin[5] Cos[¢], 2.449489742783178 Sin[&] Sin[¢
2.449489742783178 Cos (0]}, {é5 @, 2.2}, {9, .95, Pi/ 2}, Mesh - 16,
MeshStyle - Directive[Opacity[.8], Thin, Red], ExclusionsStyle - {None, Red},
ImageSize -» Large, PlotPoints - 64, PlotStyle - Evaluate [plotStyle[Cyan]],
SphericalRegion - True];
x3 = ParametricPlot3D[{p Sin[&] Cos[1.1071487177940904], p Sin[o] Sin[1.1071487177940¢
pCos(e]}, {ps 2.0, 3.5}, {6, @, w/ 2}, Mesh -» 16, MeshStyle - Directive[Thin, Purp]
ExclusionsStyle - {None, Red}, ImageSize -» Large, PlotPoints - 64,
PlotStyle -» Evaluate[plotStyle[Pink]],
SphericalRegion - True] ;
x4 = ParametricPlot3D[{o Sin[1.1502619915109316] Cos[¢], o Sin[1.1502619915109316] Sin
o Cos [1.1502619915109316] }, {0, 0, 2.5}, {&, 0, 1.5}, Mesh - 16,
MeshStyle - Directive[Opacity[1], Thin, Green], ExclusionsStyle - {None, Red},
ImageSize -» Large, PlotPoints - 64, PlotStyle -» Evaluate [plotStyle[Yellow]],
SphericalRegion - True] ;
x4a = ParametricPlot3D[{3.0Sin[o] Cos[¢], 3.0Sin[5] Sin[¢], 3.0Cos[a]},
{®5 0, 2.2}, {O, .6, .95}, Mesh - 16,
MeshStyle - Directive [Opacity[.8], Thin, Green], ExclusionsStyle - {None, Red},
ImageSize - Large, PlotPoints - 64, PlotStyle - Evaluate [plotStyle[Yellow]],
SphericalRegion - True];
x4b = ParametricPlot3D[{0 Sin[0.8410686705679302] Cos[4], o Sin[0.8410686705679302] Si
o Cos [0.8410686705679302] }, {0, @, 3}, {4, -8, 2.2}, Mesh - 16,
MeshStyle - Directive[Opacity[.8], Thin, Orange], ExclusionsStyle -» {None, Red},
ImageSize -» Large, PlotPoints - 64, PlotStyle -» Evaluate[plotStyle[Yellow]],
SphericalRegion - True] ;
Show[x2, x3, x4, x4a, x4b, x1, x1a, x1b, Background - Blue]

The attached code shows the parametrized lines using the Cartesian equation for lines.

This and the rest of the implementation is as shown in the attached code:

103

plotStyle[color_ RGBColor] := Directive[color, Opacity[0.7], Specularity[White, 20]];
x1 = ParametricPlot3D[{t, 2t, 2t}, {t, @, 1}, PlotStyle - Directive [Red, Thickness[0.01]]];
x1b = ParametricPlot3D[{t, 2t, t}, {t, 0, 1}, PlotStyle - Directive[Green, Thickness[0.01]]];
xl1a = ParametricPlot3D[{1, 2, t}, {t, 1, 2}, PlotStyle - Directive[Orange, Thickness[0.01]]];
x2 = ParametricPlot3D[{1, y, z}, {y, 0, 2.2}, {z, 0, 2.2}, Mesh - 16,
MeshStyle - Directive [Opacity[.8], Thin, Red], ExclusionsStyle +» {None, Red}, ImageSize - Large,
PlotPoints - 64, PlotStyle -» Evaluate[plotStyle[Cyan]], SphericalRegion - True];
x3 = ParametricPlot3D[{x, 2, z}, {x, 0, 1.2}, {z, 0, 2.2}, Mesh » 16, MeshStyle - Directive[Thin, Purple]
ExclusionsStyle -+ {None, Red}, ImageSize - Large, PlotPoints - 64, PlotStyle - Evaluate[plotStyle[Pi
SphericalRegion - True] ;
x4 = ParametricPlot3D[{x, y, 2}, {X, @, 1.2}, {y, 0, 2.2}, Mesh - 16,
MeshStyle - Directive [Opacity[1], Thin, Green], ExclusionsStyle -» {None, Red},
ImageSize - Large, PlotPoints - 64, PlotStyle - Evaluate[plotStyle[Yellow]],
SphericalRegion - True] ;
x4a = ParametricPlot3D[{x, y, 1}, {X, @, 1.2}, {y, 0, 2.2}, Mesh - 16,
MeshStyle - Directive[Opacity[.8], Thin, Green], ExclusionsStyle -» {None, Red},
ImageSize - Large, PlotPoints - 64, PlotStyle - Evaluate[plotStyle[Yellow]],
SphericalRegion - True] ;
Show[x2, x3, x4, x4a, x1, x1b, x1a, Background - Blue]

plotStyle[color_RGBColor] := Directive|[
color, Opacity[0.7], Specularity[White, 20]
15
plotSurface[egns_List, rule_List, edge_List, form_List, color_RGBColor] :=
ParametricPlot3D[
eqgns /. rule[[form[1]],
Evaluate[Sequence [edge[[form[2]], edge[[form[31111,
Mesh - 16,
MeshStyle - Directive [Opacity[.8], Thin, Red],
(*BoundaryStyle-Directive [Red, Thick], *)
ExclusionsStyle -» {None, Red},
ImageSize - Large,
PlotPoints - 64,
PlotStyle -» Evaluate[plotStyle[color]],
SphericalRegion - True
1
plotSurfaces[eqns_List, rule_List, edge List] := Show[Table[
plotSurface[egns, rule, edge, RotateRight[{1, 2, 3}, iota],
Evaluate[{Cyan, Pink, Yellow} [iota]]],
{iota, 3}
], Axes -» False, Boxed -» False, ImageSize » Large, ImageResolution - 600,
Background - Blue] ;

eqns={r Cos[e]r Sin[¢p).2};
syms={r.¢.z};
rule={r->2.0,¢->mz->2.0//N};
edge={{r.0.0}{¢.0.Zn}.{z.0.53};

plotSurfaces(eqns.rule.edge]

104

seqns={p Sin[B]Cos[d],p Sin[O]Sin[¢],p Cos[O]};
ssyms={p,0,0};

srule={p->2.5,0->1/4,¢p->T};
sedge={{p,0,5},{6,0,1t},{,0,2m}};

plotSurfaces[seqns,srule,sedge]

pceqns={§ n,1/2 (§-n?),z};
pcsyms={&n,z};
pcrule={{&->3mn/4},{n->m},{z->0}};
pcedge={{&,-m,m},{n,0,2m},{z,-5,5}};

plotSurfaces[pceqns,pcrule,pcedgel]

1.63

peqns={§ n Cos[®l.€ n Sinl¢],1/2 (§*-n*)};
psyms={&n,e};
prule={&->2.5,n->2.5,¢->m};
pedge={{§,0,5},{n,0,5}.{¢,0,21}};
plotSurfaces[peqns,prule,pedge]

105

ecegns={Cosh[&]Cos][n],Sinh[&]Sin[n],z};

ecsyms={ElnIZ};
ecrule={§->0.3,n->m/6,z->1.25};
ecedge={{,0,1.1},{n,0,2m},{z,0,2.5}};

plotSurfaces[eceqns,ecrule,ecedge]

eeqns={Cos[¢] Sqrt[(1-n?) (&>-1)1,Sin[e] Sqrt[(1-n?) (§*-1)L.E n};
esyms={&n,p};

erule={&->3,n->-0.5,p->m/8};
eedge={{§,1,4},{n,-1,1}.{p,0,2m}};

plotSurfaces[eeqns,erule,eedge]

begns={a Sinh[v]/(Cosh[v]-Cos[u]),a Sin[u]/(Cosh[v]-
Coslul),z};

bsyms={u,v,z};
brule={{u->m/8,a->2},{v->1/12,a->2},{z->0,a->2}};
bedge={{u,0,2m},{v,-m,m},{z,-5,5}};
plotSurfaces[beqns,brule,bedge]

106

beqns={a Sinh[v]/(Cosh[v]-Cos[u]),a Sin[u]/(Cosh[v]-Cos[ul),z};
bsyms={u,v,z};
brule={{u->m/8,a->2}{v->1/12,a->2},{z->0,a->2}};
bedge={{u,0,2m},{v,-m,m},{z,-5,5}};
plotSurfaces[beqns,brule,bedge]

pseqns={a Sinh[€]Sin[n]Cos[¢],a Sinh[&]Sin[n]Sin[¢],a Cosh[§]Cos[n]};
pssyms={&n,¢};

psrule={{&->1.5,a->.2},{n->1/4,a->.2} {p->1/2,a->.2}};
psedge={{§,0,2},{n,0,1}{¢,0,21}};

plotSurfaces[pseqns,psrule,psedge]

eqns={r Cos[d],r Sin[d],z};
syms={r,¢,z};
rule={r->2.5,p->m,z->2.5//N};
edge={{r,0,5},{®,0,2m},{z,0,5}};

plotSurfaces[eqns,rule,edge]

107

1.70

The vector line = ParametricPlot3D[{2a+1, a+2, 5a -5}, {a, @y 3},
PlotStyle - Directive[Thickness[0.01], Red]];

vap = 3= De; + (3—2e, + (O _ (_5))e3 Show[line, Background — Blue]

= 2e; + e, + 5e;
Consider a Cartesian point (x, y, z) on the line; position
vector, of this point isr = x;e; + x,e, + xze3. Forr
to be on this line, we must have

I =Ta + avpp

for scalar a since vyg = ||[vag|lu where u is the unit
vector along AB.

x1€1 + x,e, + x3€;3

=e; + 2e, — 5e;

+ a(2e; + e, + 5e3)

From which we have,

x1—1 x3+5
a= > =x2—2= z

The equations, x; =2a+1, x,=a+2 and x;=5a—5 parametrize the line. A

ParametricPlot3D[] function call is all that is needed to give effect to this.

1.71

(a) For an inclined half angle a the z component of any point on the cone can be obtained from,

z? = (cot? a)(x? + y2). We can parametrize by the variables x and y such that

J(cot? @) (x? + y2) replaces z.

108

tXs = rcota

7’

rg
A

/’%
-0
/'(CI

cone2 = ParametricPlot3D[{r Cos[¢], rSin[¢], rCot[n/6]}, {¢, 0, 27},
{r, @, 3}, Mesh - 16, MeshStyle -» Directive[Thin, Purple],
ExclusionsStyle - {None, Red}, ImageSize -» Large, PlotPoints -» 64,
PlotStyle - Directive [Pink, Opacity[0.7], Specularity [White, 20]])

(b) In Cylindrical Polar coordinates, x; =

(c) rcos¢,x, =rsing, and x3 =rcota for an
included half-angle a. The ParametricPlot3D

function call in the identifier cone3 shown above

implements these parameters

(d) In spherical coordinates,

X, =psinfcosg,x, =psinfsing, and x; =
p cos 8. The O=const coordinate surface is a cone
> X, including a half-angle 6. Parametrization
therefore straightforward. This cone3 is exactly the

same as cone2 for cylindrical polar. Hence a figure

is not included for it.

109

cone3 = ParametricPlot3D[{p Cos[#] Sin[7 /6], o Sin[¢] Sin[x /6],
poCos[m/6]}s (¢, 0, 27}, {0, @, Sqrt[18 (1+ (Cot[7/6])"2)] },
Mesh - 16, MeshStyle - Directive[Thin, Purple], ExclusionsStyle
- {None, Red}, ImageSize - Large, PlotPoints - 64, PlotStyle -»
Directive [Orange, Opacity[0.7], Specularity[White, 20]]]

(e) . The last figure in this answer is the combination of the two different cones. Observe that
the first cone is clipped by the rectilinear coordinate planes of the Cartesian system. It is
possible to correct this by adding more code. But as the expected cone results from the other
two coordinate parametrizations, they are more suited to the construction and require less
code lines to obtain the expected result. For completeness, here is the comparison:

The top of the Cartesian Parametrized cone can be clipped with plot option,

PlOtRange—o {{—3, 3}, {-3’ 3}’ {0, 5}}

Find three common points on the planes, 2x; + x; + 3x; = 10,and x; — x, + x3 = 0.

Adding the two equations, we have,

3x; +4x3 =10
Any point on this line, satisfying the equation of both planes, must lie on both. Let x; = 0,
X, = ?. The point (?,?, O). Let x3 = 1, x; = 2. Here x, = x4 + x3 = 3 so that (2,3,1)
also lies on the intersecting line. By testing x; = 0, we find that, (0,;,;) also lies at the

intersection.

Given that the point (2,3,1) is a common point on the planes, 2x; + x, + 3x3 =

10,and x; —x, + x3 = 0, (a) Find the line of intersection of the two planes, (b)

110

Clearly, the vector normals to the two planes are 2e; + e, + 3e; and e; — e, + e; respectively. The
intersecting line is the line parallel to the cross product of these and passes through the common
point (2,1,3) that lies on both planes. The code below finds this vector and constructs the parametric

equation of the line using it. Parametrizing each plane is done here using the values of x; and x, and
. 1 . L
evaluating x3 for each plane:g (10 — x, — 2x4), x, — x4 respectively. Each equation is therefore

parametrized by the values of x; and x,.

vi={2,1,3};v2={1, -1, 1}; v, = Cross[vy, V2];

plotStyle[color RGBColor] := Directive[color, Opacity[0.7], Specularity[White, 20]];

11 = ParametricPlot3D[{2 + v, [[1]] t, 3+ Vi [[2]] t5 1+ v [[3]] t}, {ts -2, 1},
PlotStyle - Directive[Red, Thickness[0.01]]];

Pl = ParametricPlot3D[{x;, X35, 1/3 (10 -3 - 2%3) }, {X15 =55 5} (X2, O, 10}, Mesh - 16,
MeshStyle - Directive [Opacity[.8], Thin, Red], ExclusionsStyle -+ {None, Red},
ImageSize - Large, PlotPoints -+ 64, PlotStyle -» Evaluate[plotStyle[Cyan]],
SphericalRegion - True] ;

p2 = ParametricPlot3D[{xy, X35 X2 - X1}s {X15 -5, 5}, {x2, @, 10}, Mesh - 16,

MeshStyle - Directive[Thin, Purple],
ExclusionsStyle - {None, Red}, ImageSize - Large, PlotPoints - 64,
PlotStyle -» Evaluate[plotStyle[Pink]],
SphericalRegion - True] ;
Show[11, p1, p2, Background - Blue]

1.74

To find the point of intersection of the three
planes, we solve the three linear equations,
2x1 + x5, +3x3 =10, x1 —x, + x3 =

Oand x; + x, +x3 =6. The point of
intersection is indeed the point (2,3,1). In the
code below, the parametric plotting of the three
planes is quite straightforward. To plot the point,
we use the same equation as if we were plotting
a line. A dummy range is included to avoid error

warning. The red dot is the plot of point (2,3,1)-

the intersection of the three planes.

111

Solve[{2x; + X3 +3X3 =210, X3 - X3 + X3 =20, X3 + X3 +X3 =6}];
plotStyle[color_RGBColor] := Directive[color, Opacity[@.7], Specularity[White, 20]];
pointl = ParametricPlot3D([{2, 3, 1}, {x;, 1, 2}, PlotStyle - Directive [Red, Thickness[0.02]]];
pl = ParametricPlot3D[{xy, X3, 1/3 (10 - - 2x3) }5 (X1, @, 5}, {x2, 0, 5}, Mesh - 16,
MeshStyle - Directive [Opacity[.8], Thin, Red], ExclusionsStyle -+ {None, Red},
ImageSize - Large, PlotPoints -» 64, PlotStyle - Evaluate [plotStyle[Cyan]],
SphericalRegion - True] ;
P2 = ParametricPlot3D[{xy, X2y X2 - X1}, {X15 0, 5}, {X2, @, 5}, Mesh - 16,
MeshStyle - Directive[Thin, Purple],
ExclusionsStyle -» {None, Red}, ImageSize - Large, PlotPoints - 64,
PlotStyle - Evaluate[plotStyle[Pink]],
SphericalRegion - True] ;
p3 = ParametricPlot3D[{xy, X35 6 - X3 - X3}, {X15 @, 5}, {x2, O, 5}, Mesh -» 16,
MeshStyle -« Directive[Thin, Purple],
ExclusionsStyle » {None, Red}, ImageSize - Large, PlotPoints - 64,
PlotStyle - Evaluate[plotStyle[Green]],
SphericalRegion - True] ;
Show[point1, p1, p2, p3, Background - Blue]

General Curvilinear Systems

The Venerable Cartesian coordinate system has been our friend since high school. Its simplicity
and accessibility at such an elementary level of our education rely on some properties that endow
it with advantages over every other system of coordinates in use. Some of these are:
1. Cartesian coordinate surfaces are triplets of planes intersecting at the coordinate point.
Moving from point to point, these triplets of planes remain parallel to the triplets planes

at any other point: They therefore have the same normal vectors respectively.

112

2. As a consequence of #1 above, the coordinate curves, also meeting at the coordinate
points, are straight lines that intersect orthogonally with one another.

3. When the base vectors are chosen, as they usually are, to be of unit magnitude, they
remain unchanged from point to point. In Cartesian coordinates, the basis vectors, e, e,

and e3 are orthonormal and constant.
What is a Coordinate System?
If at every point in the Euclidean point space, we define three continuously differentiable
functions, £1(xy, x5, x3), E2(xq, X5, %3), £3(x1, x5, %3), we can say that £,,i = 1,...,3 as a set,
constitutes a coordinate system. For spherical polar coordinates, for example, the {&%,&2,&3}

function set are {p, ¢, 6} where
EL = p(xy,%3,x3) =/ ()2 + (32)% + (x3)?

§2 = (1, Xz, ¥3) = tan~1 2
X1 (98)

1V ()2 4 (x2)?

X3

&3 = 0(xy,xy,x3) = tan™

Of course, the origin of coordinates is excluded here as £2 and &3 are undefined at that point.
We can obtain similar functions for the other coordinate systems we have defined. Using
superscripts for the coordinate variables, we may write,

E(xy, x9,%3),0i = 1, ...,3 (99)
are the coordinate functions, the values at each point, the coordinate variables, and while
equations, fi(xl,xz,x3) = const, i = 1,...,3 give us the coordinate surfaces which are spheres
for p(xy,x,,x3) = const, planes through the origin for ¢(x,x,,x3) = const and conical
surfaces with vertical axes (z — axis) and subtending half angles 8 for 8 (x,, x5, x3) = const. The
intersections of pairs of planes give us the coordinate curves. The name, Curvilinear is a
portmanteau from “curve-line” indicating that what used to be lines for Cartesian are now
replaced by curves in these kinds of systems. Unlike the Cartesian systems, we now have,

1. curved surfaces for the coordinate surfaces. The curved surfaces are also in triplets. The
normal on each surface is firstly a variable even on a particular sheet. Is also varies from

sheet to sheet. The normal on each surface is a 3-D spatial field.

113

2. In the spherical coordinates example, that we have chosen, the surfaces as well as the
coordinate curves meet at right angles. In general, curvilinear coordinates cannot be
assumed to possess this orthogonal curvilinear quality. These base vectors can normalized
even so, they still vary in direction from point to point.

3. As we shall see, the basis vectors, for general orthogonal systems, cannot be guaranteed
to be unit vectors.

In a curvilinear coordinate system, we deal with curved coordinate surfaces instead of coordinate
planes, curved coordinate lines and basis vectors that are not orthogonal, not normalized and
not constant. It is no wonder that our interactions with such systems have been rather small until
this level of education. Furthermore, it clear why we would never use such a system unless there
are significant advantages to be gained by so doing. It turns out that there are problems that are
unnecessarily complicated in their presentation unless we change to some curvilinear system.
One example we already saw was the cone problem of Q1.74. The edge of the cone became
jagged when we used Cartesian coordinates and we had to programmatically clip it off to make
the parametric drawing there look like a cone! In many other cases, the difficulties become much
more significant. When we look at the problems of bending of circular rods and beams,
formulations in Cartesian coordinates are just not the way to go!

The rest of this chapter details the ingenuous ways by which, most of the results and ease we
derive from working with simple orthonormal Cartesian systems accrue in such coordinate

systems.

Base Vectors

Recall that to form a basis for any Euclidean space, you need three linearly independent vectors.
In problems Q1.38,1.42,1.44,1.46 and 1.47, we were able to generate basis vectors for different
curvilinear systems by simply differentiating the position vector, r. We generalize this procedure
and find the respective basis vectors. We will also show that these vectors are tangents to the
coordinate curves in any system curvilinear or not.

Consider neighboring points P(é1,&2,&3) and Q(&! + 6&%,&2,83) along &€ on a coordinate
surface describing a curvilinear system as shown in figure 20. Let point O be the origin so that

r = OP,andr + é6r = 0Q so that 6r = PQ.

114

Consider the quotient,

Figure 21. Curvilinear Basis

PQ _ or
IPQll ~ s¢t
which, in the limit,
B8 = i, o
= lim ﬁ (100)
8150 §¢1
or
~ogt

is clearly the tangent vector to the coordinate curve &1 at the point P. We can similarly form the

other basis vectors and obtain,

9
g, (¢1,82,6%) = %
(101)
or
g3 (fl’ 521 53) = 6_53

The basis vectors tangent to the remaining coordinate curves.
We do not yet specify the nature of the function, r(&%,&2,£3). We only know that they are, in
general, nonlinear. As we noted earlier, we are not able to assume the Cartesian relationship and

write,

r(¢,82,83) # &'g, + &g, + &3g3 = &'g; (102)

115

This linear expression for the position vector in terms of the coordinate functions only occurs in
Cartesian systems. The position vector is only known to be a function of the coordinate variables.

Using multivariate calculus, we can write the differential for the nonlinear function, r(é?, &2, £3):

Jar ar
ar(e,6%,6%) = - El St + g + S de?
= g,dE! + gydg? + god§? (103)
= gid'fi-

g, i =1,...,3 vectors from the choice of £',i = 1, ...,3 as continuously differentiable functions,
&' are necessarily non-colinear and non-coplanar, so they form a proper basis for the curvilinear

system.

Transformation Properties of £and g;

Imagine we selected another set of functions, {n',n%,n3}. This could be a different
transformation, say to oblate spheroidal coordinates. Since we have the six functions,
EN(xy, X0, %3),0 = 1,...,3 ,and 17 (x4, x5, x3),j = 1,...,3, it should be possible to obtain either the
one set of differentials if the other set is given; or other set of tangential basis vectors if the one
is given. In order to do this, we need the transformation equations from one set to another. Let
us begin with the coordinate differentials:

We first express one set of variables in terms of the other set. We can use the functional forms,

which we assume to be invertible to achieve this, fi = fi(nl, nz,n3). From multivariate calculus,

dét = Z—f’idn +g—;dn2 +g—f}:dn3
dé? = Z—f}jd 1 +Z—f;dn + giz dn3
dés = Z—f;d 1 +Z—f;dn + g:: dn3
Or, more compactly,
dét = Z%dnf (104)

Inverting the relationships, we have, ni = ni(fl, £2,83), taking the differential as before, we can

find that,

116

-9
dn/ = —d&¥ (105)

Now, we look at the basis vectors. Recall from equation (103) that, dr(&?, £2,&3) = g,dé&". If the
basis vector obtained in the same way when coordinates are expressed in terms of set of

functions, {n',n%,n3}arey;, i = 1, ...,3, then we can similarly write that,

r or or
dr(n*,n*,n®) = —=dn' + == dn* + —= dn’
dan? 083 (106)

So that,

an’ (107)

or,

on’
g:(8h,¢%,83%) = aigi v;(mtn%n?)
. (108)
El 1 2 3
an]gl(f Ff IE)

vi(mhntn®) =

Combining equations (104) and (105),

a&t an’
= _gik dék

anJ 0§ (109)
= §Ld&k

dét

showing that the transformation matrices are inverses of each other.

The transformation of the coordinate differentials is called contravariant while its inverse, for the
basis vectors is called covariant. Mathematically covariant and contravariant transformations are
as defined by their two different transformation equations. The fact that the two equations are
different provides enough justification for naming them differently. There is an amount of
discussion on the web about the deeper meaning of this choice of words “covariant” and

“contravariant”. *** want to tackle this? ***

117

Figure 22. Intersecting curves
and surfaces at a point

Another set of base vectors.

In the last section, we saw that the points in a curvilinear system meet at the intersection of three
coordinate surfaces which are not necessarily planes. At this same point, there are also three
coordinate curves, which are not necessarily straight. We showed that three linearly independent

vectors,
or
o0&t

which transform covariantly, form a basis for (or equivalently, spans) the space. Once we have

g:(¢4,8%,¢8%) = (110)

an expression for the position vector, we can easily compute these basis vectors by
differentiation. We also showed that these vectors are tangent to the coordinate curves at the
point they intersect and define each point in the Euclidean point space. Figure 21 depicts the
triplet of surfaces meeting to form the point P; it also concurrently shows the triplet of lines also
meeting to form the same point. We note again that the latter triplet are simply the intersecting
curves of the pairs of surfaces at the same point as can be seen clearly in the diagram. The
gradient of a surface is normal to the surface. If we can obtain the gradients at point P of the
three surfaces meeting to define it, then we have another set of three vectors, non-colinear, non-

coplanar, and therefore also spans the same vector space! Let us do the Math for this, shall we.

118

To make things very easy, we shall do using the Cartesian coordinate system as starting point.
The only thing that will change here is that we shall use raised symbols for components (from the
fact that we already know that their differentials transform contravarantly) and lowered indices
for the base vectors (tangential to the coordinate curves, and therefore covariant). From
equation (98) and (99), the three coordinate surfaces, £:(xy, x,, x3), are functions of x4, x, and
X3. From multivariate calculus, we can write,

i i i
= %dx1 + %dx2 +%

o9&t

= —.de
dxJ (111)

0 i
= (a—f;] ej> - (dx%ey,)

= (grad ') - dr

We now invoke equation (103), and, using curvilinear coordinate system, substitute

dr(fli 52, 53) = gidfi

dgt dx3

so that,
dét = (grad&') - dr
= (grad &) - g, d&” (112)
= 6. d&“
where
8 = {(1): i)ft;l;r\f\(/ise (113)

is the mixed Kronecker Delta. We now define the contravariant basis vector,
gi=gradé,i=1,..,3 (114)
It is a straightforward matter to show that the transformation equations for this vector is
contravariant in nature. To do this, let us, once again consider another set of curvilinear
coordinates, {n',n?% 13} which gives us two sets of triplet functions. the six functions,
E(xy, X, %3),i = 1,...,3 ,and nj(xl,xz,xg),j =1,...,3, it should be possible to obtain one set
of gradients if the other is supplied. We shall do so at once. Start again from the coordinate

transformation equations (105),

119

on'

dnt = a—fjdff = (gradn') - dr
o (115)
n ,
=30 (grad&’) - dr
from which it follows from the arbitrariness of dr that
. ont .
gradn' = a—?jgradff (116)

Showing, by their transformation equations, that the basis vectors formed from the surface

normal vectors are themselves contravariant.

Reciprocal Basis Vectors.

The argument so far shows that for any curvilinear system of coordinates, there are at least two
methodical ways to select our sets of basis vectors. Take the tangents of the coordinate curves

at the point, we obtain a set of basis vectors,

or
gi(fll 52' 53 = 6_5‘

or, we could take the normal to the surfaces at the point on interest, and obtain,

g'(§%,¢%,¢%) = grad¢"
Which is another set of basis vectors. Equations (112) to (114) further show that the
relationship,

g -gi=g-¢=9 (117)
holds between the two sets of basis functions. This is called the reciprocity relationship. The two
sets called reciprocal base vectors. The set obtained from tangents to the coordinate surfaces
transforms covariantly, the other, obtained from the normals to the coordinate surfaces
transforms contravariantly. This fact is sometimes used to refer to the reciprocal bases as
covariant and contravariant bases respectively.

The arguments so far beg a question: Does the same duality occur only in Cartesian systems? Are
there covariant and contravariant bases in the Cartesian system? The short answer is “yes”, there
are covariant and contravariant bases in any coordinate system you select. Remember that we

have a simple rule to compute these vectors. In the one, we simply differentiate the position

120

vector. For a Cartesian coordinate system, recall that for any point P(x,, x,, x3), the position
vector,
r=x'e; +x%e, + x3e; = x'e;

Differentiating with respect to the coordinate variables,

dar d . .
gi(xl'xz’xs = ﬁ = ﬁ(x]ej) = 61]e] =€; (118)
Similarly, taking the gradients,
)) J . .
gi(x!,x%,x3) = gradx! = (@x‘) ej=0/ej=e;. (119b)

Figure 23 Covariant & Contravariant Basis Vectors

121

So we have the long answer to the question: There are covariant as well as contravariant bases
in Cartesian. They coincide with each other and with the familiar orthonormal basis of the

Cartesian system.

Figure 24 Curvilinear basis animation code

The conclusion we draw from here is that, once the systems becomes curvilinear, there is a
separation between the covariant and contravariant bases. A separation that cannot be seen in
the Cartesian coordinate system. The following set of drawings (Try out the full Mathematica

Demonstrations as shown in the code)

Reciprocity & Orthogonality

We can now address the issue of the angular inclinations of the basis vectors. Here we are
completely free in our choice of three functions to form a coordinate system. All we must ensure
is that the coordinate curves form linearly independent vectors when differentiated; and the
normals to the coordinate planes are not co-planar nor co-linear. Nothing was said about the

122

possibility of orthogonality among the triplets. To ensure linear independence, it can be proved
that once the functions chosen are continuously differentiable, the linear independence, and
hence spanning of the 3D Euclidean space is assured.
Irrespective of the angles between the triplets of vectors, based on tangents or normal, spanning
the curvilinear system, the reciprocity relationship holds. There is always orthogonality between
each covariant vector and its respective contravariant vector as follows:
g-g =6>
818 =18 8=0g8,8=0;
82°8'=0,8,8=18,-8"=0;
8:-8'=0,8:-8°=0,83-8° =1,

This fact is demonstrated in the pictures shown in figure 22. An animation of this is available in

(120)

the code accompanying Figure (24)

In the first case, the coordinate basis chosen are inclined at an obtuse angle to each other as
shown in red. Notice that these are tangential lines to the coordinate curves. In this 2D
representation, the curves shown are also cross sections of the coordinate surfaces. The normal
to these surfaces are shown in green. When the coordinate tangents are obtuse, the coordinate
normal are acute. A closer look shows that there is pairwise orthogonality as predicted by the
reciprocity relationship in Equation (117). As we move along any coordinate curve, these
orientations continue to change while maintaining the reciprocity.

This situation subsists for the case when the tangent basis vectors are acute. Here the normal
basis vectors are in an obtuse angle relationship. Again, as before, a pairwise orthogonality
prevails between the covariant and contravariant basis vectors.

In the middle case, we look at two cases where the coordinate curves are approximately
orthogonal. The two sets of basis vectors are almost indistinguishable from each other. When
there is perfect orthogonality, the lines of action of these vectors are identical. If they are
normalized, then the vectors themselves are identical. The Mathamatica code in figure 23

demonstrates this relationship fully.

123

In a curvilinear system, a vector now has two possible representations: One with covariant bases
and contravariant components and the other with contravariant bases with covariant
components. For any Vv € E,

v=1'g =vg (121)

are two related representations in the reciprocal bases. Taking the inner product of the above
equation with the basis vector g;, we have

V-8 =V'g 8 =8 8§ (122)
which gives us the covariant component,

— 2l _ i
v'gj_vgij_vié‘j

= v. (123)
The substitution property of the mixed Kronecker delta remains the same as that of the Cartesian
Kronecker Delta. In the same easy manner, we may evaluate the contravariant components of
the same vector by taking the dot product of the same equation with the contravariant base
vector g/

v-g/l=v'g g/ =vg g (124)
so that,

v.gl= vi(gif = v,g¥ = v/ (125)
The nine scalar quantities, g/ = g’ - g/ as well as the nine related quantities g;; = g; - g, play
important roles in the coordinate system spanned by these reciprocal sets of basis vectors as we

shall see. They are called metric coefficients because they metrize the space defined by these

bases by quantifying distances and angles.

Define
JI=8i8 %8k (126)
and
€ijk = \/Eeijk (127)
We can obtain the relationship,
g X 8 = €xg" (128)

as follows:

124

Note that glis orthogonal to g, and g5. Therefore
82 X g3 = ag’ (129)

as their cross product MUST lie parallel to g where «a is a scalar to be found. Taking the scalar
product of both sides, we have,

\/§=g1-g2><g3=ag1-g1=a (130)
Similarly,
gZis orthogonal to g5 and g;, and g3is orthogonal to g; and g,, it follows that g, X g3 =
gl g; x g, =g?% andg; x g, = g3 Equation (128) captures these cases with the other six that
vanish in a single expression as we saw in the ONB case.

Given that g = det g;; of the covariant metric coefficients, it is not difficult to prove that

8i" 8 X 8k = €ijk = \[geijk (131)

The dual of the expression, the equivalent contravariant equivalent also follows from the fact

that,

) . . 1 .
gl X g] . gk = el]k — ﬁ_el]k (132)

Solved Problems 1.2

a It is clear, for example, that g' is perpendicular to g, as well as to g (an obvious fact because

gl-g,=0andg!' g; =0), we can say that the vector g' must necessarily lie on the cross

product g, X g3 of g, and g5. It is therefore correct to write,

1
4 —ng 83

where V~1is a constant we will now determine. We can do this right away by taking the dot

product of both sides of the equation with g; we immediately obtain,

g,-8'=Vlg, g, xgz=1

125

the volume of the parallelepiped formed by the three vectors g,, 8,, and g; when their origins

are made to coincide.

Basis Vectors for Curvilinear & Cartesian Coordinates

The Cartesian basis vectors and the covariant curvilinear basis can represent any vectors in the

3D vector space. In particular, they can mutually form basis for each other. Accordingly,

!
Y : (133)
8 = pie
Substituting for g;, we have,
e = aijﬁ}"em = §/"e; (134)
which gives,
al g = 5. (135)
Furthermore,
g8 = Ble- Blen
= BB Sum (136)
= B!B}
Which means that the determinant of the matrix, .
2
lg:j] = [gi-g] = det[(ﬁil)] (137)

The scalar triple product of the covariant base vectors, in terms of its components in the Cartesian
basis vectors can be found:
81:°82X83= (ﬁ{ez) (B em) X (Bi'ey)
= BiBYBl'e, ey X €y
= B1BZ" Bl eunn (138)
= det[5{]
=g

as previously defined. Combining Equations (137) and (138) it is clear that,

126

det[g;;] = [g1 - 82 X 83]° = g. (139)
We further observe that
88 X 8k =+Jgeik = €ijx (140)
a fact that becomes clearer from the results of SP 1.85 below. For the contravariant base vectors,
we have,
gl -g/ xgh=elk (141)
When we are back to Cartesian coordinates, ﬁil of equation (137) becomes 6il, g1°8,%X8g3=1,
and,

g g/ xgh=clk =g, -g;xg=¢€r=e (142)
as the distinction between covariant and contravariant basis vectors vanish. g;;in Cartesian
coordinates, this becomes the identity tensor, and its determinant,

det[gij] =g g xgs)P=g=1 (143)

Computation Method for Reciprocal Base Vectors

The nine reciprocity relationships in Equation (117) can be expressed in matrix form. If we pack
the covariant base vectors, g;,i = 1, ...,3 into the columns of a matrix, in order for the reciprocity
relationship to hold, the contravariant vectors gf,j =1,...,3 are the rows of its inverse. The
converse is also true: If we compute the contravariant basis vectors and pack them into the
columns of a matrix, the rows of its inverse are the covariant basis vectors.

This fact is used in Q1.93 and 1.95 to compute the reciprocal basis vectors once either of them is
known. The accompanying code in those Q&A can be used for any coordinate system once we
know the functional form of the position vector — which also defined the transformation

equations.

Solved Problems 1.3

a First expand g’ in terms of the g;s:

g/ =ag, + g, +v8s

127

Dotting with g' = g/ -g' = ag, - g* + fg, - g* +vgs - &' = g/* = a. In the same
way we find that 8 = g/? and y = g/3so that,
g =98 +9%8:+ 9”8 = 98
Similarly, g; = gi,8%.
Recall the reciprocity relationship: g; - g¥ = 61-". Using the above, we can write
gi -8 = (918" - (9"8p) = 9109"’8" - 8 = 91a9"F 5 = &/
which shows that
9ia9*" = 9i9"* = 8f

As required. This shows that the tensor g;; and gY are inverses of each other.

a In component form,

[a,b,c] = eY*a;b;cy
Cyclic permutations of this, upon remembering that (i, j, k) are dummy indices, yield,
e/*bicra; = [b,c,a) = eV*b;cia

= e"cpa;b; = [c,a,b] = €Y¥¢;a;by,

The other results follow from antisymmetric arrangements and the nature of e/¥.

128

129

Suppose it is possible to find scalars @ and S such that, a = ab + fBc. It therefore
means that,
[a,b,c] = €Y*a;bjc, = €Y% (ab; + Bc)bjck
= ae*b;bic, + Perc;bicy,
=0
Note that b;bjcy is symmetric in i and j, ¢;b;c is symmetric in i and k and 0 s
antisymmetric in i,j and k Because each term is the product of a symmetric and an

antisymmetric object which must vanish.

Given g;,i = 1,2,3, note that g! is perpendicular to g, and to gs. It must be parallel

to the vector g, X gs. A scalar constant V1 must exist such that,
g'=V""gy % g3
ge=V"'gsx g
g’=Vlg X g
Since (dot the first with g; to see) Now we are given that v = g - g2 x g3. Using the
above relations, we can write,
g xg’=("gsx g)x(V7'g1x g2)
=V72[(gs X 81 82)81 — (83X & 818:]
=V72(g1%X 82 83)81 =V "8,
We can now write,
v=g'-g’xgi=¢g Vig=Vg-g=V"
Showing that, vV = 1 as required. It is a trivial matter to show thatV = g, X g, - 85,

for, if we take a dot product of the equation, g* = V™1 g, x g, the result follows so

that g1 X8, 83 = m

Changing variables, we can write that,

r(x,y,z) = x'(ut,u?,u?)e; = r(ut,u? ud)
So that we have new coordinates u, k = 1,2,3. In this new system, the differential of

the position vector r is,

or . _ i
dr =ﬁ du =gl-du

the above equation, as we shall soon show, defines the basis vectors in the new
coordinate system. The vectors g1, 8, and g3 are not necessarily unit vectors but they
form a basis of the new system provided,

V=g "8,X83%#0
or dxk
B0 = 5l = T o
dxt 0x? 9x3
Jul oul oJu?
V=g B X E _|oxt ox? ox3|
1e2 3 du? ou? Ju?
dxt 0x? 9x3
Jdu3 ou3 Jus

or or dxk dx
9ij =88 = 501 g ~ \aui %) o &

3 dx* ax! 3 dx* ax! B dxk axk
T oul ouw €= oul du T oul ou

Clearly, the determinant of g;; (we shall prove later that the determinant of a product

of matrices is the product of the determinants)

axk|?

Jul

dxk axk
oul oul

9= |.9ij| =

o
oul

This means, V = g, " g, X 83 = | = /9. We can therefore write,

130

131

81°82X83= 9123\/5
Swapping indices 2 and 3, we have,
81°83X82= _\/§=6132 g=81%X83"82
The second equality coming from the fact that swapping the cross with the dot
changes nothing. Lastly, swapping 1 and 3 in the last equation shows that,

g3 X818, = —(—\/E) = e312\/§. These three expressions together imply that,

8i 8 X8k = €ijk = \/Eeijk as required.

Given that g; X g, - 83 = ,/g, the fact that the triple product obeys the rule,

[a,b,c] =[b,c,a] =[c,a,b] = —[b,a,c] = —[c,b,a] = —[a,c,b], combined with
the fact that the triple product vanishes when any two of its vectors are collinear allow
us to write that

8i X8 8k = eijk\/g = €ijk
By the reciprocity rule, g; - g/ = 6{, we have that, g, - g' =1,8,-82=0,8,-83 =
0. It follows that g must be perpendicular to the plane of g,and g; making it parallel
to g, X g3 A scalar constant @ must exist such that, g' = @ g, X g5. Dot product of

both sides with g; shows that @ = 1/,/g. Therefore,

8, X 83 = /g8
83 X 81 = /g8?
81X 8, =./g8°

These three results together can be expressed as, g; X g; = el-jkgk.

132

By the reciprocity rule, g; - g/ = 6ij, we have that, g, -g! =1,8,-81=0,8;-g' =
0. It follows that g; must be perpendicular to the plane of g2 and g3 making it
parallel to g2 x g3. A scalar constant # must exist such that, g; = fg? x g3. Dot
product of both sides with g; shows that § = ﬁ Therefore,
g xg =g, EXg =g X8 =g
Ja Vg Vg

. . . 1 .. P . .
These three results together can be written as, g' x g/ = ﬁe”"gk = €Uk if we write

ek = = pijk,

L
Vg

Multiply both sides by €% and find the expression for g*
eeg; x gj =€V g"
= 268" = 28"

So that g = %eif"gj X 8

Express vectors a and b as contravariant components: a = a'g;, and b = bg;. Using

the above result, we can write that,
axb=(a'g) x(b/g;) =a'big; xg; = a'ble; 8"
Express vectors a and b as covariant components: a = a;g' and b = b;g’. Again,
proceeding as before, we can write,
axb = (a;8") x (bjg’) = €'*a;b;gy
Express vectors a as contravariant components: a = a'g; and b as covariant

components: b = b;g*

axb= (aigi) X (b]g]) = aibj(gi X g])

Express vectors a and b as contravariant components: a = a'g;, and b = b'g;. Using

the above result, we can write that,
axb=(a'g)x(b'g;) = a'blg; xg; = a'b/e;g".
Express vectors a and b as covariant components: a = a;g' and b = b;g’. Again,
proceeding as before, we can write,
axb = (a;8") x (bjg’) = €Y% a;b;g,

Express vectors a as contravariant components: a = a‘g; and b as covariant

components: b = b;g*

axb=(a'g;) x (bg’) = a'bj(g; x g’)

133

R =x,e; +xe; + x3€3 In[1}= rCart = {X1, X2, X3};
rCyl = {rCos[¢], rSin[¢], z};

Differentiating with respect to xq, x,, x3 BLeCatt, { Dry Bay Wl 1 7 Mats Iarorn

respectively from the columns of the . vevrom-
1060

21680
9 0 1.

matrix in the code, the Cartesian basis

vectors are
Inf4}= D[rCyl, {{rs ¢, z}}] // MatrixForm

{4}/ MatrixForm=
Cos(®] -rSin[o] @)
Sin(¢] rCos(o| ©

€q,€,, €3

Similarly, R = re,.(¢) + ze,,

R . e il
— =e;c0s¢ t+ e,sing + 0e;
ar
= er(¢)
JR :
% = —e;rsing + e;rcos ¢ + Oe;
de, (@)
=eyu(¢) = 7‘5—¢
and
JOR
—_— = eZ

Mathematica code to make these | i @ i roeivion vecior tn ciindeicnl coordinates
bVecs= columns contain the base vectors
differentiations easy as shown. e s iinisia it
bvecT= Transpose of bVec so that the rows of
|t is C|earthat, bVecT are the columns of bVec
rootG= the scalar tripple product of base vectors
*)
_ aR rCyl = {rCos[¢], rSin[¢], z};
81 = E becs = D(rCyl, {{r; ¢, 2}}];
bVecsT = Transpose [bVecs] ;
i rootG = Dot [Cross [bVecsT[[1]], bVecsT[[2]]], bVecsT[[3]]];
=e, (¢p) =e cosp +e,sing e becs 1/ Mateixtorn
JR de, (¢) i Cos[¢] -rsin(o] @
g2 = =1 —- Sin(o) rCos o] ©
a¢ a¢ e e 1
_ . 51+ Simplify [rootG]
=ep =e€,rcosp —e rsing e

134

135

JOR
andg3=5=e2=e3

2g' = elkg; x gy
so that

11 1jk

8 =5€78j X8k

\/§=31'82X83=7‘
In this double sum, only two out of the nine terms survive; these are:

1 1 1
gl = 56123g2 X g5 + 56132g3 X 82 = ~€12382 X 83

= (e,rcos¢p — e rsing) X e,

= %(e1 rcos¢ + e,rsin¢g) = e,.(¢)

1 1 1
g? = 56231g3 X g, + 56213g1 X 83 = - €12383 X &1

1 1
=—e3 X (e;cos¢p + e, sing) =;(e2cosqb—e1 sin ¢)

r
_ 1
— Te¢
1 1 L
g3 — Eeslzg1 X g, +§€321g2 X g = ;e123g1 X8>

1
== (e;cos¢ + e, sing) X (e,rcos¢p —e rsing) =e,

Cross[{Cos[¢], Sin[¢], @}, {-rSin[d], rCos[d], 0}]

8,0, rcos o)’ +rsinfo)? . .
The reciprocal basis vectors of the

. . . 1
cylindrical coordinate system is therefore, {er(¢),;e¢, ez}.
What we have calculated manually are the rows of the matrix whose columns are the

covariant bases. This is obtained directly by the Mathematica function call:

Simplify[Inverse[bVecs]] // MatrixForm

Cos(o] Sin(o) ©
Sir Cosisl g
e =} 1

I

To find the reciprocal or contravariant basis, we use the formula,

2g' = elg; x gy
Let us call the covariant basis (it is customary to label the basis obtained by direct
differentiation covariant) of the Cartesian {i, j, k} and the contravariant basis {1,], K}.
Now, gl = %6123g2 X g5 + %6132g3 X g, =€l?3g, xgzsothat,I=jxk=1i] =
k X i=j;and K =i X j = K. This shows that for the Cartesian system, the dual
bases coincide and {i, j, K}or {g1, 8>, 85} = {1}, K} or {g?, g2, g3}. Both systems are

orthogonal and normalized. They also coincide.

The position vector for the spherical system,

rSph = e; sinf cos ¢ + e, sinf sin¢ + e; cos
The covariant basis can be found by differentiating the position vector with respect to coordinate

variables. We use the Mathematica code included and obtain,

0R
g, = $= e,(¢,0) = e;sinfcos ¢ + e, sinfsing + e;cos o
JR . .
g, == eg(p,0) = e, cosBcosp + e, cosfsing —ezsind
de,(¢,6)
=P
JR
g3 =£= e¢,(¢,9)

= —e;sinf cos¢ + e, cos b sin ¢

136

These are shown in the columns of Infi}= (* cSph=Position Vector in Spherical Coordinates
) bvecs= columns contain the base vectors
bVecs in the attached code. The ShEainell by ALK creuttating bir &

. 1[5es] h . coordinate variables
reciprocal basis vectors, as snown in bvecT= Transpose of bVec so that the rows of
bvecT are the columns of bVec

Q1.93, are Slmply the rows of the rootG= the scalar tripple product of base vectors

*)

rSph = {pSin [&] Cos[¢], pSin [6] Sin[4], pCos [8]};
bVecs: bvecs = D[rSph, {{0, 6, 6}}];

bVecsT = Transpose [bVecs] ;

rootG = Dot [Cross[bVecsT[[1]], bVecsT[[2]]], bVecsT[[3]]1];

inverse of the matrix of basis vectors

Clearly, from the Mathematica code,
In51= bVecs // MatrixForm

81=€p (¢,6), Outf5yMatrixForm=
1 D) Cos(¢) Sin[s] pCos(5) Cos[@] -pSin[6) Sin[o)
g, =—-¢eg(9,0),83 = e¢(¢, 6), Sin(o) Sin(o¢] oCos(o) Sin(@] pCos(o] Sin(s)
p Cos (3| -pSin(s) o
— — 2 G
and./g = 8; -8, X g3 =p-sinb o5 = Simplify[rootG]

o
The last result is implemented in = et

nj]= Cross[{Cos[¢], Sin[¢], O}, {-rSin[é], rCos[¢], 0}]
ouf.}- {@, @, rCos(0)?+rsin(e)?}

the variable rootG

in(101= Simplify[Inverse[bVecs]] // MatrixForm

Out{10)/MatrixForm=
Cos(@) Sin[&] Sin[8) Sin[@)] Cos|[8)
Cos (8] Cos (3] Cos (8] Sin(3) _ sin(s)
2 2 2
_ Gsc(s| Sinfs] Cos[o] Csc(s])
2 2

Expanding the equation, we have:

r 7 r r 7 7

e,,keTSk _ 81‘5"(](_ 6k 6] 6" _ sk 5i 6k 61 6]
ij — Yijk — Yi S S j S S s s
j & &5 85 s & &

= 6/(6] 6% — 676%) — 61 (8 8¢ — 676%) +3(8767 — 676]) = 6] 8¢
— 8767 — 6167 + 676/ +3(67 67
—876) = —2(8]67 — 676]) +3(8] 67 — 676]) = 6767 — 676]

i

137

Letz = v X w = €/¥v,w;g,.. The triple product,
ux (VW) =uXxz=eupuzfgl
= €apyu?zP g = eqp,uvePv,wigY
= efe, puv,w;g" = (6L8), — 8L8) Jutv,w;g’
= wvy,w;g’ —ulv;w,g¥

=(u-w)v— (u-v)w

Contracting one more index, we have:

eyjke™* = 873¢ = 8787 — 8]67 = 367 — 67 = 267

These results are useful in several situations.

Note that
g« g g7 949" 999" 9y9"Y
gyie“ﬁye”" = gyi |g’* gt giv|= g'@ g’ g’
gka gkﬁ gky gka gkﬁ gky

B
s¢ & &)
gka gkﬁ gky
_ s ik glv P gie gl \ 57 gie gif
14 gkﬂ gky Y gka gky 14 gka gkﬂ
gjﬁ gja gja gjﬁ . gja gjﬂ gia giB
= — AL =
gk[)’ gka gka gk[)’ gka gkﬁ gka gkﬁ

— gajgﬁk _ gakg[}j

138

The tensor (uX) = —€;u"g! ® g™ similarly, (vXx) = —G“Byvyga ® gp and
(W x) = —e*w, g; ® g;. Clearly,
(U x)(V X)W X) = —€pmne™® e u"v,wi (8. ® 84)(8' @ g™)(8: ® g))
=~ eppeutv,wi (g, ® g;)8560"
= —Ealyflinfijkunvywk(ga ® gj)
= —€'Yepie T utv,wi (g ® g)
= —(678) — 678y)T ut v, wi(8a @ g;)
= —Gijkuaviwk(ga X gj) + fijkuy”ywk(gi ® gj)

=u® vVxw)—(u-v)wXx]

In the above we have shown that (u X)(vX)(wX) = [u® (vxXw) — (u-v)w X]
Because the vector cross is traceless, the trace of [(u - v)w X] = 0. The trace of the

first term, u @ (Vv X w) is obviously the same as [u, v, w] which completes the proof.

(U x)(V X) = —€mnePuv, (g, ® g4)(8' @ g™)
= —€mn€ P U™, (8, @ ™8 = —€pmnelT U, (8, @ g™)
= [67.65% — on85umv, (8o ® g™
= u"vn (8, @ 8) — UV (8, ® ™) = (u- VI-u®v

Obviously, the trace of this tensoris 2(u - v)

139

140

1.113

References

Bertram, A, Elasticity and Plasticity of Large Deformations, An Introduction, Springer, 2008

Brannon, RM, Functional and Structured Tensor Analysis for Engineers, UNM BOOK DRAFT,
2006, pp 177-184.

Dill, EH, Continuum Mechanics, Elasticity, Plasticity, Viscoelasticity, CRC Press, 2007

Gurtin, ME, Fried, E & Anand, L, The Mechanics and Thermodynamics of Continua, Cambridge
University Press, 2010

Heinbockel, JH, Introduction to Tensor Calculus and Continuum Mechanics, Trafford, 2003

Holzapfel, GA, Nonlinear Solid Mechanics, Wiley NY, 2007

Itskov, M, Tensor Algebra and Tensor Analysis for Engineers with applications to Continuum
Mechanics, Second Edition, Springer, 2010, 247pp

Kay, DC, Tensor Calculus, Schaum Qutline Series, McGraw-Hill, 1988

Lai, WM, Rubin, D & Krempl, E, Introduction to Continuum Mechanics, Butterworth-Heinemann,
Oxford, 2010

Mase,GE, Theory and Problems of Continuum Mechanics, Schaum Outline Series, McGraw-Hill,
1970

McConnell, AJ, Applications of Tensor Analysis, Dover Publications, NY 1951

Ogden, RW, Nonlinear Elastic Deformations, Dover Publications, Inc. NY, 1997

Sokolnikoff, I.S., Tensor Analysis with Applications to Geometry and the Mechanics of Continua,
John Wiley and Sons, Inc., New York, NY 1964

Spiegel, MR, Theory and Problems of Vector Analysis, Schaum Outline Series, McGraw-Hill, 1974

Taber, LA, Nonlinear Theory of Elasticity, World Scientific, 2008

Tadmore, EB, Miller, RE, & Elliot, RS, Continuum Mechanics and Thermodynamics: From
Fundamental Concepts to Governing Equations, Cambridge University Press, 2012

Wegner, JL & Haddow, JB, Elements of Continuum Mechanics and Thermodynamics, Cambridge
University Press, 2009.

141

