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Tensor Algebra:  
Properties of a Tensor 

“Continuum Mechanics may appear as a fortress surrounded 

by the walls of tensor notation” E. Tadmore, et. al.  

MetaData 

The prose, video, slides and the Q&A in this chapter are directed at scoring the following points: 

1. The word “Tensor” applies to virtually all the quantities encountered in Engineering. Scalars and Vectors 

are zeroth and first order tensors. However, the word, with no prefix, refers to a second-order tensor. 

2. For an object to be proved to be a tensor we need to show that it transforms a vector and its output is also 

a vector. Secondly, that transformation must be linear. 

3. A tensor can be expressed in Component Form. The vector itself is more than its components as 

components presume reference to particular coordinate system. Outside that the numbers mean nothing. 

4. For any tensor, certain scalar-valued functions are characteristic of the tensor, independent of coordinate 

systems. These are usually the targets of computations of any tensor. They are Principal Invariants. 

 

 

TWO 
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5. Tensors can be decomposed additively or multiplicatively to simpler tensors. The goal is to make analysis 

easier and gain valuable insight by removing parts of the tensor not crucial to the problem. 
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What is a Tensor 

It is a historical accident that the word “Tensor” first and foremost, refers, not to tensors 

generally, but to the second-order tensor. Strictly speaking, all the quantifiable objects we deal 

with are tensors. Scalars are known to be zeroth order tensors, vectors are first order tensors. 

We will later encounter third and fourth order tensors. It is assumed here that we already know 

what vectors and scalars are even though more time can still be spent to give more 

mathematically accurate definitions for each. We elect, initially, not to pursue that line. At the 

present moment, our principal concern is to define second-order tensors and understand their 

properties. Before we define these formally, we shall look at two familiar geometric occurences.  

The Shadow or the Projection. 

If you can identify four distinct directed arrows in figure 2.1, they are representing four vectors. 

The Brown arrow, (vector) labelled “𝐱” is lying “on the ground” and the rest are on a different 

plane. Of the remaining three, there are two copies of each. For each color or size, there is a free-

standing copy, and another copy in a pile up. What we see as shadows are called projections in 

the mathematical sense.  

We define the projection, in the direction of 

𝐱 ∈ 𝔼, 𝐏𝐱(•) of 𝐯 ∈ 𝔼 as follows: 

𝐏𝐱(𝐯) ≡ 𝐏𝐱𝐯 = (
1

‖𝐱‖
)
2

(𝐱 ⊗ 𝐱)𝐯 

When it operates on any vector, it creates a 

vector on the plane of vector 𝐱, and in the 

same direction as 𝐱.  

Observe that the projection of the pile up is 

equal to the sum of the individual 

projections; If, for example, we have a 

vector, twice the size of 𝐯, Its projection will 

also be twice the size of the projection of 𝐯. Figure 0-1 Projection Transformation 
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In any case, the argument in the transformation is a vector, what you get out of it is also a vector. 

We call this the projection transformation. It is a transformation, whether we get it from the rays 

of the sun, shining on the arrows of from a mathematical engine as we have done here. The 

arrows have been transformed, linearly, to the plane containing vector 𝐱; or, alternatively, they 

have been projected – “projection” being the name of the transformation we are dealing with 

here. 

Coordinate Transformation 

In figure 2.2, there are two sets of Ortho-Normal Basis ONB (unit magnitude for each base vector, 

and mutual orthogonality for any pair) vectors. One set has the basis {𝐞1, 𝐞2, 𝐞3} while the other 

is the set {𝛏𝟏, 𝛏𝟐, 𝛏𝟑}. We define the Coordinate Transformation of 𝐯 ∈ 𝔼 defined in the 

coordinates with basis {𝐞1, 𝐞2, 𝐞3} as the 

expression, 

𝐂𝐯 = (𝛏𝑖 ⊗ 𝐞𝑖)𝐯 

Suppose our parameter vector  

𝐯 = 2𝐞1 + 3𝐞2 − 𝐞3 = 𝛼𝑗𝐞𝑗 

𝐏𝐱(𝐯) = (𝛏𝑖 ⊗ 𝐞𝑖)𝛼𝑗𝐞𝑗  

= 𝛼𝑗𝛏𝑖(𝐞𝑖 ⋅ 𝐞𝑗) = 𝛼𝑗𝛏𝑖𝛿𝑖𝑗  

= 𝛼𝑗𝛏𝒋 = 2𝛏1 + 3𝛏2 − 𝛏3 

So that the transformation takes any vector 

referred to the first set of coordinates and 

places them in exactly the same size, direction and location in the second coordinate system. It 

effects a change of coordinate system.  

These transformations are only two examples of what a tensor does: It 

1. takes one vector 

2. produces another vector, and 

3. performs the transformation linearly. 

There is no doubt that in each of the transformations we have seen, the inputs (arguments) as 

well as the outputs (results) were vectors. What do we really mean by the term, “transforms 

linearly”? 
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These two, 𝐏𝐱(•) as well as 𝐂(•), transform in such a way that the transformation of a sum is the 

sum of the transformations; the transformation of a scalar multiple, is also a scalar multiple of 

the transformation; The transformation of a weighted sum is the weighted sum of the 

transformation.  

Definition: 

A Second-Order Tensor is the linear transformation of a vector into a vector. 

Given that 𝐚, 𝐛 ∈ 𝔼 and 𝛼, 𝛽 ∈ ℝ, 𝐓  is said to be a linear transformation if  

𝐓(𝛼𝐚 + 𝛽𝐛) = 𝛼𝐓𝐚 + 𝛽𝐓𝐛 

The projection as well as the coordinate transformations we have seen are Linear 

Transformations; and because they tansform from the vector space to the vector space, they are 

tensors of the second order. The projection transforms linearly because, 

𝐂(𝛼𝐮 + 𝛽𝐯) = (𝛏𝑖 ⊗ 𝐞𝑖)(𝛼𝐮 + 𝛽𝐯) 
= 𝛏𝑖(𝐞𝑖 ⋅ (𝛼𝐮 + 𝛽𝐯)) = 𝛏𝑖(𝛼𝐞𝑖 ⋅ 𝐮 + 𝛽𝐞𝑖 ⋅ 𝐯) 
= 𝛼𝛏𝑖(𝐞𝑖 ⋅ 𝐮) + 𝛽𝛏𝑖(𝐞𝑖 ⋅ 𝐯) 
= 𝛼(𝛏𝑖 ⊗ 𝐞𝑖)𝐮 + 𝛽(𝛏𝑖 ⊗ 𝐞𝑖)𝐯 
= 𝛼𝐂𝐮 + 𝛽𝐂𝐯 

As shown in Figure___, the actual implementation of the operator in not the important thing. In 

the case of a shadow, the transformation could have come from the parallel rays of the sun or a 

mathematical factory like the tensor projector; for the coordinate transformation, again, it can 

be the mathematical formula given or that someone was sitting in a roller coaster and carrying 

the coordinate systems as well as the vector along. A linear transformation is defined, once the 

output relates linearly to the input. When such transforms a vector into another vector, it is a 

second-order tensor. Conventionally, the word “tensor” unqualified, refers to the second-order 

tensor. Usually, when we want to talk about tensors of other orders, an explicit reference to the 

order will be made unless the context already makes that clear. 
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Other Interesting Tensors 

We adopt the convention that the set 𝕃 is the set of all second-order tensors. Therefore, the 

statement, 𝐓 ∈ 𝕃, literally that, 𝐓 belongs to the set 𝕃 means that 𝐓 is a second order tensor. At 

this point, we have now met three tensors: The Dyad Product of two vectors, the Projection 

Tensor and the Coordinate Transformation Tensor.  

𝐮 ⊗ 𝐯, 𝐏𝐱, 𝐂, 𝐒 ∈ 𝕃 

We now proceed to show the characteristics of other tensors that obey the same rules we have 

enunciated in the last section: 

The Annihilator. We represent this tensor by the large size capital 𝐎. It has this characteristic; for 

any vector 𝐯,  

𝐎𝐯 = 𝐨 

yielding the zero vector as output (result), no matter the input (argument, operand).  

The Identity & Spherical Tensors. The identity tensor is depicted by the large size capital bold 𝐈. 

It has this characteristic; for any vector 𝐯,  

𝐈𝐯 = 𝐯 

returning the input vector, no matter the input. Furthermore, ∀𝛼 ∈ ℝ, the tensor, 𝛼𝐈 is called a 

Spherical Tensor. 

A spherical tensor is uniquely identified by the scalar multiplier of the identity tensor that 

produces it. It is therefore easy to misrepresent it as a scalar or a vector with equal components 

in the three directions. An example of this, as we shall see later, is hydrostatic pressure. 

The Inverse. The identity tensor induces the concept of an inverse of a tensor. Given the fact that 

if 𝐓 ∈ 𝕃 and 𝐮 ∈ 𝔼, the mapping 𝐰 ≡ 𝐓𝐮 produces a vector. Consider a linear mapping 𝐘, that, 

operating on 𝐰, produces our original argument, 𝐮, if we can find it: 

𝐘𝐰 = 𝐮 

As a linear mapping, operating on a vector, clearly, 𝐘 is a tensor. It is called the inverse of 𝐓 

because, 

𝐘𝐰 = 𝐘𝐓𝐮 = 𝐮 

So that the composition (or product) 𝐘𝐓 = 𝐈, the identity mapping. For this reason, we write, 

𝐘 = 𝐓−1 
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We now show that this relationship also implies that 𝐓𝐘 = 𝐈. Recall the vector defined by, 𝐰 =

𝐓𝐮. Clearly, 

𝐓𝐘𝐓𝐮 = 𝐓𝐘𝐰 = 𝐓𝐈𝐮 = 𝐓𝐮 = 𝐰 

(First equality by the definition of 𝐰, second by the fact that 𝐘𝐓 = 𝐈). It is clear that 

𝐓𝐘𝐰 = 𝐰 

So that 𝐓𝐘 = 𝐘𝐓 = 𝐈 as required. 

Tensor Components 

Tensors, just like vectors, can be expressed in component form with respect to a system of 

coordinates created with basis vectors. Using ONB, for a typical tensor 𝐓, we can write, 

𝐓 = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

There are nine scalar components. These can be computed using the indicial notation and the 

summation convention. Accordingly, 

𝐓 = 𝑇11𝐞1 ⊗ 𝐞1 + 𝑇12𝐞1 ⊗ 𝐞2 + 𝑇13𝐞1 ⊗ 𝐞3 + 𝑇21𝐞2 ⊗ 𝐞1 + 𝑇22𝐞2 ⊗ 𝐞2 + 𝑇23𝐞2 ⊗ 𝐞3

+ 𝑇31𝐞3 ⊗ 𝐞1 + 𝑇32𝐞3 ⊗ 𝐞2 + 𝑇33𝐞3 ⊗ 𝐞3 

We can find these components in terms of the tensor 𝐓 in a way like the way we found the vector 

coefficients: 

𝐞𝛼 ⋅ 𝐓𝐞𝛽 = 𝑇𝑖𝑗𝐞𝛼 ⋅ (𝐞𝑖 ⊗ 𝐞𝑗)𝐞𝛽 

= 𝑇𝑖𝑗𝐞𝛼 ⋅ 𝐞𝑗𝛿𝑗𝛽 = 𝑇𝑖𝑗𝛿𝑖𝛼𝛿𝑗𝛽 

= 𝑇𝛼𝛽 

Clearly, 

𝐓 = (𝐞𝑖 ⋅ 𝐓𝐞𝑗)(𝐞𝑖 ⊗ 𝐞𝑗) = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

In particular, 𝐞𝑖 ⋅ 𝐈𝐞𝑗 = 𝐞𝒊 ⋅ 𝐞𝑗 = 𝛿𝑖𝑗 so that the identity tensor has the representation, 

𝐈 = (𝐞𝑖 ⋅ 𝐈𝐞𝑗)(𝐞𝑖 ⊗ 𝐞𝑗) = 𝛿𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 = 𝐞𝑖 ⊗ 𝐞𝑖 

A third form for the component representation of the tensor can be found by observing that, 

𝐓𝐈 = 𝐓(𝐞𝑖 ⊗ 𝐞𝑖) =  (𝐓𝐞𝑖) ⊗ 𝐞𝑖 = 𝐞𝑖 ⊗ (𝐓T𝐞𝑖) 

In this section, we can see that the Kronecker Deltas introduced in the previous chapter are 

coefficients of the identity tensor as we can see in equation ___. 
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Components of a Composition. 

A composition is a product of two transformations. Given that 𝐒 and 𝐓 are tensors, the 

application of 𝐓 followed by the application of 𝐒 to the result, is a composition tensor. Consider 

the composition of two tensors, 𝐒 and 𝐓. Its action on an arbitrary vector 𝐯 = 𝑣𝑘𝐞𝑘 is, 

𝐒𝐓𝐯 = 𝐒(𝐓𝐯). 

That is, 𝐒 acts on the vector result of the action 𝐓𝐯. In order to find the component representation 

of this composition, it is useful to simplify the result dyad composition  

(𝐞𝛼 ⊗ 𝐞𝛽)(𝐞𝑖 ⊗ 𝐞𝑗) 

We do this by finding its action on a typical vector. 

(𝐞𝛼 ⊗ 𝐞𝛽)(𝐞𝑖 ⊗ 𝐞𝑗)𝐮 = (𝐞𝛼 ⊗ 𝐞𝛽)𝐞𝑖(𝐞𝑗 ⋅ 𝐮 ) 

= 𝐞𝛼(𝐞𝛽 ⋅ 𝐞𝑖)(𝐞𝑗 ⋅ 𝐮 ) 

= (𝐞𝛽 ⋅ 𝐞𝑖 )(𝐞𝛼 ⊗ 𝐞𝑗)𝐮 

Showing that composing two dyads has the same effect as obtaining a dyad from the two extreme 

base vectors 𝐞𝛼 and 𝐞𝑗 in this case, scaling the result by the dot product of the near vectors, 𝐞𝛽 

and 𝐞𝑖. Clearly, 

𝐒𝐓 = (𝑆𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽)(𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗) 

= 𝑆𝛼𝛽𝑇𝑖𝑗(𝐞𝛼 ⊗ 𝐞𝛽)(𝐞𝑖 ⊗ 𝐞𝑗) = 𝑆𝛼𝛽𝑇𝑖𝑗(𝐞𝛽 ⋅ 𝐞𝑖 )(𝐞𝛼 ⊗ 𝐞𝑗) 

= 𝑆𝛼𝛽𝑇𝑖𝑗𝛿𝛽𝑖(𝐞𝛼 ⊗ 𝐞𝑗) 

= 𝑆𝛼𝑖𝑇𝑖𝑗𝐞𝛼 ⊗ 𝐞𝑗 = 𝑆𝑖𝑘𝑇𝑘𝑗𝐞𝑖 ⊗ 𝐞𝑗 

The result of the product of two dyads in this section can be generalized to a larger number of 

dyads. Given 𝐚𝑖1, 𝐚𝑖2 …𝐚𝑖𝑛 ∈ 𝔼, the product  

(𝐚𝑖1 ⊗ 𝐚𝑖2)(𝐚𝑖3 ⊗ 𝐚𝑖4)… (𝐚𝑖(𝑛−1) ⊗ 𝐚𝑖𝑛) 

can be shown to result in simply taking the first and the last of the vector operands and 

multiplying the that by the scalar products of all adjacent vectors: 

(𝐚𝑖1 ⊗ 𝐚𝑖2)(𝐚𝑖3 ⊗ 𝐚𝑖4)… (𝐚𝑖(𝑛−1) ⊗ 𝐚𝑖𝑛)

= (𝐚𝑖1 ⊗ 𝐚𝑖𝑛)(𝐚𝑖2 ⋅ 𝐚𝑖3)(𝐚𝑖4 ⋅ 𝐚𝑖5)… (𝐚𝑖(𝑛−2) ⋅ 𝐚𝑖(𝑛−1)). 

Reducing any tensor to a weighted sum of dyads is one way to simplify analyses as the dyads are 

much easier to deal with for this and several other reasons as we shall see. 
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Transpose of a Tensor, Symmetry 

Given any two vectors, 𝐮 and 𝐯, and tensors 𝐒 and 𝐓, 𝐒 is called the transpose of 𝐓 if, 

𝐮 ⋅ 𝐒𝐯 =  𝐯 ⋅ 𝐓𝐮 

It is customary to use the same symbols for a tensor and its transpose. Accordingly, the transpose 

of 𝐒 will be written as 𝐒𝐓. Furthermore, by virtue of the definition of transpose here, if 𝐒 is the 

transpose of 𝐓, then 𝐓 is the transpose of 𝐒 

A tensor equal to its transpose is said to be symmetrical. Tensor 𝐒 is symmetrical if, 

𝐒 = 𝐒𝐓 

Given the dyad 𝐚 ⊗ 𝐛. For any two vectors, 𝐮 and 𝐯, 

𝐮 ⋅ (𝐚 ⊗ 𝐛)𝐯 = (𝐮 ⋅ 𝐚)(𝐛 ⋅ 𝐯) = 𝐯 ⋅ (𝐛 ⊗ 𝐚)𝐮 

This shows that the transpose of a dyad is simply the swapping of its operands. Consequently, 

we find that, for 𝐒 = 𝐒T, 

𝑆𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 = 𝑆𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗)
T

 

= 𝑆𝑖𝑗𝐞𝑗 ⊗ 𝐞𝑖 = 𝑆𝑗𝑖𝐞𝑖 ⊗ 𝐞𝑗 

So that, symmetry implies 𝑆𝑖𝑗 = 𝑆𝑗𝑖. Furthermore, we find that 𝐒(𝐮 ⊗ 𝐯) = 𝐒𝐮 ⊗ 𝐯 because, for 

a vector 𝐰, 

𝐒(𝐮 ⊗ 𝐯)𝐰 = 𝐒𝐮(𝐯 ⋅ 𝐰) = (𝐒𝐮 ⊗ 𝐯)𝐰 

and,  

(𝐮 ⊗ 𝐯)𝐒𝐰 = 𝐮(𝐯 ⋅ 𝐒𝐰) 

= 𝐮(𝐰 ⋅ 𝐒T𝐯) = 𝐮((𝐒T𝐯) ⋅ 𝐰) 

= (𝐮 ⊗ 𝐒T𝐯)𝐰 

Tensor Invariants 

Very often we are more interested, not in the tensors themselves but in scalar valued functions 

that take the tensor as argument. We will see several of these subsequently; perhaps the most 

important are the principal invariants of the tensor. For any three linearly independent vectors 

𝐚, 𝐛 and 𝐜 and a tensor 𝐓, it is can be shown (see Q&A) that, the three scalar valued functions 

𝐼1(𝐓), 𝐼2(𝐓) and 𝐼3(𝐓) defined below are independent of the choice of 𝐚, 𝐛 and 𝐜 and are 

therefore, intrinsic, or characteristic values of the tensor 𝐓: 
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𝐼1(𝐓) =
[𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
= tr 𝐓 

𝐼2(𝐓) =
[𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
= tr 𝐓c, and  

𝐼3(𝐓) =
[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
= det 𝐓 

Are respectively called the trace of 𝐓, trace of its cofactor and determinant of 𝐓 respectively. 

They are known as the principal invariants of the tensor. In particular, 𝐼1(𝐓), trace of 𝐓, is a linear 

operator because, given scalars 𝛼 𝛽 as well as tensors 𝐓 and 𝐒, 

𝐼1(𝛼𝐓 + 𝛽𝐒) =
[(𝛼𝐓 + 𝛽𝐒)𝐚, 𝐛, 𝐜] + [𝐚, (𝛼𝐓 + 𝛽𝐒)𝐛, 𝐜] + [𝐚, 𝐛, (𝛼𝐓 + 𝛽𝐒)𝐜]

[𝐚, 𝐛, 𝐜]
 

=
[(𝛼𝐓)𝐚, 𝐛, 𝐜] + [(𝛽𝐒)𝐚, 𝐛, 𝐜]

[𝐚, 𝐛, 𝐜]
+

[𝐚, (𝛼𝐓)𝐛, 𝐜] + [𝐚, (𝛽𝐒)𝐛, 𝐜]

[𝐚, 𝐛, 𝐜]

+
[𝐚, 𝐛, (𝛼𝐓)𝐜] + [𝐚, 𝐛, (𝛽𝐒)𝐜]

[𝐚, 𝐛, 𝐜]
 

= 𝛼
[𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
+ 𝛽

[𝐒𝐚, 𝐛, 𝐜] + [𝐚, 𝐒𝐛, 𝐜] + [𝐚, 𝐛, 𝐒𝐜]

[𝐚, 𝐛, 𝐜]
 

= 𝛼𝐼1(𝐓) + 𝛽𝐼1(𝐒). 

If 𝐓 is a dyad, say, 𝐓 = 𝐮 ⊗ 𝐯, and we select the Cartesian ONB vectors as our linearly 

independent set, then, 

tr (𝐮 ⊗ 𝐯) ≡ 𝐼1(𝐮 ⊗ 𝐯) 

=
[{(𝐮 ⊗ 𝐯)𝐞1}, 𝐞2, 𝐞3] + [𝐞1, {(𝐮 ⊗ 𝐯) 𝐞2}, 𝐞3] + [𝐞1, 𝐞2, {(𝐮 ⊗ 𝐯)𝐞3}]

[𝐞1, 𝐞2, 𝐞3]
 

=
1

1
{[𝑣1𝐮, 𝐞2, 𝐞3] + [𝐞1, 𝑣2𝐮, 𝐞3] + [𝐞1, 𝐞3, 𝑣3𝐮]} 

= {(𝑣1𝐮) ⋅ (𝑒23𝑖𝐞𝑖) + (𝑒31𝑖𝐞𝑖) ⋅ (𝑣2𝐮) + (𝑒12𝑖𝐞𝑖) ⋅ (𝑣3𝐮)} 

= {(𝑣1𝐮) ⋅ (𝑒231𝐞1) + (𝑒312𝐞2) ⋅ (𝑣2𝐮) + (𝑒123𝐞3) ⋅ (𝑣3𝐮)} = 𝑣𝑖𝑢𝑖  

=  𝐮 ⋅ 𝐯 

So that the trace of a dyad is simply the scalar product of its two vector operands. Note that we 

chose the base vectors in the above derivation since any three linearly independent vectors will 

be appropriate as the trace itself is independent of that choice.  
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It is easily shown, in this same way that, 𝐼2(𝐮 ⊗ 𝐯) = 𝐼3(𝐮 ⊗ 𝐯) = 0. Important to note that 

neither 𝐼2(𝐓) nor 𝐼3(𝐓) is linear for any tensor 𝐓. 

Other scalar invariants may be defined. Another set {𝐽1(𝐓) = tr 𝐓, 𝐽2(𝐓) = tr 𝐓2,  𝐽3(𝐓) =

tr 𝐓3} has been defined, all arising from equation ____ defining the trace.  

We now show that the coefficient 𝑇𝑖𝑗 in the component representation,  

𝐓 = (𝐞𝑖 ⋅ 𝐓𝐞𝑗)(𝐞𝑖 ⊗ 𝐞𝑗) = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

of 𝐓,  

𝑇𝑖𝑗 = 𝐞𝑖 ⋅ 𝐓𝐞𝑗 =  tr (𝐓(𝐞𝑗 ⊗ 𝐞𝑖)) 

=  tr (𝐓𝐞𝑗 ⊗ 𝐞𝑖) = 𝐞𝑖 ⋅ 𝐓𝐞𝑗  

=  tr (𝐓T(𝐞𝑖 ⊗ 𝐞𝑗)) = 𝐓T𝐞𝑖 ⋅ 𝐞𝑗 

= 𝐞𝑖 ⋅ 𝐓𝐞𝑗 

This leads to a definition:  

The Inner Product of two tensors 

The inner product of tensors 𝐒 and 𝐓 is the trace 

𝐒: 𝐓 ≡ tr(𝐒T𝐓 ) = tr(𝐒𝐓T) 

From the above result, the scalar components of tensor 𝐓 on the dyad bases (𝐞𝑖 ⊗ 𝐞𝑗) is given 

by, 

𝑇𝑖𝑗 =  𝐓: (𝐞𝑖 ⊗ 𝐞𝑗) 

The Trace, 𝑰𝟏(𝐓) = 𝐭𝐫 𝐓 

Beginning from the component representation, 

𝐓 = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

Taking the trace of both sides, we have, 

tr 𝐓 = 𝑇𝑖𝑗  tr(𝐞𝑖 ⊗ 𝐞𝑗) = 𝑇𝑖𝑗𝛿𝑖𝑗 = 𝑇𝑖𝑖 

as we have shown earlier that the trace of a dyad is the scalar product of its operands. We note 

that transposing a tensor does not alter its trace because, 

tr 𝐓T = 𝑇𝑖𝑗 tr(𝐞𝑗 ⊗ 𝐞𝑖) = 𝑇𝑖𝑗𝛿𝑗𝑖 = 𝑇𝑖𝑖 =  tr 𝐓. 
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Trace of the Cofactor, 𝑰𝟐(𝐓) = 𝐭𝐫 𝐓𝐜 

The cofactor will be defined subsequently. Presently, we rely in the earlier definition of the 

second principal Invariant: 

𝐼2(𝐓) =
[𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
= tr 𝐓c 

To express this in component form, we set our linearly independent set as the basis set, 𝐞1, 𝐞2, 𝐞3. 

Note immediately that [𝐞1, 𝐞2, 𝐞3] = 1, so that, 

𝐼2(𝐓) = [𝐓𝐞1, 𝐓𝐞2, 𝐞3] + [𝐞1, 𝐓𝐞2, 𝐓𝐞3] + [𝐓𝐞1, 𝐞2, 𝐓𝐞3] 

= [𝑇𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗)𝐞1, 𝑇𝛼𝛽(𝐞𝛼 ⊗ 𝐞𝛽)𝐞2, 𝐞3] + [𝐞1, 𝑇𝛼𝛽(𝐞𝛼 ⊗ 𝐞𝛽)𝐞2, 𝑇𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗)𝐞3]

+ [𝑇𝛼𝛽(𝐞𝛼 ⊗ 𝐞𝛽)𝐞1, 𝐞2, 𝑇𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗)𝐞3] 

= [𝑇𝑖1𝐞𝑖, 𝑇𝛼2𝐞𝛼, 𝐞3] + [𝐞1, 𝑇𝛼2𝐞𝛼, 𝑇𝑖3𝐞𝑖] + [𝑇𝛼1𝐞𝛼, 𝐞2, 𝑇𝑖3𝐞𝑖] 

= 𝑇𝑖1𝑇𝛼2[𝐞𝑖, 𝐞𝛼, 𝐞3] + 𝑇𝛼2𝑇𝑖3[𝐞1, 𝐞𝛼, 𝐞𝑖] + 𝑇𝛼1𝑇𝑖3[𝐞𝛼, 𝐞2, 𝐞𝑖] 

= 𝑇𝑖1𝑇𝛼2𝑒𝑖𝛼3 + 𝑇𝛼2𝑇𝑖3𝑒1𝛼𝑖 + 𝑇𝛼1𝑇𝑖3𝑒𝛼2𝑖 

= 𝑇11𝑇22 − 𝑇21𝑇12 + 𝑇22𝑇33 − 𝑇32𝑇23 + 𝑇11𝑇33 − 𝑇31𝑇13 

=
1

2
(𝑇𝑖𝑖𝑇𝑗𝑗 − 𝑇𝑖𝑗𝑇𝑗𝑖) 

Half of the square of the trace minus the trace of the square. Note that this invariant, 𝐼2(𝐓) is 

NOT linear in its argument 𝐓. 

Exercise. Show that the second invariant is independent of the set of linearly independent 

vectors chosen.  

The Determinant, 𝑰𝟑(𝐓) = 𝐝𝐞𝐭 𝐓 

As previously observed, any three linearly independent vectors can be treated as the basis for 

defining the invariants. We select 𝐞1, 𝐞2, 𝐞3. For any tensor 𝐓, 

𝐼3(𝐓) = [𝐓𝐞1, 𝐓𝐞2, 𝐓𝐞3] = [𝑇𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗)𝐞1, 𝑇𝛼𝛽(𝐞𝛼 ⊗ 𝐞𝛽)𝐞2, 𝑇𝑟𝑠(𝐞𝑟 ⊗ 𝐞𝑠)𝐞3] 

= [𝑇𝑖1𝐞𝑖, 𝑇𝛼2𝐞𝛼, 𝑇𝑟3𝐞𝑟] = 𝑇𝑖1𝑇𝛼2𝑇𝑟3𝑒𝑖𝛼𝑟 

= 𝑇𝑖1𝑇𝑗2𝑇𝑘3𝑒𝑖𝑗𝑘 = det 𝐓 

For the tensors 𝐀 and 𝐁, we use the definition of the determinant to show that det 𝐀𝐁 =

det 𝐀 × det𝐁: 

Select linearly independent vectors 𝐚, 𝐛 and 𝐜. If 𝐁 is non-singular, it is easy to show that 

𝐮(= 𝐁𝐚), 𝐯(= 𝐁𝐛)and 𝐰(= 𝐁𝐜) are also linearly independent. Now,  
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det 𝐀𝐁 =
[𝐀𝐁𝐚,𝐀𝐁𝐛,𝐀𝐁𝐜]

[𝐚, 𝐛, 𝐜]
=

[𝐀𝐁𝐚, 𝐀𝐁𝐛,𝐀𝐁𝐜]

[𝐁𝐚, 𝐁𝐛,𝐁𝐜]

[𝐁𝐚, 𝐁𝐛,𝐁𝐜]

[𝐚, 𝐛, 𝐜]
 

=
[𝐀𝐮, 𝐀𝐯, 𝐀𝐰]

[𝐮, 𝐯,𝐰]

[𝐁𝐚, 𝐁𝐛,𝐁𝐜]

[𝐚, 𝐛, 𝐜]
= det𝐀 × det 𝐁 

 

Tensor Magnitude and Direction. 

In the same way as vectors, the inner product of tensors induces the concept of magnitude and 

direction to tensors. Unlike vectors however, we do not have the same geometric interpretation 

in terms of the lengths of directed lines and their included angles. Inspired by the fact that 𝐓:𝐓 

is a scalar, we define he magnitude of a tensor  

‖𝐓‖ = √𝐓:𝐓 

And, just like vectors, the angle between two tensors can be computed from, 

𝜃 = cos−1
𝐒: 𝐓

‖𝐒‖‖𝐓‖
. 

With this definition, a second-order tensor fulfils all the stipulations necessary to be a Euclidean 

Vector Space 𝕃: 

1. Addition operation is defined and it is commutative and associative under 𝕃: that is, 𝐓 +

𝐒 ∈ 𝕃,   𝐒 + 𝐓 = 𝐓 + 𝐒,  𝐓 + (𝐒 + 𝐕) = (𝐓 + 𝐒) + 𝐕,  ∀ 𝐓, 𝐒, 𝐕 ∈ 𝕃. Furthermore, 𝕃 is closed 

under addition: That is, given that 𝐓, 𝐒 ∈ 𝕃, then 𝐕 = 𝐓 + 𝐒 = 𝐒 + 𝐓,  ⇒ 𝐰 ∈  𝕍. 

2. 𝕃  contains a zero element 𝐎 such that 𝐓 + 𝐎 = 𝐓 ∀ 𝐓 ∈ 𝕃. For every 𝐮 ∈ 𝕃,  ∃ − 𝐓: 𝐓 +

(−𝐓) = 𝐎. 

3. Multiplication by a scalar. For 𝛼,  𝛽 ∈ ℝ and 𝐓, 𝐒 ∈ 𝕃, 𝛼𝐓 ∈ 𝕃 , 1𝐓 = 𝐓,  𝛼(𝛽𝐓) =

(𝛼𝛽)𝐓,  (𝛼 + 𝛽)𝐓 = 𝛼𝐓 + 𝛽𝐓,   𝛼(𝐓 + 𝐒) = 𝛼𝐓 + 𝛼𝐒.   

Rule 1 is easily proven from linearity of transformations or using components. For example, 

consider the sum transformation on an arbitrary 𝐮 ∈ 𝕍: 

(𝐒 + 𝐓)𝐮 = (𝑆𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 + 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗)𝑢𝛼𝐞𝛼 

= (𝑆𝑖𝑗 + 𝑇𝑖𝑗)𝑢𝛼(𝐞𝑖 ⊗ 𝐞𝑗)𝐞𝛼 

= (𝑆𝑖𝑗 + 𝑇𝑖𝑗)𝑢𝛼𝐞𝑖𝛿𝑗𝛼 = (𝑆𝑖𝑗 + 𝑇𝑖𝑗)𝑢𝑗𝐞𝑖 

= 𝑆𝑖𝑗𝑢𝑗𝐞𝑖 + 𝑇𝑖𝑗𝑢𝑗𝐞𝑖 
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= 𝐒𝐮 + 𝐓𝐮 = 𝐓𝐮 + 𝐒𝐮 

The associative rules, as well as the zero-element rule (#2) are similarly established. The 

annihilator tensor fulfils this role. 

Rule 3. Multiplication by a scalar. This is established by the linearity of the transformation for 

linearity for 𝐓 stipulates that, 

𝐓(𝛼𝐚 + 𝛽𝐛) = 𝛼𝐓𝐚 + 𝛽𝐓𝐛 

Let 𝐚 = 𝐛 = 𝐮, then, 

𝐓(𝛼𝐮 + 𝛽𝐮) = 𝛼𝐓𝐮 + 𝛽𝐓𝐮 

= (𝛼 + 𝛽)𝐓𝐮 

= ((𝛼 + 𝛽)𝐓)𝐮 

Finally, scalar product between two tensors is defined. It naturally induces the concept of 

magnitude: 

‖𝐓‖ = √𝐓:𝐓 

Higher-order tensors retain the same definition as second-order tensors. A fourth-order tensor 

transforms a second order tensor (a member of a vector space) to a second order tensor (vector 

space). A third order tensor transforms a vector to a second-order tensor (vector space), it also 

transforms a second-order tensor to a vector. In any case, the fact that a tensor transforms from 

a vector space to a vector space remains unchanged. 

Additive Decompositions of Tensors 

The definitions of the spherical tensor and the symmetric tensor induce two additive 

decompositions of tensors.  

Spherical & Deviatoric Parts 

Every tensor can be decomposed into a spherical and deviatoric parts. The spherical part of a 

tensor is obtained by dividing its trace by three and use the result to scale an identity tensor. 

For a tensor 𝐒, the spherical part,  

sph 𝐒 = (
1

3
tr 𝐒) 𝐈 =

1

3
𝑆𝑘𝑘𝛿𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

and the deviatoric part is what remains after removing the spherical part: 
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dev 𝐒 = 𝐒 − (
1

3
tr 𝐒) 𝐈 = (𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗) 𝐞𝑖 ⊗ 𝐞𝑗 

The traces, 

tr(sph 𝐒) = (
1

3
tr 𝐒) tr 𝐈 = (

1

3
tr 𝐒) 3 =  tr 𝐒 

tr(dev 𝐒) =  tr 𝐒 − (
1

3
tr 𝐒) tr 𝐈 =  tr 𝐒 −  tr 𝐒 = 0. 

The deviatoric component has zero trace. It is traceless. 

Symmetric and Skew Parts 

We can also decompose a tensor 𝐒, into symmetrical and anti-symmetrical parts. An anti-

symmetric tensor, also called a skew tensor is defined as that which is the negative of its 

transpose. Hence the symmetric part   

sym 𝐒 =
1

2
( 𝐒 + 𝐒T) =

1

2
(𝑆𝑖𝑗 + 𝑆𝑗𝑖)𝐞𝑖 ⊗ 𝐞𝑗 

and the skew part: 

skw 𝐒 =
1

2
( 𝐒 − 𝐒T) =

1

2
(𝑆𝑖𝑗 − 𝑆𝑗𝑖)𝐞𝑖 ⊗ 𝐞𝑗 

The transposes, 

(sym 𝐒)T = (
1

2
( 𝐒 + 𝐒T))

T

=
1

2
(𝐒T + (𝐒T)T) =  sym 𝐒 

(skw 𝐒)T = (
1

2
( 𝐒 − 𝐒T))

T

=
1

2
(𝐒T − (𝐒T)T) =  −skw 𝐒 

These results can be established from the component representation as well. However, we shall 

opt for direct proofs anytime they are available. The proof from the components is left as an 

exercise. 

tr(sym 𝐒) =
1

2
tr( 𝐒 + 𝐒T) =

1

2
(tr 𝐒 +  tr 𝐒) 

commutative property of the scalar product makes the trace of a transpose the same as the trace 

of the tensor from which the transpose is obtained. It is easy to see, in the same way that the 

trace of a skew tensor also vanishes: tr(skw 𝐒) = 0. The spherical part of a tensor is always 

symmetric. This symmetry is induced by that of the identity tensor as there is only a scaling 

between a spherical tensor and the identity. No judgement can be made on the deviatoric tensor 
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however. Its symmetry wholly depends on the original tensor from which the deviatoric part is 

taken. If the latter is symmetric, so will the deviatoric part. If skew, so also will the deviatoric part. 

It is is quite possible that the deviatoric tensor is neither symmetric nor skew. 

Axial Vector of a Skew Tensor & the Vector Cross  

The Triad. In this section we introduce the triad: a third order tensor that can be created by the 

tensor product of three vectors. Just like the dyad, a triad is defined by its operation on a vector. 

Given vectors 𝐚, 𝐛, 𝐜 the triad produces a dyad as follows: 

(𝐚 ⊗ 𝐛 ⊗ 𝐜)𝐯 = (𝐜 ⋅ 𝐯)(𝐚 ⊗ 𝐛). 

The fact that the familiar alternating symbol, 𝑒𝑖𝑗𝑘 are, for various combinations of its indices, 

components of a tensor, now becomes obvious. It will be introduced shortly in a computation to 

follow. 

Recall that a skew tensor, the negative of its transpose, satisfies, 

𝐓 = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 = −𝑇𝑖𝑗𝐞𝑗 ⊗ 𝐞𝑖  

There two immediate consequences of this:  

1. For a skew tensor, 𝑇𝑖𝑗 = −𝑇𝑗𝑖 

The diagonal elements vanish; only three of the nine components are independent as the 

others are either zero or negatives of one of the three. 

2. Following the above, ALL information contained in the tensor can be made into a vector. Such 

a vector exists for every antisymmetric tensor. It is called the Axial vector. 

The converse of this is also true. Given any vector, we can construct a skew tensor based on the 

three components of the vector. Such a vector is called the Vector Cross (tensor) of the vector. 

The reason for such a name will become obvious shortly: 

Given any vector 𝐮 = 𝑢𝛼𝐞𝛼 we can form the vector cross tensor by this formula: 

𝛀 = (𝐮 ×) ≡ −𝐄𝐮 

where 𝐄 ≡ 𝑒𝑖𝑗𝑘𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 is the third order alternating tensor. (The operations of the triads, 

as we have seen, work similarly to that of the dyad). In component form,  

Ω𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 = (−𝑒𝑖𝑗𝑘𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘)(𝑢𝛼𝐞𝛼) 

= (𝑒𝑖𝑘𝑗𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘)(𝑢𝛼𝐞𝛼) 
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= 𝑒𝑖𝑘𝑗𝐞𝑖 ⊗ 𝐞𝑗𝑢𝛼𝛿𝑘𝛼 = 𝑒𝑖𝛼𝑗𝑢𝛼𝐞𝑖 ⊗ 𝐞𝑗 

Note: The result of the transformation of any vector 𝐯, by the Vector Cross of 𝐮 is the same as 

performing a vector product between 𝐮 and 𝐯: 

𝛀𝐯 = (−𝐄𝐮)𝐯 

= (𝑒𝑖𝛼𝑗𝑢𝛼𝐞𝑖 ⊗ 𝐞𝑗)(𝑣𝑘𝐞𝑘) 

= 𝑒𝑖𝛼𝑗𝑢𝛼𝑣𝑘𝐞𝑖𝛿𝑗𝑘  

= 𝑒𝑖𝛼𝑗𝑢𝛼𝑣𝑗𝐞𝑖 

= 𝐮 × 𝐯 

So that the effect of the operation of 𝛀 is the same as that of (𝐮 ×) on the same vector. Hence 

the name, vector cross. 

Suppose we have been given a skew tensor,  

Ω𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 = (𝐮 ×) = 𝑒𝑖𝛼𝑗𝑢𝛼𝐞𝑖 ⊗ 𝐞𝑗 

We want to find the components 𝑢𝛼 from the Ω𝑖𝑗s. 

Clearly, 

Ω𝑖𝑗 = 𝑒𝑖𝛼𝑗𝑢𝛼 

Multiplying both sides by 𝑒𝑖𝑗𝑘, we obtain, 

𝑒𝑖𝑗𝑘Ω𝑖𝑗 = 𝑒𝑖𝑗𝑘𝑒𝑖𝛼𝑗𝑢𝛼 = −2𝛿𝑘𝛼𝑢𝛼 = −2𝑢𝑘 

So that we can find the components of the dual vector from, 𝑢𝑘 = −
1

2
𝑒𝑖𝑗𝑘Ω𝑖𝑗; and if we are given 

the vector 𝐮, we can find the vector cross from its components using, Ω𝑖𝑗 = 𝑒𝑖𝛼𝑗𝑢𝛼. 

We can also define tensor products between objects other than vectors at this point. We can 

now rely more on the component form of these objects to arrive at consistent definitions as 

shown in the table below: 

Given tensors 𝐓 = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗, 𝐒 = 𝑆𝑙𝑚𝐞𝑙 ⊗ 𝐞𝑚 and  vectors 𝐮 = 𝑢𝛼𝐞𝛼, 𝑣 = 𝑣𝛽𝐞𝛽, the following 

tensor products can be taken: 

Product Components Operation 

on vector 

Component form 

𝐓 ⊗ 𝐮 𝑇𝑖𝑗𝑢𝛼𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝛼 (𝐓 ⊗ 𝐮)𝐯 𝑇𝑖𝑗𝑢𝛼𝑣𝛽𝐞𝑖 ⊗ 𝐞𝑗𝛿𝛼𝛽 

= 𝑇𝑖𝑗𝑢𝛼𝑣𝛼𝐞𝑖 ⊗ 𝐞𝑗 = 𝐓(𝐮 ⋅ 𝐯) 
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𝐮 ⊗ 𝐓 𝑇𝑖𝑗𝑢𝛼𝐞𝛼 ⊗ 𝐞𝑖 ⊗ 𝐞𝑗 (𝐮 ⊗ 𝐓)𝐯 𝑇𝑖𝑗𝑢𝛼𝑣𝛽𝐞𝛼 ⊗ 𝐞𝑖𝛿𝑗𝛽 = 

𝑇𝑖𝑗𝑢𝛼𝑣𝑗𝐞𝛼 ⊗ 𝐞𝑖 = 𝐮 ⊗ 𝐓𝐯 

𝐓 ⊗ 𝐒 𝑇𝑖𝑗𝑆𝑙𝑚 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 (𝐓 ⊗ 𝐒)𝐮 𝐓 ⊗ 𝐒𝐮 

  𝐯(𝐓 ⊗ 𝐒) (𝐓T𝐯) ⊗ 𝐒 

    

 

The Cofactor of a Tensor 

The cofactor of an invertible tensor is defined as cof 𝐓 ≡ 𝐓c = 𝐓−T det 𝐓 

 

Begin with a pair of linearly independent vectors 𝐮 and 𝐯. Consider the parallelogram created by 

these vectors and the perpendicular to the parallelogram plane. The vector area shown is given 

by 𝐮 × 𝐯 and its direction is parallel to the shown normal. If the 

two vectors are transformed by a tensor 𝐓, the transformed 

vectors create another parallelogram vector given by 𝐓𝐮 × 𝐓𝐯. 

the cofactor provides the relationship between these two 

vector areas: 

𝐓𝐮 × 𝐓𝐯 = 𝐓c(𝐮 × 𝐯) 

The cofactor maps a vector area created by 𝐮 and 𝐯 into the 

vector area created by the transformed vectors 𝐓𝐮 and 𝐓𝐯. 

This transformation is bi-linear. For example, given 𝛼, 𝛽 ∈

ℝ, linearity of tensor 𝐓 ⇒ 

𝐓(𝛼𝐮 + 𝛽𝐯) × 𝐓𝐰 = 𝛼𝐓𝐮 × 𝐓𝐰 + 𝛽𝐓𝐯 × 𝐓𝐰 

= 𝛼𝐓c(𝐮 × 𝐰) + 𝛽𝐓c(𝐮 × 𝐰) 

= 𝐓c((𝛼𝐮 + 𝛽𝐯) × 𝐰) 

The last equality coming from the linearity of cofactor tensor 𝐓c, and the distributive property of 

the vector product over addition. 

In a deformation field, the changes in lengths, areas and volumes are highly variable – spatial and 

even temporal functions. Only small neighborhoods transform this way in the limit. In that case, 
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the elements of areas are also transformed by the cofactor of the same tensor that transforms 

the element of length. If only elements of length are transformed by a tensorWe proceed now to 

obtain the components of the cofactor: If 𝐓c = 𝑇𝑖𝑗
𝑐𝐞𝑖 ⊗ 𝐞𝑗, then the inner product,  

𝐓c: (𝐞𝑖 ⊗ 𝐞𝑗) = 𝑇𝑖𝑗
𝑐  

= 𝐞𝑖 ⋅ 𝐓c𝐞𝑗 = 𝐞𝑖 ⋅ [𝐓c (
1

2
𝑒𝑗𝑚𝑛𝐞𝑚 × 𝐞𝑛)] 

=
1

2
𝑒𝑗𝑚𝑛𝐞𝑖 ⋅ (𝐓𝐞𝑚 × 𝐓𝐞𝑛) 

In the expression, 𝐞𝑖 ⋅ (𝐓𝐞𝑚 × 𝐓𝐞𝑛) we seek the 𝑖𝑡ℎ component of 𝐓𝐞𝑚 × 𝐓𝐞𝑛.  

𝑇𝑖𝑗
𝑐 =

1

2
𝑒𝑗𝑚𝑛𝑒𝑖𝛼𝛽(𝐞𝛼 ⋅ 𝐓𝐞𝑚)(𝐞𝛽 ⋅ 𝐓𝐞𝑛) 

=
1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛 

The cofactor,  

𝐓c =
1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛(𝐞𝑖 ⊗ 𝐞𝑗) 

The inverse tensor,  

𝐓−1 = (det 𝐓)−1𝐓cT 

=
(det 𝐓)−1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛(𝐞𝑗 ⊗ 𝐞𝑖) 

Second principal invariant of 𝐓 is the trace of its cofactor,  tr 𝐓c 

𝐼2(𝐓) =
1

2
𝑒𝑖𝛼𝛽𝑒𝑗𝑚𝑛𝑇𝛼𝑚𝑇𝛽𝑛(𝐞𝑖 ⋅ 𝐞𝑗) 

=
1

2
(𝛿𝛼𝑚𝛿𝛽𝑛 − 𝛿𝛼𝑛 𝛿𝛽𝑚)𝑇𝛼𝑚𝑇𝛽𝑛 

=
1

2
(𝑇𝑚𝑚𝑇𝑛𝑛 − 𝑇𝑚𝑛𝑇𝑛𝑚) 

=
1

2
(tr2 𝐓 − tr 𝐓2) 

The Eigenvalue Problem 

Vectors and tensors exist independently of the reference frame we use to characterize them. The 

values in the matrix part of a tensor only takes meaning from the coordinate frame whose basis 

vectors are weighted by those values. We know that vectors have magnitudes and directions 
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intrinsic to each vector. So do tensors; there are characteristic values that pertain to the tensor 

that are not dependent on the coordinates to which we refer them. These are the eigen values 

and eigenvectors of the tensor. In order to discuss these quantities, we pose the fundamental 

eigenvalue problem: 

Given that a second-order tensor transforms an input vector 𝐮 to an output vector 𝐯; ordinarily, 

we do not assume any relationship between 𝐮 and 𝐯. The eigenvalue problem is: What if the 

output vector is simply a scalar multiple of the input vector? To answer that question, we will 

need to solve the problem: 

𝐓𝐮 = 𝜆𝐮 

Where 𝜆, if we can find it, is a scalar called eigenvalue, and 𝐮 when it exists, is the corresponding 

eigenvector. 

Eigenvalues and eigenvectors are essentially the fundamental quantities that engineers need in 

a typical tensor. Its physical interpretation is wide and diverse. From materials science where the 

eigenvalues represent principal stresses while eigenvectors represent principal surfaces, 

dynamics, where they are natural frequencies and mode shapes to electric circuits and several 

other applications. The importance of the eigenvalue problem cannot be overemphasized.  

𝐓𝐮 − 𝜆𝐮 = 𝑇𝑖𝑗𝐞𝑖(𝐞𝑗 ⋅ 𝐞𝑘)𝑢𝑘 −  𝜆𝑢𝑖𝐞𝑖 

= 𝑇𝑖𝑗𝐞𝑖𝑢𝑗 −  𝜆𝑢𝑖𝐞𝑖 

= (𝑇𝑖𝑗 − 𝜆𝛿𝑖𝑗)𝑢𝑗𝐞𝑖 = 𝐨 

Which is possible only if the coefficient determinant, |𝑇𝑖𝑗 − 𝜆𝛿𝑖𝑗|, or det(𝐓 − 𝜆𝐈) vanishes.  

det(𝐓 − 𝜆𝐈) =
[(𝐓 − 𝜆𝐈)𝐚, (𝐓 − 𝜆𝐈)𝐛, (𝐓 − 𝜆𝐈)𝐜]

[𝐚, 𝐛, 𝐜]
 

[(𝐓 − 𝜆𝐈)𝐚, (𝐓 − 𝜆𝐈)𝐛, (𝐓 − 𝜆𝐈)𝐜]

= [𝐓𝐚, 𝐓𝐛, 𝐓𝐜] − ([λ𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, λ𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐓𝐛, λ𝐜]) + [𝐓𝐚, 𝜆𝐛, 𝜆𝐜]

+ [𝜆𝐚, 𝐓𝐛, 𝜆𝐜] + [𝜆𝐚, 𝜆𝐛, 𝐓𝐜] − [𝜆𝐚, 𝜆𝐛, 𝜆𝐜] 

Leading to the characteristic equation, 

[𝐚, 𝐛, 𝐜]𝜆3 − ([𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜])𝜆2 + ([𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜])𝜆

− [𝐓𝐚, 𝐓𝐛, 𝐓𝐜] = 0 

Or, 
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−det(𝐓 − 𝜆𝐈) = 𝜆3 −
[𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
𝜆2

+
[𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
𝜆 −

[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

= 𝜆3 − 𝐼1(𝐓)𝜆2 + 𝐼2(𝐓)𝜆 − 𝐼3(𝐓) = 0 

𝐼1(𝐓) ≡
[𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

𝐼2(𝐓) ≡
[𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
= tr 𝐓c 

𝐼3(𝐓) ≡
[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
. 

The selection of the linearly independent vectors 𝐚, 𝐛, 𝐜 is completely arbitrary. Consequently, 

the Principal Invariants are independent of the choice of these vectors and are intrinsic to the 

tensor 𝐓. 

Tensors in Spectral Form 

One consequence of the eigenvalue problem is the possibility to present tensors in spectral form. 

The nine components of a regular tensor become six when the tensor is symmetric. In spectral 

form, the tensor is reduced to the eigenvalues – a much easier form. 

A very important result that enable the reduction to spectral form is the Caley-Hamilton’s 

Theorem: 

We now state without proof (See Dill for proof) the important Caley-Hamilton theorem: Every 

tensor satisfies its own characteristic equation. That is, the characteristic equation not only 

applies to the eigenvalues but must be satisfied by the tensor 𝐓 itself. This means, 

𝐓3 − 𝐼1𝐓
2 + 𝐼2𝐓 − 𝐼3𝐈 = 𝐎 

is also valid. This fact is used in continuum mechanics to obtain the spectral decomposition of 

important material and spatial tensors. 

It is easy to show that when the tensor is symmetric, its three eigenvalues are all real. When they 

are distinct, corresponding eigenvectors are orthogonal. It is therefore possible to create a basis 

for the tensor with an orthonormal system based on the normalized eigenvectors. This leads to 
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what is called a spectral decomposition of a symmetric tensor in terms of a coordinate system 

formed by its eigenvectors: 

𝐓 = ∑𝜆𝑖

3

𝑖=1

𝐧𝑖⨂𝐧𝑖 

Where 𝐧𝑖  is the normalized eigenvector corresponding to the eigenvalue 𝜆𝑖. 

The above spectral decomposition is a special case where the eigenbasis forms an Orthonormal 

Basis. Clearly, all symmetric tensors are diagonalizable. 

Multiplicity of roots, when it occurs robs this representation of its uniqueness because two or 

more coefficients of the eigenbasis are now the same. 

The uniqueness is recoverable by the ingenious device of eigenprojection.  

Case 1: All Roots equal. 

The three orthonormal eigenvectors in an ONB obviously constitutes an Identity tensor 𝐈. The 

unique spectral representation therefore becomes   

𝐓 = ∑𝜆𝑖

3

𝑖=1

𝐧i⨂𝐧i = 𝜆 ∑𝐧i⨂𝐧i

3

𝑖=1

 

since 𝜆1 = 𝜆2 = 𝜆3 = 𝜆 in this case. 

Case 2: Two Roots equal:  

𝜆1unique while 𝜆2 = 𝜆3 

In this case,  

𝐓 = 𝜆1𝐧1⨂𝐧1 + 𝜆2(𝐈 − 𝐧1⨂𝐧1) 

since 𝜆2 = 𝜆3 in this case. 

The eigenspace of the tensor is made up of the projectors: 

𝐏1 = 𝐧1⨂𝐧1 

and  

𝐏2 = 𝐈 − 𝐧2⨂𝐧2 

The eigen projectors in all cases are based on the normalized eigenvectors of the tensor. They 

constitute the eigenspace even in the case of repeated roots. They can be easily shown to be: 

1. Idempotent: 𝐏𝑖 𝐏𝑖 = 𝐏𝑖 (no sums) 

2. Orthogonal: 𝐏𝑖 𝐏𝑗 = 𝑶 (the anihilator) 
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3. Complete:∑ 𝐏𝑖 = 𝐈𝑛
𝑖=1  (the identity) 

Orthogonal Tensors 

Given a pair of vectors 𝐚 and 𝐛, an orthogonal tensor 𝐐 is said to be orthogonal if,  

(𝐐𝐚) ⋅ (𝐐𝐛) = 𝐚 ⋅ 𝐛 

Specifically, we can allow 𝐚 = 𝐛, so that  

(𝐐𝐚) ⋅ (𝐐𝐚) = 𝐚 ⋅ 𝐚 

Or  

‖𝐐𝐚‖ = ‖𝐚‖ 

In which case the mapping leaves the magnitude unaltered. Let  𝐪 = 𝐐𝐚 

(𝐐𝐚) ⋅ (𝐐𝐛) = 𝐪 ⋅ 𝐐𝐛 = 𝐚 ⋅ 𝐛 = 𝐛 ⋅ 𝐚 

By definition of the transpose, we have that, 

𝐪 ⋅ 𝐐𝐛 = 𝐛 ⋅ 𝐐𝐓𝐪 = 𝐛 ⋅ 𝐐𝐓𝐐𝐚 = 𝐛 ⋅ 𝐚 

Clearly, 𝐐𝐓𝐐 = 𝐈. A condition necessary and sufficient for a tensor 𝐐 to be orthogonal is that 𝐐 

be invertible and its inverse equal to its transpose. 

Upon noting that the determinant of a product is the product of the determinants and that 

transposition does not alter a determinant, it is easy to conclude that, 

det (𝐐𝐓𝐐) = (det 𝐐𝐓)(det 𝐐) = (det 𝐐)2 = 1 

Which clearly shows that  

(det 𝐐) = ±1 

When the determinant of an orthogonal tensor is strictly positive, it is called “proper orthogonal”. 

A rotation is a proper orthogonal tensor while a reflection is not.  

Let 𝑸 be a rotation. For any pair of vectors 𝐮, 𝐯 show that 𝐐(𝐮 × 𝐯) = (𝐐𝐮) × (𝐐𝐯) 

This question is the same as showing that the cofactor of  𝐐 is 𝐐 itself. That is that a rotation is 

self cofactor. We can write that  

𝐓(𝐮 × 𝐯) = (𝐐𝐮) × (𝐐𝐯) 

where  

𝐓 = cof(𝐐) = det(𝐐)𝐐−T 

Now that 𝐐 is a rotation, det(𝐐) = 1, and  

𝐐−T = (𝐐−1)T = (𝐐T)T = 𝐐 
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This implies that 𝐓 = 𝐐 and consequently,  

𝐐(𝐮 × 𝐯) = (𝐐𝐮) × (𝐐𝐯) 

For a proper orthogonal tensor Q, show that the eigenvalue equation always yields an eigenvalue 

of +1. This means that there is always a solution for the equation, 

𝐐𝐮 = 𝐮 

For any invertible tensor, 

𝐒C = (det 𝐒)𝐒−T 

For a proper orthogonal tensor 𝑸, det 𝐐 = 1. It therefore follows that, 

𝐐C = (det𝐐)𝐐−T = 𝐐−T = 𝐐 

It is easily shown that tr𝐐C = 𝐼2(𝐐)  

Characteristic equation for 𝑸 is, 

det (𝐐 − 𝜆𝐈) = 𝜆3 − 𝜆2𝑄1 + 𝜆𝑄2 − 𝑄3 = 0 

Or, 

𝜆3 − 𝜆2𝑄1 + 𝜆𝑄1 − 1 = 0 

Which is obviously satisfied by 𝜆 = 1. 

Examples 

  

  

2.1 Show that for any tensor, 𝐓 = (𝐓𝐞𝑖) ⊗ 𝐞𝑖 = 𝐞𝑖 ⊗ (𝐓T𝐞𝑖) 

 Consider an arbitrary tensor 𝐯,  

((𝐓𝐞𝑖) ⊗ 𝐞𝑖) 𝐯 = (𝐓𝐞𝑖)𝑣𝑖 = 𝐓𝐯 

So that, (𝐓𝐞𝑖) ⊗ 𝐞𝑖 = 𝐓 

A more direct approach is to observe that, 

(𝐓𝐞𝑖) ⊗ 𝐞𝑖 = 𝐓(𝐞𝑖 ⊗ 𝐞𝑖) = 𝐓𝐈 

𝐞𝑖 ⊗ (𝐓T𝐞𝑖) = (𝐞𝑖 ⊗ 𝐓T𝐞𝑖) = (𝐞𝑖 ⊗ 𝐞𝑖) 𝐓 = 𝐈𝐓 = 𝐓 

2.2 Show that the transformation 𝐓𝐯 =
𝐞1

‖𝐯‖
 is not a tensor. 
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𝐓(2𝐯) =

𝐞1

‖2𝐯‖
=

1

2

𝐞1

‖𝐯‖
=

1

2
𝐓𝐯 

In fact, for any non-zero scalar 𝛼,  

𝐓(𝛼𝐯) =
𝐞1

‖𝛼𝐯‖
=

1

𝛼
𝐓𝐯 

It is clearly a nonlinear transformation. 

2.3 Show that the transformation 𝐓𝐯 = ‖𝐯‖𝐞1 is not a tensor. 

 For any scalar 𝛼,  

𝐓(𝛼𝐯) = ‖𝛼𝐯‖𝐞1 = 𝛼𝐓𝐯 

Now to a second test of linearity: How does it transform 𝐮 + 𝐯? 

𝐓(𝐮 + 𝐯) = ‖𝐮 + 𝐯‖𝐞1 = √(𝐮 + 𝐯) ⋅ (𝐮 + 𝐯)𝐞1 ≠ 𝐓𝐮 + 𝐓𝐯 

The transformation is not linear, hence not a tensor. 

2.4 Show that the transformations (a) 𝐓𝐯 = (𝐚 ⋅ 𝐯)𝐞1, and (b) 𝐓𝐯 = 𝐚 × 𝐯 are 

tensor transformations 

a 𝐓(𝛼𝐮 + 𝛽𝐯) = (𝐚 ⋅ (𝛼𝐮 + 𝛽𝐯))𝐞1 = ((𝛼𝐚 ⋅ 𝐮) + 𝛽(𝐚 ⋅ 𝐯))𝐞1

= 𝛼(𝐚 ⋅ 𝐮)𝐞1 + 𝛽(𝐚 ⋅ 𝐯)𝐞1 = 𝛼𝐓𝐮 + 𝛽𝐓𝐯 

The transformation is linear and thus a tensor since it is also a transformation whose 

input and output are both vectors. 

b 𝐓𝐯 = 𝐚 × 𝐯 =  (𝐚 ×)𝐯 

𝐓 =  (𝐚 ×) this is the Vector Cross of the vector  𝐚. This is a tensor whose 

component form is: 

(𝐚 ×) = 𝑒𝑖𝑗𝑘𝑎𝑗𝐞𝑖 ⊗ 𝐞𝑘. It is a transformation of a vector to a vector. Given 𝛼, 𝛽 ∈

ℝ, and 𝐮, 𝐯 ∈ 𝔼,  its linearity is established because, 

(𝐚 ×)(𝛼𝐮 + 𝛽𝐯) = 𝑒𝑖𝑗𝑘𝑎𝑗(𝐞𝑖 ⊗ 𝐞𝑘)(𝛼𝐮 + 𝛽𝐯) 

= 𝑒𝑖𝑗𝑘𝑎𝑗𝐞𝑖[(𝛼𝐮 + 𝛽𝐯) ⋅ 𝐞𝑘] 

= 𝛼𝑒𝑖𝑗𝑘𝑎𝑗(𝐞𝑖 ⊗ 𝐞𝑘)𝐮 + 𝛽𝑒𝑖𝑗𝑘𝑎𝑗(𝐞𝑖 ⊗ 𝐞𝑘)𝐯 

= 𝛼𝐓𝐮 + 𝛽𝐓𝐯 
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2.5 (a) What tensor transforms the basis vectors as follows:  

𝐓𝐞1 = 𝐞1 + 2𝐞2 + 3𝐞3 

𝐓𝐞2 = −5𝐞1 + 4𝐞3 

𝐓𝐞3 = 3𝐞1 − 𝐞2 − 𝐞3 

(b) Find the Tensor that reverses this transformation. 

(c) Demonstrate the inverse transformation. 

a The tensor we seek is in the form, 

[𝐞1, 𝐞2, 𝐞3] ⊗ [
𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

] [

𝐞1

𝐞2

𝐞3

] 

It operates on the vectors 𝐞1, 𝐞2 and 𝐞3 to obtain 𝐞1 + 2𝐞2 + 3𝐞3, −5𝐞1 + 4𝐞3 and 

3𝐞1 − 𝐞2 − 𝐞3 respectively. Applying 𝐓𝐯 = 𝑇𝑖𝑗𝑣𝑗𝐞𝑖, we have, for 𝐯 = 𝐞1, 

𝐓𝐞1 = (𝑇11𝑣1 + 𝑇12𝑣2 + 𝑇13𝑣3)𝐞1 + (𝑇21𝑣1 + 𝑇22𝑣2 + 𝑇23𝑣3)𝐞2

+ (𝑇31𝑣1 + 𝑇32𝑣2 + 𝑇33𝑣3)𝐞3 

= (𝑇11(1) + 𝑇12(0) + 𝑇13(0))𝐞1 + (𝑇21(1) + 𝑇22(0) + 𝑇23(0))𝐞2

+ (𝑇31(1) + 𝑇32(0) + 𝑇33(0))𝐞3 = 𝑇11𝐞1 + 𝑇21𝐞2 + 𝑇31𝐞3

= 𝐞1 + 2𝐞2 + 3𝐞3 

So that 𝑇11 = 1, 𝑇21 = 2, 𝑇31 = 3. We avoid unnecessary computation in the 

following by observing that, for 𝐯 = 𝐞2, 𝑣1 = 0, 𝑣2 = 1 and  𝑣3 = 0. The lengthy 

expression reduces to: 

𝐓𝐞2 = 𝑇12𝐞1 + 𝑇22𝐞2 + 𝑇32𝐞3 = −5𝐞1 + 4𝐞3 

So that 𝑇12 = −5, 𝑇22 = 0, 𝑇32 = 4. 

Lastly, like the above, for  𝐯 = 𝐞3, 𝑣1 = 0, 𝑣2 = 0 and  𝑣3 = 1. 

𝐓𝐞3 = 𝑇13𝐞1 + 𝑇23𝐞2 + 𝑇33𝐞3 = 3𝐞1 − 𝐞2 − 𝐞3 

So that 𝑇13 = 3, 𝑇23 = −1, 𝑇33 = −1. The tensor we seek is, 

[𝐞1, 𝐞2, 𝐞3] ⊗ [
1 −5 3
2 0 −1
3 4 −1

] [

𝐞1

𝐞2

𝐞3

] 
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B The reverse transformation will do the opposite: It will take the vectors, 𝐞1 + 2𝐞2 +

3𝐞3, −5𝐞1 + 4𝐞3 and 2𝐞1 − 𝐞2 − 𝐞3 and produce 𝐞1, 𝐞2 and 𝐞3 respectively. By 

inverting the tensor, we obtain, 

𝐓−1 = [𝐞1, 𝐞2, 𝐞3] ⊗

[
 
 
 
 
 

4

25

3

25

1

5

−
1

25
−

7

25

1

5
8

25
−

19

25

2

5]
 
 
 
 
 

[

𝐞1

𝐞2

𝐞3

] 

 

C 𝐓−1(𝐞1 + 2𝐞2 + 3𝐞3)

= (𝑇11
−1𝑣1 + 𝑇12

−1𝑣2 + 𝑇13
−1𝑣3)𝐞1 + (𝑇21

−1𝑣1 + 𝑇22
−1𝑣2 + 𝑇23

−1𝑣3)𝐞2

+ (𝑇31
−1𝑣1 + 𝑇32

−1𝑣2 + 𝑇33
−1𝑣3)𝐞3 

= (
4

25
(1) +

3

25
(2) +

1

5
(3))𝐞1 + (−

1

25
(1) −

7

25
(2) +

1

5
(3)) 𝐞2

+ (
8

25
(1) −

19

25
(2) +

2

5
(3)) 𝐞3 = 𝐞1 

𝐓−1(−5𝐞1 + 4𝐞3)

= (𝑇11
−1𝑣1 + 𝑇12

−1𝑣2 + 𝑇13
−1𝑣3)𝐞1 + (𝑇21

−1𝑣1 + 𝑇22
−1𝑣2 + 𝑇23

−1𝑣3)𝐞2

+ (𝑇31
−1𝑣1 + 𝑇32

−1𝑣2 + 𝑇33
−1𝑣3)𝐞3 

= (
4

25
(−5) +

3

25
(0) +

1

5
(4)) 𝐞1 + (−

1

25
(−5) −

7

25
(0) +

1

5
(4))𝐞2

+ (
8

25
(−5) −

19

25
(0) +

2

5
(4))𝐞3 = 𝐞2 

𝐓−1(2𝐞1 − 𝐞2 − 𝐞3)

= (𝑇11
−1𝑣1 + 𝑇12

−1𝑣2 + 𝑇13
−1𝑣3)𝐞1 + (𝑇21

−1𝑣1 + 𝑇22
−1𝑣2 + 𝑇23

−1𝑣3)𝐞2

+ (𝑇31
−1𝑣1 + 𝑇32

−1𝑣2 + 𝑇33
−1𝑣3)𝐞3 

= (
4

25
(2) +

3

25
(−1) +

1

5
(−1)) 𝐞1 + (−

1

25
(2) −

7

25
(−1) +

1

5
(−1))𝐞2

+ (
8

25
(2) −

19

25
(−1) +

2

5
(−1))𝐞3 = 𝐞3 
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2.6 Given vectors 𝐮, 𝐯 Find the tensor that transforms any vector 𝐚 to 

𝐮(𝐚 ⋅ 𝐯) 

 Using the fact that the scalar product is commutative, we may see it more clearly 

by observing that, 

𝐮(𝐚 ⋅ 𝐯) =  𝐮(𝐯 ⋅ 𝐚) = (𝐮 ⊗ 𝐯)𝐚 

The tensor we seek is simply the dyad created by vectors 𝐮 and 𝐯. 

 Given vectors 𝐮, 𝐯,𝐰, 𝐱 show that the dyad product,  

(𝐮 ⊗ 𝐯)(𝐰 ⊗ 𝐱) = (𝐮 ⊗ 𝐱)(𝐯 ⋅ 𝐰) 

 The proof is to show that both sides produce the same result when they act on the 

same vector. For arbitrary vector 𝐲, observing that (𝐯 ⋅ 𝐰) is scalar, the RHS is  

(𝐮 ⊗ 𝐱)(𝐯 ⋅ 𝐰)𝐲 = 𝐮(𝐱 ⋅ 𝐲)(𝐯 ⋅ 𝐰) 

and the LHS applied to the same vector, becomes: 

(𝐮 ⊗ 𝐯)(𝐰 ⊗ 𝐱)𝐲 = (𝐮 ⊗ 𝐯)[𝐰(𝐱 ⋅ 𝐲)] = 𝐮(𝐯 ⋅ 𝐰)(𝐱 ⋅ 𝐲) 

Which is obviously the result from the RHS also. 

It is easy to see, by a repeated application of this result, that the multiple product 

of dyads like 

(𝐮1 ⊗ 𝐯1)(𝐮2 ⊗ 𝐯2)… (𝐮𝑛 ⊗ 𝐯𝑛)

= (𝐮1 ⊗ 𝐯𝑛)(𝐯1 ⋅ 𝐮2)… (𝐯𝑛−1 ⋅ 𝐮𝑛) 

2.7 For a tensor 𝐒, given that [(𝐒c𝐮) ×] = 𝐒(𝐮 ×)𝐒T for any two vectors 𝐮 

and 𝐯, show that ((cof 𝐒)𝐮 ×)𝐯 = 𝐒(𝐮 × 𝐒T𝐯) 

 The product of the given equation with the vector 𝐯 immediately yields, 

[(𝐒c𝐮) ×]𝐯 = 𝐒(𝐮 ×)𝐒T𝐯 

⇒ ((cof 𝐒)𝐮 ×)𝐯 = 𝐒(𝐮 × 𝐒T𝐯) 



29 
 

2.8 Given that 𝛀 is a skew tensor with the corresponding axial vector 𝛚. 

Given vectors 𝐮 and 𝐯, show that 𝛀𝐮 ×  𝛀𝐯 =  (𝛚 ⊗ 𝛚)(𝐮 ×  𝐯) and, 

hence conclude that 𝛀c = (𝛚 ⊗ 𝛚). 

 𝛀𝐮 ×  𝛀𝐯 = (𝛚 ×  𝐮) × (𝛚 ×  𝐯) 

= [(𝛚 ×  𝐮) ⋅ 𝐯]𝛚 − [(𝛚 ×  𝐮) ⋅ 𝛚]𝐯 

= [𝛚 ⋅  (𝐮 × 𝐯)]𝛚 = (𝛚 ⊗ 𝛚)(𝐮 ×  𝐯) 

But by definition, the cofactor must satisfy, 

𝛀𝐮 ×  𝛀𝐯 =  𝛀c(𝐮 ×  𝐯) 

which compared with the previous equation yields the desired result that 

𝛀c = (𝛚 ⊗ 𝛚). 

2.9 Show that [(𝐒c𝐮) ×] = 𝐒(𝐮 ×)𝐒T 

 
The LHS can be written as:  

[(𝐒c𝐮) ×] = 𝑒𝑖𝑗𝑘(𝐒
c𝐮)𝑗𝐞𝑖 ⊗ 𝐞𝑘  

where 𝐒c =
1

2
𝑒𝑗𝑎𝑏𝑒𝛽𝑐𝑑𝑆𝑎𝑐𝑆𝑏𝑑 𝐞𝑗 ⊗ 𝐞𝛽 so that  

𝐒𝐜𝐮 = (
1

2
𝑒𝑗𝑎𝑏𝑒𝛽𝑐𝑑𝑆𝑎𝑐𝑆𝑏𝑑𝐞𝑗 ⊗ 𝐞𝛽) (𝑢𝑚𝐞𝑚) =

1

2
𝑒𝑗𝑎𝑏𝑒𝛽𝑐𝑑𝑆𝑎𝑐𝑆𝑏𝑑𝐞𝑗𝛿𝛽𝑚𝑢𝑚

=
1

2
𝑒𝑗𝑎𝑏𝑒𝛽𝑐𝑑𝑢𝛽𝑆𝑎𝑐𝑆𝑏𝑑𝐞𝑗 

Consequently,  

[(𝐒c𝐮) ×] =
1

2
𝑒𝑖𝑗𝑘𝑒𝑗𝑎𝑏𝑒𝛽𝑐𝑑𝑢𝛽𝑆𝑎𝑐𝑆𝑏𝑑𝐞𝑖 ⊗ 𝐞𝑘

=
1

2
𝑒𝛽𝑐𝑑(𝛿𝑘𝑎𝛿𝑖𝑏 − 𝛿𝑘𝑏𝛿𝑖𝑎)𝑢𝛽𝑆𝑎𝑐𝑆𝑏𝑑𝐞𝑖 ⊗ 𝐞𝑘

=
1

2
𝑒𝛽𝑐𝑑𝑢𝛽(𝑆𝑘𝑐𝑆𝑖𝑑 − 𝑆𝑖𝑐𝑆𝑘𝑑)𝐞𝑖 ⊗ 𝐞𝑘

=
1

2
𝑒𝛽𝑐𝑑𝑢𝛽𝑆𝑘𝑐𝑆𝑖𝑑𝐞𝑖 ⊗ 𝐞𝑘 −

1

2
𝑒𝛽𝑐𝑑𝑢𝛽𝑆𝑖𝑐𝑆𝑘𝑑𝐞𝑖 ⊗ 𝐞𝑘

=
1

2
𝑒𝛽𝑐𝑑𝑢𝛽𝑆𝑘𝑐𝑆𝑖𝑑𝐞𝑖 ⊗ 𝐞𝑘 +

1

2
𝑒𝛽𝑑𝑐𝑢𝛽𝑆𝑖𝑐𝑆𝑘𝑑𝐞𝑖 ⊗ 𝐞𝑘

= 𝑒𝛽𝑐𝑑𝑢𝛽𝑆𝑘𝑐𝑆𝑖𝑑𝐞𝑖 ⊗ 𝐞𝑘 
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On the RHS  

(𝒖 ×)𝑺T = (𝑒𝛼𝛽𝛾𝑢𝛽𝐞𝛼 ⊗ 𝐞𝛾)(𝑆𝑘𝑖𝐞𝑖 ⊗ 𝐞𝑘) = 𝑒𝛼𝛽𝛾𝑢𝛽𝑆𝑘𝛾𝐞𝛼 ⊗ 𝐞𝑘. 

We can therefore write,  

𝐒(𝐮 ×)𝐒T = (𝑆𝑖𝑟𝐞𝑖 ⊗ 𝐞𝑟)(𝑒𝛼𝛽𝛾𝑢𝛽𝑆𝑘𝛾𝐞𝛼 ⊗ 𝐞𝑘) = 𝑒𝛼𝛽𝛾𝑢𝛽𝑆𝑖𝛼𝑆𝑘𝛾𝐞𝑖 ⊗ 𝐞𝑘 

which on 𝛼 → 𝑑, 𝛾 → 𝑐 is the same as the LHS ⇒   
[(𝐒c𝐮) ×] = 𝐒(𝐮 ×)𝐒T 

as required. 

2.10 Show that for any invertible tensor 𝐒 and any vector 𝐮, [(𝐒𝐮) ×] = 𝐒c(𝐮 ×)𝐒−𝟏 

where 𝐒c and 𝐒−𝟏 are the cofactor and inverse of 𝐒 respectively. 

 By definition, 

𝐒𝐜 = (det 𝐒)𝐒−T   

We are to prove that, 

[(𝐒𝐮) ×] = 𝐒𝐜(𝐮 ×)𝐒−𝟏 = (det 𝐒)𝐒−T(𝐮 ×)𝐒−𝟏 

or that, 

𝐒T[(𝐒𝐮) ×] = (𝐮 ×)(det 𝐒)𝐒−𝟏 = (𝐮 ×)(𝐒𝐜)𝐓 

On the RHS, the 𝑖𝑗 component of 𝐮 × is  

(𝐮 ×)𝑖𝑗 = 𝑒𝑖𝛼𝑗𝑢𝛼 

which is exactly the same as writing, (𝑢 ×) = 𝑒𝑖𝛼𝑙𝑢𝛼𝐞𝑖 ⊗ 𝐞𝑙 in the invariant form. 

We now turn to the LHS;  

[(𝐒𝐮) ×] = 𝑒𝑙𝛼𝑘(𝐒𝐮)𝛼𝐞𝑙 ⊗ 𝐞𝑘 = 𝑒𝑙𝛼𝑘𝑆𝛼𝑗𝑢𝑗𝐞𝑙 ⊗ 𝐞𝑘 

Now, 𝐒 = 𝑆𝑖𝛽𝐞𝑖 ⊗ 𝐞𝛽 so that its transpose, 𝐒T = 𝑆𝑖𝛽𝐞𝛽 ⊗ 𝐞𝑖 so that  

𝐒T[(𝐒𝐮) ×] = 𝑒𝑙𝛼𝑘𝑆𝛼𝑗𝑆𝑖𝛽𝑢𝑗(𝐞𝛽 ⊗ 𝐞𝑖)(𝐞𝑙 ⊗ 𝐞𝑘) 

= 𝑒𝑙𝛼𝑘𝑆𝛼𝑗𝑆𝑖𝛽𝑢𝑗𝛿𝑖𝑙(𝐞𝛽 ⊗ 𝐞𝑘) 

= 𝑒𝑙𝛼𝑘𝑆𝛼𝑗𝑆𝑙𝑖𝑢𝑗(𝐞𝑖 ⊗ 𝐞𝑘) 

= 𝑒𝛽𝛼𝑘𝑆𝛼𝑗𝑆𝛽𝑖𝑢𝑗(𝐞𝑖 ⊗ 𝐞𝑘) 

= (𝐮 ×)(𝐒c)T 

2.11 For any invertible tensor 𝐒 show that 𝐒−c = (det 𝐒)−1𝐒T, that is, the 

inverse of the cofactor is the transpose divided by the determinant. 

 𝐒C = det(𝐒) 𝐒−T 



31 
 

Consequently,  

𝐒−c = (det 𝐒)−1(𝐒−T)−1 = (det 𝐒)−1𝐒T 

2.12 For any invertible tensor 𝐒 and a scalar 𝛼 show that show that the 

cofactor of the product of 𝛼 and 𝐒 equals 𝛼2 × the cofactor of 𝐒 , that 

is, (𝛼𝐒)c = 𝛼2𝐒c 

 (𝛼𝐒)𝑐 = (det(𝛼𝐒))(𝛼𝐒)−T 

= (𝛼3 det(𝐒))𝛼−1𝐒−T 

= (𝛼2 det(𝐒))𝐒−T 

= 𝛼2𝐒c 

2.13 For any invertible tensor 𝐒 show that (𝐒−1)c = (det 𝐒)−1𝐒T 

 (𝐒−1)c =  det(𝐒−1) (𝐒−1)−T 

= (det 𝐒)−1𝐒T 

2.14 For any invertible tensor 𝐒 show that det(𝐒c) = (det 𝐒)2 

 First note that the determinant of the product of a tensor C with a scalar 𝛼 is, 

det α𝐂 = 𝑒𝑖𝑗𝑘(𝛼𝐶𝑖1)(𝛼𝐶𝑗2)(𝛼𝐶𝑘3) = 𝛼3 det 𝐂 

The inverse of tensor 𝑺,  

𝐒−1 = (det 𝐒)−1(𝐒cT) 

Let the scalar 𝛼 = det 𝐒. We can see clearly that, 

𝐒c = 𝛼𝐒−T 

Taking the determinant of this equation, we have, 

det 𝐒c = 𝛼3 det 𝐒−1 = 𝛼3 det 𝐒−1 

as the transpose operation has no effect on the value of a determinant. Noting that 

the determinant of an inverse is the inverse of the determinant, we have, 

det 𝐒c =  𝛼3 det(𝐒−1) =
𝛼3

𝛼
= (det 𝐒)2 
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2.15 An orthogonal tensor 𝐐 is said to be “proper orthogonal” if its 

determinant |𝐐| = +1. Show that a proper orthogonal tensor is the 

cofactor of itself. Show also that its first two invariants are equal. 

 If 𝐐 is proper orthogonal, then det𝐐 = 1 

cof 𝐐 = (det𝐐)𝐐−T = +1 (𝐐T)−𝟏 = 1 (𝐐−1)−𝟏 = 𝐐 

𝐼2(𝐐) = 𝐼1(𝐐
c) 

The second principal invariant for any tensor is equal to the first principal invariant 

of its co-factor. But we find here that 𝐐 = 𝐐c. It follows that the first two invariants 

of a proper orthogonal tensor are equal. The third invariant, 𝐼3(𝐐) = det 𝐐 = 1. All 

essential information on an orthogonal tensor is known once we know its trace! 

2.16 Given arbitrary vectors 𝐚 and 𝐛 the tensor 𝐐 is said to be orthogonal if 

(𝐐𝐚) ⋅ (𝐐𝐛) = 𝐚 ⋅ 𝐛 = 𝐛 ⋅ 𝐚 show that the inverse of 𝐐 is its transpose. 

and that 𝐐 is the cofactor of itself. 

 Let 𝐪 = 𝐐𝐚. By the definition of the transpose of a tensor, we have that, 

𝐪 ⋅ 𝐐𝐛 = 𝐛 ⋅ 𝐐T𝐪 = 𝐛 ⋅ 𝐐𝐓𝐐𝐚 = 𝐛 ⋅ 𝐚 

Clearly, 𝐐𝐓𝐐 = 𝐈 which makes the transpose the same as the inverse tensor. 

A condition necessary and sufficient for a tensor 𝐐 to be orthogonal is that 𝐐 be 

invertible and its inverse is equal to its transpose. 

2.17 By appealing to the Cayley-Hamilton theorem, show that, that the 

inverse of an invertible tensor 𝐒 can be written as 𝐒−1 =
1

det 𝐒
(𝐒2 −

𝐼1𝐒 + 𝐼2𝐈) 

 The characteristic equation for 𝐒 can be written as, 

𝐒3 − 𝐼1𝐒
2 + 𝐼2𝐒 − 𝐼3𝐈 = 0 

Multiplying by the inverse, 𝐒−1,  we have, 

𝐒𝟐 − 𝐼1𝐒 + 𝐼2𝐈 − 𝐼3𝐒
−1 = 0 

from which the result, 
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𝐒−1 =
1

det 𝐒
(𝐒2 − 𝐼1𝐒 + 𝐼2𝐈) 

immediately follows. 

2.18 By direct notation and the relationship,𝐓c = (𝐓2 − 𝐼1(𝐓)𝐓 + 𝐼2(𝐓)𝐉)T  

show that the second invariant of a tensor is half the difference 

between of the square of its trace and the trace of its square. 

 Take the trace of the given equation,  

tr 𝐓c = tr𝐓2 − 𝐼1(𝐓)𝐼1(𝐓) + 3𝐼2(𝐓) 

But recall that tr 𝐓c = 𝐼2(𝐓).  It therefore follows that,  

2𝐼2(𝐓) = 𝐼1
2(𝐓) − tr 𝐓2 

= tr2 𝐓 − tr𝐓2 

So that, 

𝐼2(𝐓) =
1

2
(tr2 𝐓 − tr𝐓2) 

 

 

 

2.19 Show, using direct notation, that the cofactor of a tensor can be 

written as 𝐒c = (𝐒2 − 𝐼1𝐒 + 𝐼2𝐈)
T even if 𝐒 is not invertible. 𝐼1, 𝐼2 are 

the first two invariants of 𝐒. 

 
For any three linearly independent vectors, the trace of a tensor 𝐓 

tr 𝐓  ≡ 𝐼1(𝐓) =
[𝐓𝐠1, 𝐠2, 𝐠3] + [𝐠1, 𝐓𝐠2, 𝐠3] + [𝐠1, 𝐠2, 𝐓𝐠3]

[𝐠1, 𝐠2, 𝐠3]
 

Replacing 𝐠1 by 𝐓𝐠1 in the above equation, we have, 

tr 𝐓 [𝐓𝐠1, 𝐠2, 𝐠3] = [𝐓2𝐠1, 𝐠2, 𝐠3] + [𝐓𝐠1, 𝐓𝐠2, 𝐠3] + [𝐓𝐠1, 𝐠2, 𝐓𝐠3] 

Or, upon rearrangement, 

[𝐓𝐠1, 𝐓𝐠2, 𝐠3] + [𝐓𝐠1, 𝐠2, 𝐓𝐠3] = tr𝐓 [𝐓𝐠1, 𝐠2, 𝐠3] − [𝐓2𝐠1, 𝐠2, 𝐠3] 
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But, the second Invariant,  

𝐼2(𝐓) =
[𝐓𝐠1, 𝐓𝐠2, 𝐠3] + [𝐠1, 𝐓𝐠2, 𝐓𝐠3] + [𝐓𝐠1, 𝐠2, 𝐓𝐠3]

[𝐠1, 𝐠2, 𝐠3]
 

=
tr𝐓 [𝐓𝐠1, 𝐠2, 𝐠3] − [𝐓2𝐠1, 𝐠2, 𝐠3] + [𝐠1, 𝐓𝐠2, 𝐓𝐠3]

[𝐠1, 𝐠2, 𝐠3]
 

=
tr𝐓 [𝐓𝐠1, 𝐠2, 𝐠3] − [𝐓2𝐠1, 𝐠2, 𝐠3] + 𝐠1 ⋅ 𝐓c(𝐠2 × 𝐠3)

[𝐠1, 𝐠2, 𝐠3]
 

=
[(tr 𝐓)𝐓𝐠1, 𝐠2, 𝐠3] − [𝐓2𝐠1, 𝐠2, 𝐠3] + [𝐓cT𝐠1, 𝐠2, 𝐠3]

[𝐠1, 𝐠2, 𝐠3]
 

so that, 

[(𝐼2(𝐓)𝐈)𝐠1, 𝐠2, 𝐠3] = [(tr 𝐓)𝐓𝐠1, 𝐠2, 𝐠3] − [𝐓2𝐠1, 𝐠2, 𝐠3] + [𝐓cT𝐠1, 𝐠2, 𝐠3] 

From which we can write that 

I2(𝐓)𝐈 = (tr 𝐓)𝐓 − 𝐓2 + 𝐓cT 

or,  

𝐓c = (𝐓2 − 𝐼1(𝐓)𝐓 + I2(𝐓)𝐈)T 

2.20 Given an arbitrary tensor 𝐓 a skew tensor 𝐖 and a symmetric tensor 

𝐒. Show that 

𝐒: 𝐓 =  𝐒: 𝐓T = 𝐒: sym𝐓 

𝐖:𝐓 = −𝐖:𝐓T 

𝐒: skw𝐓 = 𝐒:𝐖 = 0 

 
Note that 𝐓 = sym𝐓 + skw𝐓 , and 𝐓T = sym𝐓 − skw𝐓 . Also note that the 

inner product between a skew and a symmetric tensor vanishes. Consequently, 

𝐒: 𝐓 =  𝐒: (sym𝐓 + skw 𝐓) 

=  𝐒: sym𝐓 +  𝐒: skw𝐓 

=  𝐒: sym𝐓 

=  𝐒: 𝐓T 
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 𝐖:𝐓 =  𝐖: (sym𝐓 + skw𝐓) 

=  𝐖: sym𝐓 +  𝐖: skw𝐓 

=  𝐖: skw𝐓 = 𝐖: (sym𝐓 − 𝐓T) =  −𝐖:𝐓T 

 To show that 𝐒:𝐖 = 0. Observe that, in component form, 𝐒 = 𝑆𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗), 𝐖 =

𝑊𝛼𝛽(𝐞𝜶 ⊗ 𝐞𝛽).  

𝐒T𝐖 = 𝑆𝑖𝑗𝑊𝛼𝛽(𝐞𝑗 ⊗ 𝐞𝒊)(𝐞𝜶 ⊗ 𝐞𝛽) 

= 𝑆𝑖𝑗𝑊𝛼𝛽(𝐞𝑗 ⊗ 𝐞𝛽)𝛿𝑖𝛼 = 𝑆𝑖𝑗𝑊𝑖𝛽𝐞𝑗 ⊗ 𝐞𝛽 

tr(𝐒T𝐖) = 𝑆𝑖𝑗𝑊𝛼𝛽tr(𝐞𝒋 ⊗ 𝐞𝛽)𝛿𝑖𝛼 = 𝑆𝑖𝑗𝑊𝛼𝛽𝛿𝑗𝛽𝛿𝑖𝛼 

= 𝑆𝑖𝑗𝑊𝑖𝑗 =  𝐒:𝐖 

= 𝑆𝑗𝑖𝑊𝑖𝑗 = −𝑆𝑗𝑖𝑊𝑗𝑖 = −𝑆𝑖𝑗𝑊𝑖𝑗 = − 𝐒:𝐖 

Which vanishes because it is equal to the negative of itself. 

𝐒: skw 𝐓 = 0 

Because skw 𝐓 is a skew tensor. Hence, 

𝐒: skw𝐓 = 𝐒:𝐖 = 0 

2.21 Given that the trace of a dyad 𝐚 ⊗ 𝐛, tr(𝐚 ⊗ 𝐛) = 𝐚 ⋅ 𝐛. By expressing 

the tensors 𝐓 and 𝐒 in component form, show that tr(𝐒𝐓) = tr(𝐓𝐒) =

tr(𝐒T𝐓T) = tr(𝐓T𝐒T) 

 
In component form, 𝐒 = 𝑆𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗, 𝑻 = 𝑇𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗.  

𝐒𝐓 = 𝑆𝑖𝑗𝑇𝛼𝛽(𝐞𝑖 ⊗ 𝐞𝑗)(𝐞𝜶 ⊗ 𝐞𝛽) 

= 𝑆𝑖𝑗𝑇𝛼𝛽(𝐞𝑖 ⊗ 𝐞𝛽)𝛿𝑗𝛼 

tr(𝐒𝐓) = 𝑆𝑖𝑗𝑇𝛼𝛽tr(𝐞𝑖 ⊗ 𝐞𝛽)𝛿𝑗𝛼 = 𝑆𝑖𝑗𝑇𝛼𝛽𝛿𝑖𝛽𝛿𝑗𝛼 

= 𝑆𝑖𝑗𝑇𝑗𝑖   

𝐓𝐒 = 𝑆𝑖𝑗𝑇𝛼𝛽(𝐞𝜶 ⊗ 𝐞𝛽)(𝐞𝑖 ⊗ 𝐞𝑗) = 𝑆𝑖𝑗𝑇𝛼𝛽(𝐞𝑖 ⊗ 𝐞𝛽)𝛿𝑗𝛼 

tr(𝐓𝐒) = 𝑆𝑖𝑗𝑇𝛼𝛽𝛿𝑖𝛽𝛿𝑗𝛼 = 𝑆𝑖𝑗𝑇𝑗𝑖 = tr(𝐒𝐓) 

𝐒T𝐓T = 𝑆𝑖𝑗𝑇𝛼𝛽(𝐞𝒋 ⊗ 𝐞𝒊)(𝐞𝛽 ⊗ 𝐞𝛼) 



36 
 

tr(𝐒T𝐓T) = 𝑆𝑖𝑗𝑇𝛼𝛽𝛿𝑖𝛽𝛿𝑗𝛼 = 𝑆𝑖𝑗𝑇𝑗𝑖 = tr(𝐒𝐓) 

Similar computations lead to the conclusion that 

tr(𝐒𝐓) = tr(𝐓𝐒) = tr(𝐒T𝐓T) = tr(𝐓T𝐒T) 

2.22 For tensors 𝐀 and  𝐒 how that sym(𝐀T𝐒𝐀) = 𝐀Tsym(𝐒)𝐀 

 
Clearly, sym(𝐒) =

1

2
(𝐒 + 𝐒T) 

It also follows that, 

𝐀Tsym(𝐒)𝐀 =  
1

2
𝐀T(𝐒 + 𝐒T)𝐀 

=
1

2
(𝐀T𝐒𝐀 + 𝐀T𝐒T𝐀) 

But sym(𝐀T𝐒𝐀) =
𝟏

𝟐
(𝐀T𝐒𝐀 + 𝐀T𝐒T𝐀). 

Hence sym(𝐀T𝐒𝐀) = 𝐀Tsym(𝐒)𝐀 

2.23 Given three vectors 𝐮, 𝐯 and 𝐰, (a) show that (𝐰 × 𝐮) × (𝐰 × 𝐯) =

(𝐰 ⊗ 𝐰)(𝐮 × 𝐯) and that for the unit vector 𝐞, [𝐞, 𝐞 × 𝐮, 𝐞 × 𝐯] =

[𝐞, 𝐮, 𝐯], (b) Using the result in (a), show that [(𝐮 × 𝐯), (𝐯 × 𝐰), (𝐰 ×

𝐮)] = [𝐮, 𝐯, 𝐰]2 

a (𝐰 × 𝐮) × (𝐰 × 𝐯) = [(𝐰 × 𝐮) ⋅ 𝐯]𝐰 − [(𝐰 × 𝐮) ⋅ 𝐰]𝐯 

= [(𝐰 × 𝐮) ⋅ 𝐯]𝐰 

= [(𝐮 × 𝐯) ⋅ 𝐰]𝐰 

= (𝐰 ⊗ 𝐰)(𝐮 × 𝐯) 

Consequently, 

[𝐞, 𝐞 × 𝐮, 𝐞 × 𝐯] = 𝐞 ⋅ [(𝐞 × 𝐮) × (𝐞 × 𝐯)] 

= 𝐞 ⋅ [(𝐞 ⊗ 𝐞)(𝐮 × 𝐯)] 

= (𝐮 × 𝐯) ⋅ (𝐞 ⊗ 𝐞)𝐞 

= (𝐮 × 𝐯) ⋅ 𝐞 = [𝐞, 𝐮, 𝐯] 

making use of the symmetry of (𝐞 ⊗ 𝐞). 
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b From the given result,  

[(𝐮 × 𝐯), (𝐯 × 𝐰), (𝐰 × 𝐮)] = −(𝐮 × 𝐯) ⋅ (𝐰 × 𝐯) × (𝐰 × 𝐮) 

= −(𝐮 × 𝐯) ⋅ (𝐰 ⊗ 𝐰)(𝐯 × 𝐮) 

= (𝐮 × 𝐯)((𝐰 ⋅ 𝐮 × 𝐯)𝐰) 

= [𝐮, 𝐯,𝐰]2 

2.24 Given that vectors 𝐮 and 𝐯 are linearly independent, and that the 

tensor 𝐓 is not singular, show that the set 𝐓𝐮 and 𝐓𝐯 are also linearly 

independent. 

 
If 𝐓 is not singular, if 𝐓𝐮 and 𝐓𝐯 are also linearly dependent, then ∃𝛼, and 𝛽 both 

real such that 𝛼𝐓𝐮 + 𝛽𝐓𝐯 = 𝐨. But 𝐮 and 𝐯 are linearly independent. This means 

that 𝛼𝐮 + 𝛽𝐯 ≠ 𝐨. 

𝛼𝐓𝐮 + 𝛽𝐓𝐯 =  𝐓(𝛼𝐮 + 𝛽𝐯) = 𝐨. 

This means that 𝛼𝐮 + 𝛽𝐯 = 𝐨. This states that set of linearly independent vectors 

is linearly dependent! That is a contradiction! 

 Alternative Proof 

If 𝐓 is not singular, then its determinant exists and is not equal to zero. Therefore 

the cofactor, 𝐓c = 𝐓−T det 𝐓 ≠ 0 also exists and is non-zero. The linear 

independence of 𝐮 and 𝐯 means that the parallelogram formed by them has a non-

trivial area 𝐮 × 𝐯 ≠ 0. Now, the parallelogram formed by 𝐓𝐮 and 𝐓𝐯 is also non 

zero because, 

𝐓𝐮 × 𝐓𝐯 = 𝐓c(𝐮 × 𝐯) ≠ 0 

Hence 𝐓𝐮 and 𝐓𝐯 are also linearly independent. 

2.25 Given that vectors 𝐮, 𝐯 and 𝐰 are linearly independent, and that the 

tensor 𝐓 is not singular, show that the set 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also 

linearly independent. 
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If 𝐓 is not singular, then its determinant exists and is not equal to zero. Therefore, 

det 𝐓 =
[𝐓𝐮, 𝐓𝐯, 𝐓𝐰]

[𝐮, 𝐯,𝐰]
≠ 0 

Consequently, [𝐓𝐮, 𝐓𝐯, 𝐓𝐰] ≠ 0.  Which shows that 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also 

linearly independent. 

 Alternative Proof: 

If 𝐓 is not singular, if 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also linearly dependent, then ∃𝛼, 𝛽 and 

𝛾 all real such that 𝛼𝐓𝐮 + 𝛽𝐓𝐯 + 𝛾𝐓𝐰 = 𝐨. But 𝐮, 𝐯 and 𝐰 are linearly 

independent. This means that 𝛼𝐮 + 𝛽𝐯 + 𝛾𝐰 ≠ 𝐨. 

𝛼𝐓𝐮 + 𝛽𝐓𝐯 + 𝛾𝐓𝐰 =  𝐓(𝛼𝐮 + 𝛽𝐯 + 𝛾𝐰) = 𝐨. 

This means that 𝛼𝐮 + 𝛽𝐯 + 𝛾𝐰 = 𝐨. This states that set of linearly independent 

vectors is linearly dependent! That is a contradiction! 

2.26 Use the expressions (𝐒 + 𝐓)c = 𝐒c + 𝐓c + 𝐓T𝐒T + 𝐒T𝐓T −

 tr(𝐓)𝐒T − tr(𝐒)𝐓T + [tr(𝐒)tr(𝐓) − tr(𝐒𝐓)]𝐈 and det(𝐒 + 𝐓) =

det(𝐒) + tr(𝐓c𝐒T) + tr(𝐒c𝐓T) + det(𝐓) to show that (𝐈 +

(𝛚 ×))
−1

=
𝐈+𝛚×+𝛚⊗𝛚

1+‖𝛚‖2
 

 For any invertible tensor 𝐓,  

𝐓−𝟏 =
𝐓cT

det 𝐓
 

det(𝐈 + 𝛚 ×) = det 𝐈 + det(𝛚 ×) + (𝛚 ×)c: 𝐈 + 𝐈c: (𝛚 ×) 

= 1 + 0 + |ω|2 + 0 

(𝐈 + (𝛚 ×))
c
= [(1 + tr(𝛚 ×))𝐈 − (𝛚 ×)T + (𝛚 ×)c] 

= 𝐈 + (𝛚 ×) + 𝛚 ⊗ 𝛚 

so that  

(𝐈 + (𝛚 ×))
−1

=
𝐈 + 𝛚 × +𝛚 ⊗ 𝛚

1 + ‖𝛚‖2
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2.27 Use the fact that det(𝐒 + 𝐓) = det(𝐒) + tr(𝐓c𝐒T) + tr(𝐒c𝐓T) +

det(𝐓) to show that  det(𝐒 + 𝐚 ⊗ 𝐛) = det(𝐒) (1 + 𝐛 ⋅ 𝐒−1𝐚) 

 
Note that (𝐚 ⊗ 𝐛)c = 𝐎 and that det(𝐚 ⊗ 𝐛) = 0 so that  

det(𝐒 + 𝐚 ⊗ 𝐛) = det(𝐒) + tr(𝐒c(𝐛 ⊗ 𝐚)) 

= det(𝐒) (1 + 𝐚 ⋅ 𝐒−T𝐛) 

= det(𝐒) (1 + 𝐛 ⋅ 𝐒−1𝐚) 

2.28 Use the expression (𝐒 + 𝐓)c = 𝐒c + 𝐓c + 𝐓T𝐒T + 𝐒T𝐓T −  tr(𝐓)𝐒T −

tr(𝐒)𝐓T + [tr(𝐒)tr(𝐓) − tr(𝐒𝐓)]𝟏 to show that for an arbitrary tensor 𝐓, 

(𝐈 + 𝐓)c = 𝐓c + 𝐈(1 + tr 𝐓) − 𝐓T and that (𝐈 + 𝐮 ⊗ 𝐯)c = 𝐈(1 + 𝐮 ⋅ 𝐯) − 𝐯 ⊗ 𝐮 

 Substituting the identity tensor for 𝐒 in the given expression, we have, 

(𝐈 + 𝐓)c = 𝐓c + 𝐈 + (3 tr 𝐓 − tr 𝐓)𝐈 − 3𝐓T − 𝐈 tr 𝐓 + 𝐓T + 𝐓T 

= 𝐓c + 𝐈 + 2 tr𝐓 𝐈 − tr 𝐓 𝐈 − 𝐓T 

= 𝐓c + 𝐈(1 + tr 𝐓) − 𝐓T 

(𝐈 + 𝐮 ⊗ 𝐯)c = (𝐮 ⊗ 𝐯)c + 𝐈(1 + tr(𝐮 ⊗ 𝐯)) − (𝐮 ⊗ 𝐯)T 

= 𝟎 + 𝐈(1 + 𝐮 ⋅ 𝐯) − 𝐯 ⊗ 𝐮 

= 𝐈(1 + 𝐮 ⋅ 𝐯) − 𝐯 ⊗ 𝐮 

2.29 Using direct notation and without going into components, show that 

the determinant of a vector cross is zero. 

 
Given basis vectors, 𝐠1, 𝐠2, 𝐠3, the third invariant of 𝛚 ×,  

𝐼3(𝛚 ×) = det(𝛚 ×) 

=
[𝛚 × 𝐠1, 𝛚 × 𝐠2, 𝛚 × 𝐠3]

[𝐠1, 𝐠2, 𝐠3]
 

=
[𝛚 × 𝐠1, (𝛚 ×)c(𝐠2 × 𝐠3)]

[𝐠1, 𝐠2, 𝐠3]
 

=
[𝛚 × 𝐠1, (𝛚 ⊗ 𝛚)(𝐠2 × 𝐠3)]

[𝐠1, 𝐠2, 𝐠3]
 



40 
 

upon noting that the cofactor, (𝛚 ×)c = (𝛚 ⊗ 𝛚). 

And since (𝛚 ⊗ 𝛚) is symmetric, the numerator above is, 

(𝛚 × 𝐠1) ⋅ (𝛚 ⊗ 𝛚)(𝐠2 × 𝐠3) = (𝐠2 × 𝐠3) ⋅ (𝛚 ⊗ 𝛚)(𝛚 × 𝐠1) 

= (𝐠2 × 𝐠3) ⋅ [𝛚 ⋅ (𝛚 × 𝐠1)]𝛚 = 0 

so that 𝐼3(𝛚 ×) = det(𝛚 ×) = 0. 

Show that the trace of the cofactor, tr(𝛚 ×)c = ‖𝛚‖2 

First note that (𝛚 ×)c = (𝛚 ⊗ 𝛚). Therefore, 

tr(𝛚 ×)c = tr(𝛚 ⊗ 𝛚) 

=  𝛚 ⋅ 𝛚 = ‖𝛚‖2 

2.30 For an invertible tensor 𝐒, Show that cof(cof 𝐒) = (det 𝐒)𝐒 

 
𝐒c = det(𝐒) 𝐒−T 

So that, 

𝐒cc ≡ cof(cof 𝐒) = (det 𝐒c)(𝐒c)−T 

= (det 𝐒)2[(𝐒c)−1]T 

= (det 𝐒)2[(det 𝐒)−1𝐒T]T 

= (det 𝐒)2(det 𝐒)−1𝐒 

= (det 𝐒)𝐒 

as required 

2.31 Show that (𝐒−1)c = (det 𝐒)−1𝐒T 

 
(𝐒−1)c =  det(𝐒−1) (𝐒−1)−T 

= (det 𝐒)−1𝐒T 

2.32 Show that for a scalar 𝛼 and tensor 𝐒, (𝛼𝐒)c = 𝛼2𝐒c 
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(𝛼𝐒)c = (det(𝛼𝐒))(𝛼𝐒)−T 

= (𝛼3 det(𝐒))𝛼−1𝐒−T 

= (𝛼2 det(𝐒))𝐒−T = 𝛼2𝐒c 

2.33 Using direct notation and without going into components, Find the 

cofactor of a vector cross 𝛚 × 

 
Given independent vectors 𝐮 and 𝐯, consider the product,  

((𝛚 ×) 𝐮) × ((𝛚 ×) 𝐯) = (𝛚 ×  𝐮) × (𝛚 ×  𝐯) 

= [(𝛚 ×  𝐮) ⋅ 𝐯]𝛚 − [(𝛚 ×  𝐮) ⋅ 𝛚]𝐯 

= [𝛚 ⋅  (𝐮 × 𝐯)]𝛚 

= (𝛚 ⊗ 𝛚)(𝐮 ×  𝐯) 

Showing that the cofactor of 𝛚 × is the dyad 𝛚 ⊗ 𝛚. 

2.34 Use the fact that the cofactor of any tensor can be written as 𝐒c =

(𝐒2 − 𝐼1𝐒 + 𝐼2𝟏)T to show that the cofactor of the sum of two tensors can be 

expressed in terms of the constituent tensors as, (𝐒 + 𝐓)c = 𝐒c + 𝐓c + 𝐓T𝐒T +

𝐒T𝐓T −  tr(𝐓)𝐒T + tr(𝐒)𝐓T + [tr(𝐒)tr(𝐓) − tr(𝐒𝐓)]𝐈 

 
Since 𝐒𝐜 = (𝐒𝟐 − 𝐼1𝐒 + 𝐼2𝐈)

𝐓, let 𝐒 → 𝐒 + 𝐓 ⇒ 

(𝐒 + 𝐓)𝐜 = {(𝐒 + 𝐓)𝟐 − 𝐭𝐫(𝐒 + 𝐓)(𝐒 + 𝐓) +
1

2
[tr𝟐(𝐒 + 𝐓) − tr(𝐒 + 𝐓)𝟐]𝐈}

𝐓

 

= {(𝐒 + 𝐓)𝟐 + (𝐒 + 𝐓)𝟐 + 𝐓𝐒 + 𝐒𝐓 − tr(𝐒)𝐒 − tr(𝐓)𝐓 − tr(𝐒)𝐓

− tr(𝐓)𝐒

+
1

2
[tr(𝐒) + tr(𝐓) + 𝟐tr(𝐒)tr(𝐓) − tr𝟐(𝐒) − tr𝟐(𝐓) − tr(𝐓𝐒)

− tr(𝐒𝐓)]}
𝐓
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= (𝐒𝟐 − tr(𝐒)𝐒 +
1

2
[tr𝟐(𝐒) − tr(𝐒)𝟐]𝐈)

𝐓

+ (𝐓𝟐 − tr(𝐓)𝐓 +
1

2
[tr𝟐(𝐓) − tr(𝐓)𝟐]𝐈)

𝐓

+ 𝐓T𝐒T + 𝐒T𝐓T

−  tr(𝐓)𝐒T − tr(𝐒)𝐓T + [tr(𝐒)tr(𝐓) − tr(𝐒𝐓)]𝐈 

= 𝐒c + 𝐓c + 𝐓T𝐒T + 𝐒T𝐓T −  tr(𝐓)𝐒T − tr(𝐒)𝐓T

+ [tr(𝐒)𝐭𝐫(𝐓) − tr(𝐒𝐓)]𝐈 

2.35 Determinant is not a linear scalar-valued tensor function. For any two tensors 𝐒 

and 𝐓, use the direct method to show that the determinant of the sum 

det(𝐒 + 𝐓) = det(𝐒) + tr(𝐓c𝐒T) + tr(𝐒c𝐓T) + det(𝐓) 

 
Given the set 𝐚, 𝐛, 𝐜 of linearly independent vectors, the determinant of the sum, 

det(𝐒 + 𝐓) 

=
((𝐒 + 𝐓)𝐚, (𝐒 + 𝐓)𝐛, (𝐒 + 𝐓)𝐜)

[𝐚, 𝐛, 𝐜]
 

= det 𝐒 + det 𝐓 +
[𝐒𝐚, 𝐒𝐛, 𝐓𝐜] + [𝐒𝐚, 𝐓𝐛, 𝐒𝐜] + [𝐓𝐚, 𝐒𝐛, 𝐒𝐜]

[𝐚, 𝐛, 𝐜]

+
[𝐒𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐒𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐓𝐛, 𝐒𝐜]

[𝐚, 𝐛, 𝐜]
 

= det 𝐒 + det 𝐓 +
[𝐒𝐚, 𝐒𝐛, 𝐓𝐒−1𝐒𝐜] + [𝐒𝐚, 𝐓𝐒−1𝐒𝐛, 𝐒𝐜] + [𝐓𝐒−1𝐒𝐚, 𝐒𝐛, 𝐒𝐜]

[𝐚, 𝐛, 𝐜]

+
[𝐒𝐓−1𝐓𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐒𝐓−1𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐓𝐛, 𝐒𝐓−1𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

= det 𝐒 + det 𝐓 + 

+(
[𝐒𝐚, 𝐒𝐛, 𝐓𝐒−1𝐒𝐜] + [𝐒𝐚, 𝐓𝐒−1𝐒𝐛, 𝐒𝐜] + [𝐓𝐒−1𝐒𝐚, 𝐒𝐛, 𝐒𝐜]

[𝐒𝐚, 𝐒𝐛, 𝐒𝐜]
) (

[𝐒𝐚, 𝐒𝐛, 𝐒𝐜]

[𝐚, 𝐛, 𝐜]
) 

+(
[𝐒𝐓−1𝐓𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐒𝐓−1𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐓𝐛, 𝐒𝐓−1𝐓𝐜]

[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]
) (

[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
) 

= det 𝐒 + det 𝐓 + tr(𝐓𝐒−1) det 𝐒 + tr(𝐒𝐓−1) det 𝐓 
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= det 𝐒 + det 𝐓 + tr(𝐓𝐒cT) + tr(𝐒𝐓cT) 

= det 𝐒 + det 𝐓 + tr(𝐒c𝐓T) + tr(𝐓c𝐒T) 

2.37 Given that vectors 𝐮, 𝐯 and 𝐰 are linearly independent, and that the 

tensor 𝐓 is not singular, show that the set 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also 

linearly independent. 

 
If 𝐓 is not singular, then its determinant exists and is not equal to zero. Therefore, 

det 𝐓 =
[𝐓𝐮, 𝐓𝐯, 𝐓𝐰]

[𝐮, 𝐯,𝐰]
≠ 0 

Consequently, [𝐓𝐮, 𝐓𝐯, 𝐓𝐰] ≠ 0.  Which shows that 𝐓𝐮, 𝐓𝐯 and 𝐓𝐰 are also 

linearly independent. 

2.38 For the invertible tensor 𝐓 and the tensors 𝐅, 𝐕 and 𝐔, show that  

(𝐓 + 𝐔𝐅𝐕)−1 = 𝐓−1 − 𝐓−1𝐔(𝐅−1 + 𝐕𝐓−𝟏𝐔)−1𝐕𝐓−1 

 
First consider the matrix (

𝐓 −𝐔
𝐕 𝐅−1). Its inverse is obtained by solving the matrix 

equation,  

(
𝐀 𝐁
𝐂 𝐃

) (
𝐓 −𝐔
𝐕 𝐅−1) = (

𝐈 𝟎
𝟎 𝐈

) 

which yields, 

𝐀 𝐓 + 𝐁𝐕 = 𝐈 

−𝐀𝐔 + 𝐁𝐅−1 = 𝟎 ⇒ 𝐁 = 𝐀𝐔𝐅 

so that,  

𝐀 𝐓 + 𝐀𝐔𝐅𝐕 = 𝐀(𝐓 + 𝐔𝐅𝐕) = 𝐈 

⇒ 𝐀 = (𝐓 + 𝐔𝐅𝐕)−1 
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But 𝐀 = 𝐓−1 − 𝐁𝐕𝐓−1 substituting in the second equation, 

from which we can now write that (𝐓−1 − 𝐁𝐕𝐓−1)𝐔 =  𝐁𝐅−1 so that 

𝐁 = 𝐓−1𝐔(𝐅−1 + 𝐕𝐓−1𝐔)−1 

𝐀 = 𝐓−1 − 𝐁𝐕𝐓−1 = 𝐓−1 − 𝐓−1𝐔(𝐅−1 + 𝐕𝐓−1𝐔)−1𝐕𝐓−1 

Finally 𝐀 = (𝐓 + 𝐔𝐅𝐕)−1 = 𝐓−1 − 𝐓−1𝐔(𝐅−1 + 𝐕𝐓−1𝐔)−1𝐕𝐓−1 as required  

In the special case when 𝐅 is the identity tensor, we have, 

(𝐓 + 𝐔𝐕)−1 = 𝐓−1 − 𝐓−1𝐔(𝐈 + 𝐕𝐓−1𝐔)−1𝐕𝐓−1 

2.39 For any tensor 𝐓, the arbitrary vector 𝐮 and the scalar 𝜆, show that the 

eigenvalue problem, 𝐓𝐮 = 𝜆𝐮 leads to the characteristic equation, 

𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 − 𝐼3 = 0, where 𝐼1 = 𝐼1(𝐓), 𝐼2 = 𝐼2(𝐓) and 𝐼3 =

𝐼3(𝐓) the first, second and third invariants of 𝐓. 

 
Writing the tensor and vector in component forms, we have  

𝐓𝐮 = 𝑇𝑖𝑗(𝐞𝑖 ⊗ 𝐞𝑗)𝑢𝑘𝐞𝑘 = 𝜆𝐮 =  𝜆𝑢𝑖𝐞𝑖 

So that, 

𝐓𝐮 − 𝜆𝐮 = 𝑇𝑖𝑗𝐞𝑖(𝐞𝑗 ⋅ 𝐞𝑘)𝑢𝑘 −  𝜆𝑢𝑖𝐞𝑖 

= 𝑇𝑖𝑗𝐞𝑖𝑢𝑗 −  𝜆𝑢𝑖𝐞𝑖 

= (𝑇𝑖𝑗 − 𝜆𝛿𝑖𝑗)𝑢𝑗𝐞𝑖 = 𝐨 

Which is possible only if the coefficient determinant, |𝑇𝑖𝑗 − 𝜆𝛿𝑖𝑗| vanishes. 

Expanding, we find that, 

−𝑇31𝑇22𝑇13 + 𝑇12𝑇23𝑇31 + 𝑇13𝑇31𝑇32 − 𝑇11𝑇23𝑇32 − 𝑇12𝑇21𝑇33 + 𝑇11𝑇22𝑇33

+ 𝑇12𝑇12𝜆 − 𝑇11𝑇22𝜆 + 𝑇13𝑇31𝜆 + 𝑇23𝑇32𝜆 − 𝑇13𝑇33𝜆 − 𝑇22𝑇33𝜆

+ 𝑇11𝜆
2 + 𝑇22𝜆

2 + 𝑇33𝜆
2 − 𝜆3  

= −𝑇31𝑇22𝑇13 + 𝑇12𝑇23𝑇31 + 𝑇13𝑇31𝑇32 − 𝑇11𝑇23𝑇32 − 𝑇12𝑇21𝑇33 + 𝑇11𝑇22𝑇33

+ (𝑇12𝑇12 − 𝑇11𝑇22 + 𝑇13𝑇31 + 𝑇23𝑇32 − 𝑇13𝑇33 − 𝑇22𝑇33)𝜆

+ (𝑇11 + 𝑇22 + 𝑇33)𝜆
2 − 𝜆3 = 0 

Or, 𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 − 𝐼3 = 0, as required. 
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2.40 For linearly independent vectors  𝐚, 𝐛 and 𝐜, and a tensor 𝐓 use the 

relationship, [𝜆𝐚 − 𝐓𝐚, 𝜆𝐛 − 𝐓𝐛, 𝜆𝐜 − 𝐓𝐜 ] = det(𝜆𝐈 − 𝐓)[𝐚, 𝐛, 𝐜] and 

the characteristic equation 𝜆3 − 𝐼1(𝐓)𝜆2 + 𝐼2(𝐓)𝜆 − 𝐼3(𝐓) = 0 to 

find expressions for the for the invariants of 𝐓. 

 
The characteristic equation, det(𝜆𝐈 − 𝐓) = 0 immediately implies that  

[𝜆𝐚 − 𝐓𝐚, 𝜆𝐛 − 𝐓𝐛, 𝜆𝐜 − 𝐓𝐜 ] = 0. 

Expanding the scalar triple product, we have 

[𝐚, 𝐛, 𝐜]𝜆3 − ([𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜])𝜆2

+ ([𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜])𝜆 − [𝐓𝐚, 𝐓𝐛, 𝐓𝐜] = 0 

From which we can see that, 

𝐼1(𝐓) =
[𝐓𝐚, 𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

𝐼2(𝐓) =
[𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
, and  

𝐼3(𝐓) =
[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

Assuming we have carefully chosen [𝐚, 𝐛, 𝐜] ≠ 0. 

2.41 Given that the cofactor 𝐀c ≡ cof𝐀 = 𝐀−T det𝐀 satisfies 𝐀𝐚 × 𝐀𝐛 =

𝐀c(𝐚 × 𝐛). Show by direct methods that transposing does not alter the 

determinant of a tensor. 

 

det 𝐀 =
[𝐀𝐚, 𝐀𝐛, 𝐀𝐜]

[𝐚, 𝐛, 𝐜]
=

𝐀𝐚 ⋅ 𝐀𝐛 × 𝐀𝐜

[𝐚, 𝐛, 𝐜]
=

𝐀𝐚 ⋅ 𝐀c(𝐛 × 𝐜)

[𝐚, 𝐛, 𝐜]
 

=
(𝐛 × 𝐜) ⋅ 𝐀cT𝐀𝐚

[𝐚, 𝐛, 𝐜]
=

(𝐛 × 𝐜) ⋅ 𝐀−1 det 𝐀T 𝐀𝐚

[𝐚, 𝐛, 𝐜]
 

= det 𝐀T
(𝐛 × 𝐜) ⋅ 𝐀−1𝐀𝐚

[𝐚, 𝐛, 𝐜]
= det 𝐀T 

upon noting that 𝐀T𝐀𝐚 = 𝐈𝐚 = 𝐚. 
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2.42 For a scalar 𝛼 show that det 𝛼𝐀 = 𝛼3 det𝐀 

 Given that det 𝐀 =
[𝐀𝐚,𝐀𝐛,𝐀𝐜]

[𝐚,𝐛,𝐜]
, then 

det 𝛼𝐀 =
[𝛼𝐀𝐚, 𝛼𝐀𝐛, 𝛼𝐀𝐜]

[𝐚, 𝐛, 𝐜]
= 𝛼3

[𝐀𝐚, 𝐀𝐛,𝐀𝐜]

[𝐚, 𝐛, 𝐜]
= 𝛼3 det 𝐀 

 

2.43 Define the inner product of tensors 𝐓 and 𝐒 as 𝐓: 𝐒 = tr(𝐓𝑇𝐒) =

tr(𝐓𝐒𝑇) show that 𝐼1(𝐓) = 𝐓: 𝐈 

 
𝐓: 𝐒 = tr(𝐓T𝐒) = tr(𝐓𝐒T) 

Let 𝐒 = 𝐈; 

𝐓: 𝐈 = tr(𝐓T𝐈) = tr(𝐓𝐈) 

=  tr(𝐓) = 𝐼1(𝐓) 

2.44 Show that every skew tensor is traceless. 

a In full component form, a skew tensor 𝐖 can be written as: 

𝐖 = 𝑊𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

Once a tensor is in component form, its transpose is a reversal of its dyad bases. 

Consequently, 

𝐖T = 𝑊𝑖𝑗𝐞𝑗 ⊗ 𝐞𝑖 = 𝑊𝑗𝑖𝐞𝑖 ⊗ 𝐞𝑗 = −𝑊𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 

The last equality arising from the fact that the transpose of a skew tensor is its 

opposite. The middle equality is the allowable reversal of roles for dummy 

variables. We can therefore write that, 

𝑊𝑗𝑖𝐞𝑖 ⊗ 𝐞𝑗 + 𝑊𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 = (𝑊𝑗𝑖 + 𝑊𝑖𝑗)𝐞𝑖 ⊗ 𝐞𝑗 = 𝐎 

Which, taken component by component means, 𝑊𝑗𝑖 = −𝑊𝑖𝑗. In particular, 

𝑊11 = −𝑊11 = 0,𝑊22 = −𝑊22 = 0, and 𝑊33 = −𝑊33 = 0 

The trace of 𝐖 is  
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tr 𝐖 = 𝑊𝑖𝑗𝐞𝑖 ⋅ 𝐞𝑗 = 𝑊𝑖𝑗𝛿𝑖𝑗 = 𝑊𝑖𝑖 = 𝑊11 + 𝑊22 + 𝑊33 = 0. 

b Or more elegantly: 

tr 𝐖 = 𝐈:𝐖 = 𝐈:𝐖T = −𝐈:𝐖 = 0 

The second equality because the trace operation does not change with 

transposing. The third equation from the fact that the transpose of a skew tensor 

is its opposite. The result all comes out on one line with no appeal to components. 

Lastly, recall that trace is a linear operation. Hence, 

tr 𝐖 = tr 𝐖T = −tr 𝐖 = 0 

2.45 Define the cofactor of a tensor as, cof 𝐓 ≡ 𝐓c ≡ 𝐓−𝐓 det 𝐓. Show that, 

for any pair of linearly independent vectors 𝐮 and 𝐯 the cofactor 

satisfies, 𝐓𝐮 × 𝐓𝐯 = 𝐓c(𝐮 × 𝐯) 

 
First note that if 𝐓 is invertible, the independence of the vectors 𝐮 and 𝐯 implies 

the independence of vectors 𝐓𝐮 and 𝐓𝐯. Consequently, we can define the non-

vanishing 

𝐧 ≡  𝐓𝐮 × 𝐓𝐯 ≠ 𝟎. 

It follows that 𝐧 must be on the perpendicular line to both 𝐓𝐮 and 𝐓𝐯. Therefore, 

𝐧 ⋅ 𝐓𝐮 =  𝐧 ⋅ 𝐓𝐯 = 𝟎. 

We can also take a transpose and write, 

𝐮 ⋅ 𝐓𝐓𝐧 =  𝐯 ⋅ 𝐓𝐓𝐧 = 𝟎 

Showing that the vector 𝐓𝐓𝐧 is perpendicular to both 𝐮 and 𝐯. It follows that 

∃ 𝛼 ∈𝕽 such that  

𝐓𝐓𝐧 = 𝛼(𝐮 × 𝐯) 

Therefore, 𝐓T(𝐓𝐮 × 𝐓𝐯) = 𝛼(𝐮 × 𝐯). 

Let 𝐰 = 𝐮 × 𝐯 so that 𝐮,  𝐯 and 𝐰 are linearly independent, then we can take a 

scalar product of the above equation and obtain, 
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𝐰 ⋅ 𝐓T(𝐓𝐮 × 𝐓𝐯) = 𝛼(𝐮 × 𝐯 ⋅ 𝐰) 

The LHS is also 𝐓𝐰 ⋅ (𝐓𝐮 × 𝐓𝐯) =  𝐓𝐮 × 𝐓𝐯 ⋅ 𝐓𝐰. In the equation, 𝐓𝐮 ×

𝐓𝐯 ⋅  𝐓𝐰 =  α(𝐮 × 𝐯 ⋅ 𝐰), it is clear that  

𝛼 = det 𝐓 

We have that, 𝐓𝐮 × 𝐓𝐯 = 𝐓−T det 𝐓 (𝐮 × 𝐯). And therefore, we have that, 

𝐓𝐮 × 𝐓𝐯 = 𝐓−T det 𝐓 (𝐮 × 𝐯) = 𝐓c(𝐮 × 𝐯). 

2.46 In component form, the third tensor invariant of a tensor 𝐓, 𝐼3(𝐓) =

𝑒𝛼𝛽𝛾𝑇1𝛼𝑇2𝛽𝑇3𝛾 = det𝐓. Show that 𝑒𝑖𝑗𝑘𝑇𝑖𝛼𝑇𝑗𝛽𝑇𝑘𝛾 = 𝑒𝛼𝛽𝛾 det 𝐓 

 
We do this by first establishing the fact that the LHS is completely antisymmetric 

in 𝛼,  𝛽 and 𝛾. We note that the indices 𝑖,  𝑗 and 𝑘 are dummy and therefore, 

𝑒𝑖𝑗𝑘𝑇𝑖𝛼𝑇𝑗𝛽𝑇𝑘𝛾 = −𝑒𝑘𝑗𝑖𝑇𝑖𝛼𝑇𝑗𝛽𝑇𝑘𝛾 = −𝑒𝑘𝑗𝑖𝑇𝑘𝛾𝑇𝑖𝛼𝑇𝑗𝛽 = −𝑒𝑖𝑗𝑘𝑇𝑖𝛾𝑇𝑘𝛼𝑇𝑗𝛽 

Showing that a simple swap of 𝛼 and 𝛾 changes the sign. This is similarly true for 

the other pairs in the lower symbols. Thus we establish anti-symmetry in 𝛼,  𝛽 and 

𝛾. 

Noting that both sides of 

𝑒𝑖𝑗𝑘𝑇𝑖𝛼𝑇𝑗𝛽𝑇𝑘𝛾 = 𝑒𝛼𝛽𝛾 det 𝐓 

take the same values as the determinant of 𝐓 when 𝛼,  𝛽 and 𝛾 are equal to 1,  2 

and 3 respectively. The arrangement of the indices makes this value positive or 

negative in the same antisymmetric way. This completes the proof 

𝑒𝑖𝑗𝑘𝑇𝑖𝛼𝑇𝑗𝛽𝑇𝑘𝛾 = 𝑒𝛼𝛽𝛾 det 𝐓 

2.48 Given that {𝐞1, 𝐞2, 𝐞3} and {𝛏1, 𝛏2, 𝛏3} are two orthonormal bases, 

show that the spectral form, 𝐐 = 𝛏1 ⊗ 𝐞1 + 𝛏2 ⊗ 𝐞2 + 𝛏3 ⊗ 𝐞3 

rotates {𝐞1, 𝐞2, 𝐞3} to {𝛏1, 𝛏2, 𝛏3} 

 
To prove that 𝐐 is a rotation, first observe that, 

𝐐𝐐T = (𝛏1 ⊗ 𝐞1 + 𝛏2 ⊗ 𝐞2 + 𝛏3 ⊗ 𝐞3)(𝐞1 ⊗ 𝛏1 + 𝐞2 ⊗ 𝛏2 + +𝐞𝟑 ⊗ 𝛏3) 
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= 𝛏1 ⊗ 𝛏1 + 𝛏2 ⊗ 𝛏2 + 𝛏3 ⊗ 𝛏3 = 𝐈 

Furthermore,  

det 𝐐 = [𝐐𝐞1, 𝐐𝐞2, 𝐐𝐞3] = [𝛏1, 𝛏2, 𝛏3] = 1 

since the set {𝝃1, 𝝃2, 𝝃3} is orthonormal. 

We have already seen that each coordinate vector in {𝐞1, 𝐞2, 𝐞3} rotates to 

𝛏1, 𝛏2, 𝛏3respectively because, 𝐐𝐞1 = (𝛏1 ⊗ 𝐞1 + 𝛏2 ⊗ 𝐞2 + 𝛏3 ⊗ 𝐞3)𝐞1 = 𝛏1, 

similarly, 𝐐𝐞2 = 𝛏2 and 𝐐𝐞3 = 𝛏3. 

2.49 Find (a) the vector cross of a unit vector 𝐮 = 𝑢𝛼𝐞𝛼 If 𝐮 is on a plane 

including 𝐞𝛼 inclined to that is oriented at an angle 𝛼 to the 𝐞1 axis and 

making angle 𝛽 with 𝐞3, find the components of 𝐮 in terms of 𝛼 and 𝛽. 

 
(𝐮 ×)= 𝑒𝑖𝛼𝑗𝑢𝛼𝐞𝑖 ⊗ 𝐞𝑗 

= [𝐞1, 𝐞2, 𝐞3] ⊗ [
0 −𝑢3 𝑢2

𝑢3 0 −𝑢1

−𝑢2 𝑢1 0
] [

𝐞1

𝐞2

𝐞3

] 

From the figure, (

𝑢1

𝑢2

𝑢3

) = (

sin 𝛽 cos 𝛼
sin 𝛽 sin 𝛼

cos 𝛽
), so that  

(𝐮 ×) = [𝐞1, 𝐞2, 𝐞3] ⊗ [

0 − cos 𝛽 sin 𝛽 sin 𝛼
cos 𝛽 0 − sin 𝛽 cos 𝛼

− sin 𝛽 sin 𝛼 sin 𝛽 cos 𝛼 0
] [

𝐞1

𝐞2

𝐞3

] 

2.50 For arbitrary, mutually orthogonal vectors 𝐮 and  𝐯, show that 𝐮 ⋅

 𝐓𝐯 = 0 if and only if 𝐓 = 𝜆𝐈. 
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If 𝐓 = λ𝐈 then,  

𝐮 ⋅  𝐓𝐯 = 𝜆𝐮 ⋅  𝐈𝐯 = 𝜆(𝐮 ⋅ 𝐯) = 0  

from orthogonality of 𝐮, 𝐯. Now suppose 𝐮 ⋅  𝐓𝐯 = 0. Then, by the definition of the 

transpose,  

𝐮 ⋅  𝐓𝐯 = 𝐯 ⋅ 𝐓T𝐮 = 0 

We are given that 𝐮 is orthogonal to 𝐯. This can only be compatible with this scalar 

product if 𝐓T𝐮 is parallel to 𝐮. This happens only if 𝐓 is a spherical tensor. That is, 

𝐓 = λ𝐈. 

2.51 Given that, (𝐮 ×)(𝐯 ×) =  𝐯 ⊗ 𝐮 − (𝐮 ⋅  𝐯)𝐈. If 𝛚1and 𝛚2 are the 

vector cross of the skew tensors 𝐖1 and 𝐖2 respectively, show that 

𝐖1𝐖2 − 𝐖2𝐖1 = 𝛚2 ⊗ 𝛚1 − 𝛚1 ⊗ 𝛚2, 𝐖1𝐖2 − 𝐖2𝐖1 = (𝛚1 ×

𝛚2) ×. 

 
Using the given relationship,  

(𝛚1 ×)(𝛚2 ×) − (𝛚2 ×)(𝛚1 ×) 

= (𝛚2 ⋅ 𝛚1)𝐈 − 𝛚2 ⊗ 𝛚1 − (𝛚1 ⋅ 𝛚2)𝐈 + 𝛚1 ⊗ 𝛚2 

= 𝛚1 ⊗ 𝛚2 − 𝛚2 ⊗ 𝛚1 

Clearly, 𝐖1𝐖2 − 𝐖2𝐖1 = 𝛚2 ⊗ 𝛚1 − 𝛚1 ⊗ 𝛚2. 

The skew tensor,  

((𝝎1 × 𝝎2) ×) = −𝑒𝑖𝛼𝛽𝑒𝑖𝑗𝑘(𝜔1)𝑗(𝜔2)𝑘 𝐞𝛼 ⊗ 𝐞𝛽 

= (𝛿𝛼𝑘𝛿𝛽𝑗 − 𝛿𝛼𝑗𝛿𝛽𝑘 )(𝜔1)𝑗(𝜔2)𝑘𝐞𝛼 ⊗ 𝐞𝛽 

= (𝜔1)𝛽(𝜔2)𝛼𝐞𝛼 ⊗ 𝐞𝛽 − (𝜔1)𝛼(𝜔2)𝛽𝐞𝛼 ⊗ 𝐞𝛽 

= 𝛚2 ⊗ 𝛚1 − 𝛚1 ⊗ 𝛚2 

= 𝐖1𝐖2 − 𝐖2𝐖1 

2.52 For a tensor 𝐀 with three eigenvalues 𝜆𝑖, if 𝛄𝑖 are the corresponding 

normalized eigenvectors, find a spectral form for the tensor 𝐀 
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For the eigenbasis, {𝛄𝑖} we have 𝛄𝑖 ⋅ 𝛄𝑖 = 𝛿𝑖𝑗. The components of 𝐀 are evaluated 

as, 

𝐴𝑗𝑖 = 𝛄𝑗 ⋅ (𝐀𝛄𝑖) = 𝜆𝑖𝛄𝑗 ⋅ 𝛄𝑖 = ∑𝜆𝑖𝛿𝑖𝑗

3

𝑖=1

= 𝛄𝑖 ⋅ (𝐀T𝛄𝑗) 

We can therefore write 

𝐀 = 𝐴𝑗𝑖𝛄𝑖 ⊗ 𝛄𝑖 = ∑𝜆𝑖𝛿𝑖𝑗

3

𝑖=1

𝛄𝑖 ⊗ 𝛄𝑗 = ∑𝜆𝑖

3

𝑖=1

𝛄𝑖 ⊗ 𝛄𝑖  

in which all the off-diagonal terms vanish. 

2.53 Show that for two invertible tensors 𝐓 and 𝐒, (𝐓𝐒)−1 = 𝐒−1 𝐓−1 

 The inverse of the product 𝐓𝐒 contracted with 𝐓𝐒 yields the unit vector 

(𝐓𝐒)−1 𝐓𝐒 = 𝐈 

Observe that 𝐒−1 𝐓−1 𝐓𝐒 = 𝐒−1 𝐈𝐒 = 𝐈. 

It follows immediately that (𝐓𝐒)−1 = 𝐒−1 𝐓−1. 

2.54 Use the direct notation to show that the cofactor of the product of two tensors 

is the product of the cofactors, that is, for vectors 𝐒 and 𝐓, (𝐒𝐓)c = 𝐒c𝐓c 

 Consider vectors 𝐮 and 𝐯.  

𝐓c(𝐮 × 𝐯) =  𝐓𝐮 × 𝐓𝐯 

𝐒c[𝐓c(𝐮 × 𝐯)] = 𝐒c [𝐓𝐮 × 𝐓𝐯] 

=  𝐒𝐓𝐮 × 𝐒𝐓𝐯 = (𝐒𝐓)c(𝐮 × 𝐯) 

showing that (𝐒𝐓)c = 𝐒c𝐓c 

2.55 Use the result det(𝐒 + 𝐓) = det(𝐒) + tr(𝐓c𝐒T) + tr(𝐒c𝐓T) + det(𝐓) to show 

that det(𝐒 + 𝐈) = det 𝐒 + det 𝐒 tr(𝐒−1) + tr(𝐒) + 1. 
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 𝐓 → 𝐈  in the given identity and noting that the unit tensor is self cofactor ⇒ 

det(𝐒 + 𝐈) = det 𝐒 + tr(𝟏𝐒𝐓) + tr(𝐒𝐜𝐈) + det 𝐈 

= det 𝐒 + tr(𝐒𝐜) + tr(𝐒) + 1 

= det 𝐒 + det 𝐒 tr(𝐒−𝟏) + tr 𝐒 + 1 

2.56 Tensors 𝐒 and 𝐓 are said to be similar if the invertible tensor exists 

such that 𝐒 = 𝐁𝐓𝐁−1. Show that 𝐒 and 𝐓 have the same eigenvalues 

as well as principal invariants. 

 
The characteristic equation for 𝐒 is,  

𝐒𝐯 = λ𝐯 

where 𝜆 is the eigenvalue and 𝐯 the eigenvector. But 𝐒 = 𝐁𝐓𝐁−1 substituting, we 

have,  

𝐁𝐓𝐁−1𝐯 = λ𝐯 

so that  

𝐓𝐁−1𝐯 = λ𝐁−1𝐯 

If we define 𝐯1  ≡ 𝐁−1𝐯, we obtain,  

𝐓𝐯1 = 𝜆𝐯1 

yielding the same characteristic equation as well as eigenvalues and principal 

invariants as 𝐒𝐯 = 𝜆𝐯 

2.56

a 

For arbitrary tensors 𝐮 and 𝐯 the dyad, 𝐮 ⊗ 𝐯.Use the result 

det(𝐒 + 𝐓) = det(𝐒) + tr(𝐓c𝐒T) + tr(𝐒c𝐓T) + det(𝐓) to show that 

det(𝐒 + 𝐮 ⊗ 𝐯) = det 𝐒 + (𝐮 ⊗ 𝐯): 𝐒. 

 𝐓 → 𝐮 ⊗ 𝐯, then 𝐓c = 𝟎 and 𝐓T = 𝐯 ⊗ 𝐮 and det(𝐮 ⊗ 𝐯) = 0. 

det(𝐒 + 𝐮 ⊗ 𝐯) = det 𝐒 + 𝟎 + tr((𝐯 ⊗ 𝐮)𝐒c) + 0 

= det 𝐒 + (𝐮 ⊗ 𝐯): 𝐒𝐜 
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2.57 If 𝐮 is perpendicular to 𝐯 show that all the eigenvalues of the dyad 𝐮 ⊗

𝐯 are zero. 

 
For this tensor, 𝐼1 = 𝐮 ⋅  𝐯 = 0 on account of 𝐮 being perpendicular to 𝐯. We 

now examine the other two invariants: 

𝐼2

=
[(𝐮 ⊗ 𝐯)𝐚, (𝐮 ⊗ 𝐯)𝐛, 𝐜] + [𝐚, (𝐮 ⊗ 𝐯)𝐛, (𝐮 ⊗ 𝐯)𝐜] + [(𝐮 ⊗ 𝐯)𝐚, 𝐛, (𝐮 ⊗ 𝐯)𝐜]

[𝐚, 𝐛, 𝐜]
 

For linearly independent vectors 𝐚, 𝐛 and 𝐜. Clearly, 

𝐼2 =
[(𝐯 ⋅ 𝐚)𝐮, (𝐯 ⋅ 𝐛)𝐮, 𝐜] + [𝐚, (𝐯 ⋅ 𝐛)𝐮, (𝐯 ⋅ 𝐜)𝐮] + [(𝐯 ⋅ 𝐚)𝐮, 𝐛, (𝐯 ⋅ 𝐜)𝐮]

[𝐚, 𝐛, 𝐜]
= 0 

on the collinearity of two vectors in each triple product. 

𝐼3 =
[(𝐮 ⊗ 𝐯)𝐚, (𝐮 ⊗ 𝐯)𝐛, (𝐮 ⊗ 𝐯)𝐜]

[𝐚, 𝐛, 𝐜]
=

[(𝐯 ⋅ 𝐚)𝐮, (𝐯 ⋅ 𝐛)𝐮, (𝐯 ⋅ 𝐜)𝐮]

[𝐚, 𝐛, 𝐜]
= 0 

The latter being the triple product of three parallel vectors. Hence we have a case 

of a tensor with three principal invariants vanishing. The characteristic equation 

becomes, 

𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 + 𝐼3 = 𝜆3 = 0  

Yielding three equal roots of zero. 𝐮 ⊗ 𝐯 is thus a non-zero tensor with zero 

eigenvalues. 

2.58 Show that (𝐮 ×)(𝐯 ×) =   𝐯 ⊗ 𝐮 − (𝐮 ⋅  𝐯)𝐈 and that 

tr[(𝐮 ×)(𝐯 ×)] = −2(𝐮 ⋅  𝐯) 

 
(𝐮 ×)(𝐯 ×) = 𝑒𝑖𝑗𝑘𝑢𝑗𝑒𝛼𝛽𝛾𝑣𝛽 (𝐞𝑖 ⊗ 𝐞𝑘)(𝐞𝛼 ⊗ 𝐞𝛾) 

= 𝑒𝑖𝑗𝑘𝑢𝑗𝑒𝑘𝛽𝛾𝑣𝛽 (𝐞𝑖 ⊗ 𝐞𝛾) 

= (𝛿𝑖𝛽𝛿𝑗𝛾 − 𝛿𝑖𝛾𝛿𝑗𝛽)𝑢𝑗𝑣𝛽 (𝐞𝑖 ⊗ 𝐞𝛾) 

= 𝑢𝑗𝑣𝑖(𝐞𝑖 ⊗ 𝐞𝑗) − 𝑢𝑗𝑣𝑗(𝐞𝑖 ⊗ 𝐞𝑖) 

=  𝐯 ⊗ 𝐮 − (𝐮 ⋅  𝐯)𝐈 
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Since tr 𝐈 = 3, the trace of this tensor is −2(𝐮 ⋅  𝐯) 

2.59 Show that [𝐮, 𝐯,𝐰] = −tr[(𝐮 ×)(𝐯 ×)(𝐰 ×)] 

 
In the above we have shown that (𝐮 ×)(𝐯 ×)(𝐰 ×) = [𝐯 ⊗ (𝐮 × 𝐰) − (𝐮 ⋅

𝐯)𝐰 ×] 

Because the vector cross is traceless, the trace of [(𝐮 ⋅ 𝐯)𝐰 ×] = 0. The trace of 

the first term, 𝐯 ⊗ (𝐮 × 𝐰) is obviously the same as −[𝐮, 𝐯,𝐰] which completes 

the proof. 

 

2.60 For vectors 𝐮, 𝐯 and 𝐰, show that (𝐮 ×)(𝐯 ×)(𝐰 ×) = 𝐯 ⊗(𝐮 × 𝐰) −

(𝐮 ⋅ 𝐯)𝐰 ×. 

 
The tensor (𝐮 ×) = −𝑒𝑙𝑚𝑛𝑢𝑛𝐞𝑙 ⊗ 𝐞𝑚 similarly, (𝐯 ×) = −𝑒𝛼𝛽𝛾𝑣𝛾𝐞𝛼 ⊗ 𝐞𝛽 and 

(𝐰 ×) = −𝑒𝑖𝑗𝑘𝑤𝑘𝐞𝑖 ⊗ 𝐞𝑗. Clearly, 

(𝐮 ×)(𝐯 ×)(𝐰 ×) = −𝑒𝑙𝑚𝑛𝑒𝛼𝛽𝛾𝑒𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑚)(𝐞𝛼 ⊗ 𝐞𝛽)(𝐞𝑖 ⊗ 𝐞𝑗) 

= −𝑒𝛼𝛽𝛾𝑒𝑙𝑚𝑛𝑒𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗)𝛿𝑚𝛼𝛿𝛽𝑖  

= −𝑒𝑚𝑖𝛾𝑒𝑙𝑚𝑛𝑒𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗) 

= (𝛿𝑖𝑙𝛿𝛾𝑛 − 𝛿𝑖𝑛𝛿𝛾𝑙)𝑒𝑖𝑗𝑘𝑢𝑛𝑣𝛾𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗) 

= 𝑒𝑙𝑗𝑘𝑢𝑛𝑣𝑛𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗) − 𝑒𝑖𝑗𝑘𝑢𝑖𝑣𝑙𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗) 

= 𝑒𝑙𝑗𝑘𝑢𝑛𝑣𝑛𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗) − 𝑒𝑖𝑗𝑘𝑢𝑖𝑣𝑙𝑤𝑘(𝐞𝑙 ⊗ 𝐞𝑗) 

= [𝐯 ⊗ (𝐮 × 𝐰) − (𝐮 ⋅ 𝐯)𝐰 ×] 

2.61 Show that the dyad 𝐮 ⊗ 𝐯 is NOT, in general symmetric: 𝐮 ⊗ 𝐯 = 𝐯 ⊗

𝐮 − (𝐮 × 𝐯) × 
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𝐮 × 𝐯 = 𝑒𝑖𝑗𝑘𝑢𝑗𝑣𝑘 𝐞𝑖 

((𝐮 × 𝐯) ×) = 𝑒𝛼𝑖𝛽𝑒𝑖𝑗𝑘𝑢𝑗𝑣𝑘𝐞𝛼 ⊗ 𝐞𝛽 

= −(𝛿𝑖𝛼𝛿𝑘𝛽 − 𝛿𝑘𝛼𝛿𝑖𝛽 )𝑢𝑗𝑣𝑘𝐞𝛼 ⊗ 𝐞𝛽 

= (−𝑢𝛼𝑣𝛽 + 𝑢𝛽𝑣𝛼)𝐞𝛼 ⊗ 𝐞𝛽 

=  𝐯 ⊗ 𝐮 −  𝐮 ⊗ 𝐯 

2.62 If we can find 𝛼, 𝛽 and 𝛾 such that the unit tensor, 𝐈 =  𝛼𝐚 ⊗ 𝐛 +

 𝛽𝐛 ⊗ 𝐜 + 𝛾𝐜 ⊗ 𝐚, show that unless 𝐛 ⋅  𝐚 = 𝛼−1 then 𝐚, 𝐛 and 𝐜 

cannot be linearly independent. 

 
 

In the expression, 

𝐈 =  𝛼𝐚 ⊗ 𝐛 +   𝛽𝐛 ⊗ 𝐜 + 𝛾𝐜 ⊗ 𝐚   

Take a product on the right with vector 𝐚,  

𝐈𝐚 =  𝛼𝐚(𝐛 ⋅  𝐚) +   𝛽𝐛(𝐜 ⋅  𝐚) + 𝛾𝐜(𝐚 ⋅  𝐚) 

⇒ 𝐚(1 − 𝛼(𝐛 ⋅  𝐚)) =   𝛽𝐛(𝐜 ⋅  𝐚) + 𝛾𝐜(𝐚 ⋅  𝐚) 

  𝐚 =   
𝛽𝐛(𝐜 ⋅  𝐚)

1 − 𝛼(𝐛 ⋅  𝐚)
+

𝛾𝐜(𝐚 ⋅  𝐚)

(1 − 𝛼(𝐛 ⋅  𝐚))
 

So that this expression enables us to write 𝐚 in terms of 𝐛 and 𝐜. 

 

2.63 Show that if for every skew tensor 𝐖, the inner product 𝐒:𝐖 = 0, it must follow 

that 𝐒 is symmetric. 

 
𝐒T𝐖 = 𝑆𝑖𝑗𝑊𝛼𝛽(𝐞𝑗 ⊗ 𝐞𝑖)(𝐞𝛼 ⊗ 𝐞𝛽) 

= 𝑆𝑖𝑗𝑊𝛼𝛽𝐞𝑗 ⊗ 𝐞𝛽𝛿𝑖𝛼 

𝐒:𝐖 = tr 𝐒T𝐖 

= 𝑆𝑖𝑗𝑊𝛼𝛽𝛿𝑗𝛽𝛿𝑖𝛼 = 𝑆𝑖𝑗𝑊𝑖𝑗  

= −𝑆𝑖𝑗𝑊𝑗𝑖 = 0 
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Since all inner products 𝐒:𝐖 = 0. But,  

𝑆𝑖𝑗𝑊𝑖𝑗 = −𝑆𝑖𝑗𝑊𝑗𝑖 = −𝑆𝑗𝑖𝑊𝑖𝑗 

So that (𝑆𝑖𝑗 − 𝑆𝑗𝑖)𝑊𝑖𝑗 = 0 ⇒ 𝑆𝑖𝑗 = 𝑆𝑗𝑖 Hence, 𝐒 is symmetric. 

2.64 Show that 𝐼1(𝐓) ≡ tr(𝐓) =
[𝐓𝐚,𝐛,𝐜]+[𝐚,𝐓𝐛,𝐜]+[𝐚,𝐛,𝐓𝐜]

[𝐚,𝐛,𝐜]
 is independent of the choice of 

the linearly independent vectors 𝐚, 𝐛 and 𝐜. 

 
Let us refer each vector to an ONB, 𝐚 = 𝑎𝑖𝐞𝑖, 𝐛 = 𝑎𝑗𝐞𝑗, and 𝐜 = 𝑐𝑘𝐞𝑘. Hence,  

𝐼1(𝐓) ≡ tr(𝐓) =
[𝐓(𝑎𝑖𝐞𝑖), 𝑏𝑗𝐞𝑗 , 𝑐𝑘𝐞𝑘] + [𝑎𝑖𝐞𝑖, 𝐓(𝑏𝑗𝐞𝑗), 𝑐𝑘𝐞𝑘] + [𝑎𝑖𝐞𝑖, 𝑏𝑗𝐞𝑗 , 𝐓(𝑐𝑘𝐞𝑘)]

[𝑎𝑖𝐞𝑖, 𝑏𝑗𝐞𝑗 , 𝑐𝑘𝐞𝑘]

=
𝑎𝑖𝑏𝑗𝑐𝑘([𝐓𝐞𝑖, 𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖, 𝐓𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖, 𝐞𝑗, 𝐓𝐞𝑘])

𝑎𝑖𝑏𝑗𝑐𝑘[𝐞𝑖, 𝐞𝑗 , 𝐞𝑘]
 

But [𝐓𝐞𝑖, 𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖, 𝐓𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖, 𝐞𝑗 , 𝐓𝐞𝑘] = 𝑇𝛼𝛼𝑒𝑖𝑗𝑘. We have that 

𝐼1(𝐓) =
𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼𝛼𝑒𝑖𝑗𝑘

𝑎𝑖𝑏𝑗𝑐𝑘𝑒𝑖𝑗𝑘
= 𝑇𝛼𝛼 

Which is obviously independent of the choice of 𝐚, 𝐛 and 𝐜. 

2.65 Show that [𝐓𝐞𝑖 , 𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖 , 𝐓𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖 , 𝐞𝑗 , 𝐓𝐞𝑘] = 𝑇𝛼𝛼𝑒𝑖𝑗𝑘. 

 
[𝐓𝐞𝑖, 𝐞𝑗 , 𝐞𝑘] = (𝑇𝛼𝛽(𝐞𝛼 ⊗ 𝐞𝛽)𝐞𝑖) ⋅ (𝑒𝑗𝑘𝛾𝐞𝛾) = 𝑇𝛼𝛽𝛿𝑖𝛽𝛿𝛼𝛾𝑒𝑗𝑘𝛾 = 𝑇𝛼𝑖𝑒𝛼𝑗𝑘  

Similarly, we have that [𝐞𝑖, 𝐓𝐞𝑗 , 𝐞𝑘] = 𝑇𝛽𝑗𝑒𝑖𝛽𝑘 and [𝐞𝑖, 𝐞𝑗 , 𝐓𝐞𝑘] = 𝑇𝛾𝑘𝑒𝑖𝑗𝛾. Expanding each 

term, we have, 

𝑇𝛼𝑖𝑒𝛼𝑗𝑘 = 𝑇1𝑖𝑒1𝑗𝑘 + 𝑇2𝑗𝑒2𝑗𝑘 + 𝑇3𝑘𝑒3𝑗𝑘 

𝑇𝛽𝑗𝑒𝑖𝛽𝑘 = 𝑇1𝑗𝑒𝑖1𝑘 + 𝑇2𝑗𝑒𝑖2𝑘 + 𝑇3𝑗𝑒𝑖3𝑘 

𝑇𝛾𝑘𝑒𝑖𝑗𝛾 = 𝑇1𝑘𝑒𝑖𝑗1+𝑇2𝑘𝑒𝑖𝑗2+𝑇3𝑘𝑒𝑖𝑗3 

Select {𝑖, 𝑗, 𝑘} as any combination of the possible values of 1,2,3, each time, the result 

is, 𝑇𝛼𝑖𝑒𝛼𝑗𝑘 + 𝑇𝛽𝑗𝑒𝑖𝛽𝑘 + 𝑇𝛾𝑘𝑒𝑖𝑗𝛾 = 𝑇𝛼𝛼𝑒𝑖𝑗𝑘 using the expansion above. 
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2.66 Show that 𝐼2(𝐓) ≡
[𝐓𝐚,𝐓𝐛,𝐜]+[𝐚,𝐓𝐛,𝐓𝐜]+[𝐓𝐚,𝐛,𝐓𝐜]

[𝐚,𝐛,𝐜]
 is independent of the choice of the 

linearly independent vectors 𝐚, 𝐛 and 𝐜. 

 
Let us refer each vector to an ONB, 𝐚 = 𝑎𝑖𝐞𝑖, 𝐛 = 𝑎𝑗𝐞𝑗, and 𝐜 = 𝑐𝑘𝐞𝑘. Hence,  

𝐼2(𝐓) ≡
[𝐓𝐚, 𝐓𝐛, 𝐜] + [𝐚, 𝐓𝐛, 𝐓𝐜] + [𝐓𝐚, 𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

=
[𝐓(𝑎𝑖𝐞𝑖), 𝐓(𝑏𝑗𝐞𝑗), 𝑐𝑘𝐞𝑘] + [𝑎𝑖𝐞𝑖, 𝐓(𝑏𝑗𝐞𝑗), 𝐓(𝑐𝑘𝐞𝑘)] + [𝐓(𝑎𝑖𝐞𝑖), 𝑎𝑗𝐞𝑗 , 𝐓(𝑐𝑘𝐞𝑘)]

[𝑎𝑖𝐞𝑖, 𝑏𝑗𝐞𝑗 , 𝑐𝑘𝐞𝑘]
 

=
𝑎𝑖𝑏𝑗𝑐𝑘([𝐓𝐞𝑖, 𝐓𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖, 𝐓𝐞𝑗 , 𝐓𝐞𝑘] + [𝐓𝐞𝑖, 𝐞𝑗, 𝐓𝐞𝑘])

𝑎𝑖𝑏𝑗𝑐𝑘[𝐞𝑖, 𝐞𝑗 , 𝐞𝑘]
 

=
𝑎𝑖𝑏𝑗𝑐𝑘 ((𝐓c(𝐞𝑖 × 𝐞𝑗) ⋅ 𝐞𝑘) + (𝐞𝑖 ⋅ 𝐓c(𝐞𝑗 × 𝐞𝑘)) + (𝐓c(𝐞𝑘 × 𝐞𝑖) ⋅ 𝐞𝑗))

𝑎𝑖𝑏𝑗𝑐𝑘[𝐞𝑖, 𝐞𝑗, 𝐞𝑘]
 

= 𝐓c
𝑎𝑖𝑏𝑗𝑐𝑘([𝐞𝑖, 𝐞𝑗 , 𝐓

cT𝐞𝑘] + [𝐓cT𝐞𝑖, 𝐞𝑗 , 𝐞𝑘] + [𝐞𝑖, 𝐓
cT𝐞𝑗, 𝐞𝑘])

𝑎𝑖𝑏𝑗𝑐𝑘[𝐞𝑖, 𝐞𝑗 , 𝐞𝑘]
 

Where we used the fact that for vectors 𝐮, 𝐯, the product 𝐓𝐮 × 𝐓𝐯 = 𝐓c(𝐮 × 𝐯) followed by 

the definition of the transpose of a tensor. But [𝐞𝑖, 𝐞𝑗 , 𝐓
cT𝐞𝑘] + [𝐞𝑖, 𝐓

cT𝐞𝑗 , 𝐞𝑘] +

[𝐞𝑖, 𝐞𝑗 , 𝐓
cT𝐞𝑘] = 𝑇𝛼𝛼

c 𝑒𝑖𝑗𝑘. We therefore have that 

𝐼2(𝐓) =
𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼𝛼

c 𝑒𝑖𝑗𝑘

𝑎𝑖𝑏𝑗𝑐𝑘𝑒𝑖𝑗𝑘
= 𝑇𝛼𝛼

c = tr(𝐓c) 

Which is obviously independent of the choice of 𝐚, 𝐛 and 𝐜. 

2.67 Show that 𝐼3(𝐓) =
[𝐓𝐚,𝐓𝐛,𝐓𝐜]

[𝐚,𝐛,𝐜]
= det 𝐓 is independent of the choice of the 

linearly independent vectors 𝐚, 𝐛 and 𝐜. 

 𝐼3(𝐓) =
[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

Let us refer each vector to an ONB, 𝐚 = 𝑎𝑖𝐞𝑖, 𝐛 = 𝑏𝑗𝐞𝑗, and 𝐜 = 𝑐𝑘𝐞𝑘. Hence, 

𝐼3(𝐓) =
[𝐓(𝑎𝑖𝐞𝑖), 𝐓(𝑏𝑗𝐞𝑗), 𝐓(𝑐𝑘𝐞𝑘)]

[𝐚, 𝐛, 𝐜]
=

𝑎𝑖𝑏𝑗𝑐𝑘[𝐓𝐞𝑖, 𝐓𝐞𝑗 , 𝐓𝐞𝑘]

𝑒123𝑎𝑖𝑏𝑗𝑐𝑘
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Writing 𝐓 = 𝑇𝛼𝛽𝐞𝛼 ⊗ 𝐞𝛽 and substituting for each occurrence one by one, 

𝐼3(𝐓) =
𝑎𝑖𝑏𝑗𝑐𝑘[𝑇𝛼𝛽(𝐞𝛼 ⊗ 𝐞𝛽)𝐞𝑖, 𝐓𝐞𝑗, 𝐓𝐞𝑘]

𝑒123𝑎𝑖𝑏𝑗𝑐𝑘
=

𝑎𝑖𝑏𝑗𝑐𝑘[𝑇𝛼𝛽𝐞𝛼𝛿𝛽𝑖, 𝐓𝐞𝑗 , 𝐓𝐞𝑘]

𝑒123𝑎𝑖𝑏𝑗𝑐𝑘
 

=
𝑎𝑖𝑏𝑗𝑐𝑘[𝑇𝛼𝑖𝐞𝛼, 𝑇𝛽𝑗𝐞𝛽 , 𝑇𝛾𝑘𝐞𝛾]

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘
=

𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼𝑖𝑇𝛽𝑗𝑇𝛾𝑘[𝐞𝛼, 𝐞𝛽 , 𝐞𝛾]

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘
=

𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼𝑖𝑇𝛽𝑗𝑇𝛾𝑘𝑒𝛼𝛽𝛾

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘
 

=
𝑎𝑖𝑏𝑗𝑐𝑘𝑇𝛼1𝑇𝛽2𝑇𝛾3𝑒𝛼𝛽𝛾𝑒𝑖𝑗𝑘

𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝑐𝑘
= 𝑇𝛼1𝑇𝛽2𝑇𝛾3𝑒𝛼𝛽𝛾 = det 𝐓 

Which again is independent of the choice of 𝐚, 𝐛 and 𝐜. 

2.68 Let the spectral form of the tensor 𝐒 = 𝜆1𝐞𝟏 ⊗ 𝐞𝟏 + 𝜆2𝐞𝟐 ⊗ 𝐞𝟐 + 𝜆3𝐞3 ⊗

𝐞3 where {𝐞1, 𝐞2, 𝐞3} form an orthonormal set. For a positive integer 𝑛, find the 

spectral form of 𝐒𝑛 and that of 𝐒−1. 

 𝐒2 = (𝜆1𝒆𝟏 ⊗ 𝒆𝟏 + 𝜆2𝒆𝟐 ⊗ 𝒆𝟐 + 𝜆3𝒆3 ⊗ 𝒆3)(𝜆1𝒆𝟏 ⊗ 𝒆𝟏 + 𝜆2𝒆𝟐 ⊗ 𝒆𝟐 + 𝜆3𝒆3

⊗ 𝒆3) 

= (𝜆1𝒆𝟏 ⊗ 𝒆𝟏)(𝜆1𝒆𝟏 ⊗ 𝒆𝟏) + (𝜆1𝒆𝟏 ⊗ 𝒆𝟏)(𝜆2𝒆𝟐 ⊗ 𝒆𝟐)

+ (𝜆1𝒆𝟏 ⊗ 𝒆𝟏)(𝜆3𝒆3 ⊗ 𝒆3) + ⋯+ (𝜆3𝒆3 ⊗ 𝒆3)(𝜆3𝒆3 ⊗ 𝒆3) 

= 𝜆1
2𝒆𝟏 ⊗ 𝒆𝟏 + 𝜆2

2𝒆𝟐 ⊗ 𝒆𝟐 + 𝜆3
2𝒆3 ⊗ 𝒆3 

repeated multiplication leads to, 

𝐒𝑛 = 𝜆1
𝑛𝒆𝟏 ⊗ 𝒆𝟏 + 𝜆2

𝑛𝒆𝟐 ⊗ 𝒆𝟐 + 𝜆3
𝑛𝒆3 ⊗ 𝒆3 

2.69 Given the unit vector, 𝐰 = sin 𝛽 cos𝛼 𝐞1 + sin𝛽 sin 𝛼 𝐞2 + cos𝛽 𝐞3. 

Find its vector cross, 𝐖 ≡ (𝐰 ×) and use the formula 𝐐(𝜃) =  𝐈 +

𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) to determine the general rotation through an 

angle 𝜃. 

 
𝐖(𝛼, 𝛽) = (𝐰 ×) = (

0 −cos 𝛽 sin β sin 𝛼
cos 𝛽 0 − sin 𝛽 cos 𝛼

− sin 𝛽 sin α sin 𝛽 cos 𝛼 0
) 

𝐐(𝛼, 𝛽, 𝜃) =  𝐈 + 𝐖(𝛼, 𝛽) sin θ + 𝐖2(𝛼, 𝛽)(1 − cos 𝜃) = 

𝐐(𝛼, 𝛽, 𝜃) Row 1: 

{(1 − cos (θ))(−sin2(α)sin2(β) − cos2(β)) + 1, 
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sin(α) cos(α) sin2(β)(1 − cos(θ)) − cos(β) sin(θ) , 

sin (𝛼)sin (𝛽)sin (𝜃) + cos (𝛼)sin (𝛽)cos (𝛽)(1 − cos (𝜃))} 

𝐐(𝛼, 𝛽, 𝜃) Row 2: 

{sin (𝛼)cos (𝛼)sin2(𝛽)(1 − cos (𝜃)) + cos (𝛽)sin (𝜃), 

(1 − cos(𝜃))(−cos2(𝛼)sin2(𝛽) − cos2(𝛽)) + 1, 

sin (𝛼)sin (𝛽)cos (𝛽)(1 − cos (𝜃)) − cos (𝛼)sin (𝛽)sin (𝜃)} 

𝐐(𝛼, 𝛽, 𝜃) Row 3 

{cos (𝛼)sin (𝛽)cos (𝛽)(1 − cos (𝜃)) − sin (𝛼)sin (𝛽)sin (𝜃), 

sin(𝛼) sin(𝛽) cos(𝛽) (1 − cos(𝜃)) + cos(𝛼) sin(𝛽) sin(𝜃) , 

(1 − cos (𝜃))(−sin2(𝛼)sin2(𝛽) − cos2(𝛼)sin2(𝛽)) + 1} 

2.70 For a tensor 𝐒 and scalar t, we define the exponential function,  

exp(t𝐒) = 𝐈 + (t𝐒) +
1

2!
(t𝐒)2 +

1

3!
(t𝐒)3 + ⋯ 

Show that the transpose ofexp(t𝐒) equals exp(t𝐒)T and that det(exp(t𝐒)) =

∏ e(λit)3
i=1 = exp(t tr 𝐒). 

 The transpose of the tensor equation can be found by transposing term-by term in 

(exp(𝑡𝐒))T = 𝐈 + (𝑡𝐒)T +
1

2!
(𝑡𝐒)2T +

1

3!
(𝑡𝐒)3T + ⋯ 

which is obviously the same as exp(𝑡𝐒)T by the given definition. 

Let the spectral form of 𝐒 be such that, 

𝐒 = 𝜆1(𝐞1 ⊗ 𝐞1) + 𝜆2(𝐞2 ⊗ 𝐞2) + 𝜆3(𝐞𝟑 ⊗ 𝐞3) 

We can write the exponential series in terms of the spectral form so that, 

exp(𝑡𝐒) = 𝐈 + (𝑡𝐒) +
1

2!
(𝑡𝐒)2 +

1

3!
(𝑡𝐒)3 + ⋯ 

= 𝐈 + (𝑡𝜆1(𝐞1 ⊗ 𝐞1) + ⋯+ 𝑡𝜆3(𝐞𝟑 ⊗ 𝐞3))

+
1

2!
(𝑡𝜆1(𝐞1 ⊗ 𝐞1) + ⋯+ 𝑡𝜆3(𝐞𝟑 ⊗ 𝐞3))

2

+
1

3!
(𝑡𝜆1(𝐞1 ⊗ 𝐞1) + ⋯+ 𝑡𝜆3(𝐞𝟑 ⊗ 𝐞3))

3
+ ⋯ 
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= (1 + 𝜆1𝑡 +
(𝜆1𝑡)

2

2!
+ ⋯)(𝐞1 ⊗ 𝐞1)

+ (1 + 𝜆2𝑡 +
(𝜆2𝑡)

2

2!
+ ⋯ )(𝐞2 ⊗ 𝐞2)

+ (1 + 𝜆3𝑡 +
(𝜆3𝑡)

2

2!
+ ⋯ )(𝐞𝟑 ⊗ 𝐞3) 

= e(𝜆1𝑡)𝐞1 ⊗ 𝐞1 + e(𝜆2𝑡)𝐞2 ⊗ 𝐞2 + e(𝜆3𝑡)𝐞3 ⊗ 𝐞3 

so that the eigenvectors of exp(t𝐒) are the same as those of 𝐒 but the latter’s 

eigenvalues are e(𝜆1𝑡), e(𝜆2𝑡) and e(𝜆3𝑡). Clearly,  

det(exp(𝑡𝐒)) = ∏e(𝜆𝑖𝑡)

3

𝑖=1

= exp(∑𝑡𝜆𝑖

3

𝑖=1

) = exp(𝑡 tr 𝐒). 

2.71 For an arbitrary vector, show that the cofactor of its vector cross is its 

tensor product with itself. That is (𝐮 ×)c = 𝐮 ⊗ 𝐮 
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 First recall the result that for any tensor 𝐒, the cofactor  𝐒c = (𝐒2 − I1𝐒 + I2𝟏)T 

(𝐮 ×)2 = (𝑒𝑖𝛼𝑗𝑢𝛼𝐞𝒊 ⊗ 𝐞𝑗)(𝑒𝑙𝛽𝑚𝑢𝛽𝐞𝒍 ⊗ 𝐞𝑚) 

= 𝑒𝑖𝛼𝑗𝑒𝑙𝛽𝑚𝑢𝛼𝑢𝛽(𝐞𝒊 ⊗ 𝐞𝑚)𝛿𝑗𝑙  

= 𝑒𝑖𝛼𝑗𝑒𝑗𝛽𝑚𝑢𝛼𝑢𝛽(𝐞𝒊 ⊗ 𝐞𝑚) 

= (𝛿𝑖𝛽𝛿𝛼𝑚 − 𝛿𝑖𝑚𝛿𝛼𝛽)𝑢𝛼𝑢𝛽(𝐞𝒊 ⊗ 𝐞𝑚) 

= (𝑢𝑚𝑢𝑖 − 𝛿𝑖𝑚𝑢𝛼𝑢𝛼)𝐞𝒊 ⊗ 𝐞𝑚 

=  𝐮 ⊗ 𝐮 − (𝐮 ⋅ 𝐮)𝐈 

tr[(𝐮 ×)2] =  𝐮 ⋅ 𝐮 − 3 𝐮 ⋅ 𝐮 = − 2 𝐮 ⋅ 𝐮 

tr[(𝐮 ×)] = 0 

But from previous result, 

(𝐮 ×)c = ((𝐮 ×)2 − (𝐮 ×)tr(𝐮 ×) +
1

2
[tr2(𝐮 ×) − tr((𝐮 ×)2)]𝟏)

T

 

= (𝐮 ⊗ 𝐮 − (𝐮 ⋅ 𝐮)𝐈 − 0 +
1

2
[0 + 2 𝐮 ⋅ 𝐮]𝐈)

T

 

= (𝐮 ⊗ 𝐮 − (𝐮 ⋅ 𝐮)𝐈 − 0 + [( 𝐮 ⋅ 𝐮)]𝐈)T 

= 𝐮 ⊗ 𝐮 

2.72 If for an arbitrary unit vector 𝐞, the tensor, 𝐐(𝜃) = cos (𝜃)𝐈 + (1 −

cos (𝜃))𝐞 ⊗ 𝐞 + sin (𝜃)(𝐞 ×) where (𝐞 ×) is the vector cross of 𝐞. 

Show that 𝐐(𝜃)(𝐈 − 𝐞 ⊗ 𝐞) = cos(𝜃)(𝐈 − 𝐞 ⊗ 𝐞) + sin(𝜃)(𝐞 ×) 
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 We first observe that,  

𝐐(𝜃)(𝐞 ⊗ 𝐞) = cos(𝜃)(𝐞 ⊗ 𝐞) + (1 − cos(𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)[𝐞 × (𝐞 ⊗ 𝐞)] 

The last term vanishes immediately on account of the fact that 𝐞 ⊗ 𝐞 is a symmetric 

tensor. (The contraction of a symmetric and an antisymmetric tensor always 

vanishes). Consequently, we have, 

𝐐(𝜃)(𝐞 ⊗ 𝐞) = cos(𝜃)(𝐞 ⊗ 𝐞) + (1 − cos(𝜃))𝐞 ⊗ 𝐞 = 𝐞 ⊗ 𝐞 

which again means that 𝐐(𝜃) has no effect on 𝐞 ⊗ 𝐞 so that, 

𝐐(𝜃)(𝐈 − 𝐞 ⊗ 𝐞) = cos(𝜃)𝐈 + (1 − cos(𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)(𝐞 ×) − 𝐞 ⊗ 𝐞 

= cos(𝜃) (𝐈 − 𝐞 ⊗ 𝐞) + sin(𝜃)(𝐞 ×) 

as required. 

2.73 For an arbitrary unit vector 𝐞, show that the skew tensor, 𝐖 = (𝐞 ×) is such that 

𝐖2 ≡ (𝐞 ×)(𝐞 ×) = (𝐞 ⊗ 𝐞) − 𝐈 

 For an arbitrary vector 𝐮, 

(𝐮 ×)2 = (𝑒𝑖𝛼𝑗𝑢𝛼𝐞𝒊 ⊗ 𝐞𝑗)(𝑒𝑙𝛽𝑚𝑢𝛽𝐞𝒍 ⊗ 𝐞𝑚) 

= 𝑒𝑖𝛼𝑗𝑒𝑙𝛽𝑚𝑢𝛼𝑢𝛽(𝐞𝒊 ⊗ 𝐞𝑚)𝛿𝑗𝑙 

= 𝑒𝑖𝛼𝑗𝑒𝑗𝛽𝑚𝑢𝛼𝑢𝛽(𝐞𝒊 ⊗ 𝐞𝑚) 

= (𝛿𝑖𝛽𝛿𝛼𝑚 − 𝛿𝑖𝑚𝛿𝛼𝛽)𝑢𝛼𝑢𝛽(𝐞𝒊 ⊗ 𝐞𝑚) 

= (𝑢𝑚𝑢𝑖 − 𝛿𝑖𝑚𝑢𝛼𝑢𝛼)𝐞𝒊 ⊗ 𝐞𝑚 

=  𝐮 ⊗ 𝐮 − (𝐮 ⋅ 𝐮)𝐈 

If 𝐮 = 𝐞,  a unit vector, 𝐮 ⋅  𝐮 = 1 and 𝐖 = (𝐞 ×), 

𝐖2 ≡ (𝐞 ×)(𝐞 ×) = (𝐞 ⊗ 𝐞) − 𝐈 

2.74 Find the rotation tensor around an axis parallel to the unit vector, 𝐞 =

{−
1

√6
,

1

√6
,

2

√6
} through an angle 

𝜋

3
. 

 

The skew tensor (𝐞 ×) = 𝐖 = 

(

 
 
 

0 −√
2

3

1

√6

√
2

3
0

1

√6

−
1

√6
−

1

√6
0)

 
 
 

. 
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(𝐞 ×)2 = 𝐖2 =

(

 
 
 
 
 
 0 −√

2

3

1

√6

√
2

3
0

1

√6

−
1

√6
−

1

√6
0

)

 
 
 
 
 
 

(

 
 
 
 
 
 0 −√

2

3

1

√6

√
2

3
0

1

√6

−
1

√6
−

1

√6
0

)

 
 
 
 
 
 

=

(

 
 
 

−
5

6
−

1

6
−

1

3

−
1

6
−

5

6

1

3

−
1

3

1

3
−

1

3)

 
 
 

 

𝐐(
𝜋

6
) =  𝐈 + 𝐖sin

𝜋

6
+ 𝐖2 (1 − cos

𝜋

6
) 

=

(

 
 
 
 
 

1 −
5

6
(1 −

√3

2
) −

1

√6
+

1

6
(−1 +

√3

2
)

1

2√6
+

1

3
(−1 +

√3

2
)

1

√6
+

1

6
(−1 +

√3

2
) 1 −

5

6
(1 −

√3

2
)

1

2√6
+

1

3
(1 −

√3

2
)

−
1

2√6
+

1

3
(−1 +

√3

2
) −

1

2√6
+

1

3
(1 −

√3

2
) 1 +

1

3
(−1 +

√3

2
)

)

 
 
 
 
 

 

= (
0.888354 −0.430577 0.159465
0.385919 0.888354 0.248782

−0.248782 −0.159465 0.955341
) 

The inverse of this tensor is its transpose and its determinant is unity. Clearly, it is 

the rotation tensor we seek. 

2.75 Given the unit vector, 𝐰 = sin 𝛽 cos𝛼 𝐞1 + sin𝛽 sin 𝛼 𝐞2 + cos𝛽 𝐞3. 

Find its vector cross, 𝐖 ≡ (𝐰 ×) and use the formula 𝐐(𝜃) =  𝐈 +

𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) to determine the rotation tensor around the 

bisector of the 𝐞1 − 𝐞2 axis through an angle 𝜃. 

 
𝐖(𝛼, 𝛽) = (𝐰 ×) = (

0 −cos 𝛽 sin 𝛽 sin 𝛼
cos 𝛽 0 − sin 𝛽 cos 𝛼

− sin 𝛽 sin 𝛼 sin 𝛽 cos𝛼 0
) 
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Along the bisector of the 𝐞1 − 𝐞2 axis, 𝛼 =
𝜋

4
, 𝛽 =

𝜋

2
. Consequently, 𝐰 =

1

√2
𝐞1 +

1

√2
𝐞2. 𝐖(

𝜋

4
,
𝜋

2
) = (𝐰 ×) =

(

 
 

0 0
1

√2

0 0 −
1

√2

−
1

√2

1

√2
0

)

 
 

, 𝐖2 (
𝜋

4
,
𝜋

2
) = (

−
1

2

1

2
0

1

2
−

1

2
0

0 0 −1

) 

And the rotation tensor for this axis is, 

𝐐(𝜃) =  𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) 

=

(

 
 
 
 

1

2
(1 + cos 𝜃)

1

2
(1 − cos 𝜃)

sin 𝜃

√2
1

2
(1 − cos 𝜃)

1

2
(1 + cos 𝜃) −

sin 𝜃

√2

−
sin 𝜃

√2

sin 𝜃

√2
cos 𝜃

)

 
 
 
 

 

2.76 

Show that 𝐐 =

(

 
 

3

4

√3

4
1/2

√3

4

1

4

−√3

2

−
1

2

√3

2
0 )

 
 

 is an orthogonal tensor. Is it proper 

orthogonal? Compute the tensor 𝐐𝐅𝐐T where 𝐅 = (
1 0 0
0 2 0
0 0 3

). Find 

the eigenvectors and eigenvalues of the tensor 𝐅. 
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2.77 Write the characteristic equation of the Tensor whose components 

are(
6 5 4
5 6 4
4 4 3

). Show that one of its eigenvalues equals 1 and there is 

a corresponding eigenvector, {1 −1 0} 
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2.78 Use the fact that the tensor 𝐐(𝜃) = 𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) 

where 𝐖 ≡ (𝐞 ×) - the vector cross of the unit vector, rotates every 

vector about the axis of 𝐞 by the angle 𝜃 to find the tensor that rotates 

{𝐞1, 𝐞2, 𝐞3} to {𝐞𝟐, −𝐞1, 𝐞3}. 

 Clearly, the rotation axis here is the unit vector 𝒆3 and the angle of rotation is 
𝜋

2
. 

Consequently, since 𝐞3 = {0,0,1},  

𝐖 ≡ (𝐞3 ×) = (
0 −1 0
1 0 0
0 0 0

), and 𝐖2 = (
−1 0 0
0 −1 0
0 0 0

) 

𝐐(
𝜋

2
) =  𝐈 + 𝐖sin

𝜋

2
+ 𝐖2 (1 − cos

𝜋

2
) 

= (
1 0 0
0 1 0
0 0 1

) + (
0 −1 0
1 0 0
0 0 0

) + (
−1 0 0
0 −1 0
0 0 0

) 

= (
0 −1 0
1 0 0
0 0 1

) 

This same tensor can be found directly by recognizing that the tensor, 𝐐 = 𝛏1 ⊗

𝐞1 + 𝛏2 ⊗ 𝐞2 + 𝛏3 ⊗ 𝐞3 rotates {𝐞1, 𝐞2, 𝐞3} to {𝛏1, 𝛏2, 𝛏3} so that the tensor we 

seek is, 

𝐐 = 𝐞2 ⊗ 𝐞1 − 𝐞1 ⊗ 𝐞2 + 𝐞3 ⊗ 𝐞3 = (
0 −1 0
1 0 0
0 0 1

) 
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2.79 Given that  𝐞1 = {1,0,0}, 𝐞2 = {0,1,0}, 𝐞3 = {0,0,1}, 𝐞4 =

{
√3

4
,
1

4
,
√3

2
} , 𝐞5 = {

3

4
,
√3

4
, −

1

2
} , 𝐞6 = {−

1

2
,
√3

2
, 0}, Find the tensor that 

transforms from {𝐞𝟐, 𝐞1, −𝐞3} to {𝐞4, 𝐞5, 𝐞6}. 

 Tensor, 𝛏1 ⊗ 𝐞1 + 𝛏2 ⊗ 𝐞2 + 𝛏3 ⊗ 𝐞3 rotates {𝐞1, 𝐞2, 𝐞3} to {𝛏1, 𝛏2, 𝛏3}. The tensor 

we seek is, 

𝐐 = 𝐞4 ⊗ 𝐞2 + 𝐞5 ⊗ 𝐞1 − 𝐞6 ⊗ 𝐞3 

=

(

 
 
 
 

3

4

√3

4

1

2

√3

4

1

4
−

√3

2

−
1

2

√3

2
0 )

 
 
 
 

 

2.80 If for an arbitrary unit vector 𝐞, the tensor, 𝐐(𝜃) = cos (𝜃)𝐈 + (1 −

cos (𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)(𝐞 ×) where (𝐞 ×) ≡ 𝐖 is the vector cross of 

𝐞. Show that 𝐐(𝜃) = 𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) [Note that 𝐞 ⊗

𝐞 = 𝐖2 + 𝐈] 

 Using the noted result,  

𝐐(𝜃) = cos 𝜃 𝐈 + (1 − cos 𝜃)𝐞 ⊗ 𝐞 + sin 𝜃 (𝐞 ×) 

= cos 𝜃 𝐈 + (1 − cos 𝜃)(𝐖2 + 𝐈) + 𝐖sin 𝜃 

= 𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) 

 

 

2.81 Let the spectral form of the tensor 𝐒 = 𝜆1𝐞𝟏 ⊗ 𝐞𝟏 + 𝜆2𝐞𝟐 ⊗ 𝐞𝟐 +

𝜆3𝐞3 ⊗ 𝐞3 where {𝐞1, 𝐞2, 𝐞3} form an orthonormal set. For a positive 

integer 𝑛, find the spectral form of 𝐒𝑛 and that of 𝐒−1. 

 𝐒2 = (𝜆1𝐞𝟏 ⊗ 𝐞𝟏 + 𝜆2𝐞𝟐 ⊗ 𝐞𝟐 + 𝜆3𝐞3 ⊗ 𝐞3)(𝜆1𝐞𝟏 ⊗ 𝐞𝟏 + 𝜆2𝐞𝟐 ⊗ 𝐞𝟐 + 𝜆3𝐞3

⊗ 𝐞3) 
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= (𝜆1𝐞𝟏 ⊗ 𝐞𝟏)(𝜆1𝐞𝟏 ⊗ 𝐞𝟏) + (𝜆1𝐞𝟏 ⊗ 𝐞𝟏)(𝜆2𝐞𝟐 ⊗ 𝐞𝟐)

+ (𝜆1𝐞𝟏 ⊗ 𝐞𝟏)(𝜆3𝐞3 ⊗ 𝐞3) + ⋯+ (𝜆3𝐞3 ⊗ 𝐞3)(𝜆3𝐞3 ⊗ 𝐞3) 

= λ1
2𝐞𝟏 ⊗ 𝐞𝟏 + λ2

2𝐞𝟐 ⊗ 𝐞𝟐 + λ3
2𝐞3 ⊗ 𝐞3 

repeated multiplication leads to, 

𝐒𝑛 = 𝜆1
𝑛𝐞𝟏 ⊗ 𝐞𝟏 + 𝜆2

𝑛𝐞𝟐 ⊗ 𝐞𝟐 + 𝜆3
𝑛𝐞3 ⊗ 𝐞3 

2.82 Show that a cross product can only happen in three dimensions 

 Every vector has a skew tensor to which it is axial. A vector product is the same 

thing as the product of the axial vector. For both operations to be possible, the 

number of independent coefficients in both must equal: 

The skew tensor expansion,  

𝐖 = (𝛏𝑖 ⋅ 𝐖𝛏𝑗)𝛏𝑖 ⊗ 𝛏𝑗 

Gives 
𝑛(𝑛−1)

2
 independent terms. A vector in 𝑛 dimensional space is defined 

by 𝑛 independent terms. An axial vector can only exist in a space where these are 

equal. We must solve the equation, 

𝑛(𝑛 − 1)

2
= 𝑛 

Apart from the trivial solution zero, we have 𝑛 = 3. 

2.83 For two non-singular tensors, 𝐒 and 𝐓, show that det 𝐒𝐓 = det 𝐒 det 𝐓  

 Given three linearly independent vectors 𝐚, 𝐛 and 𝐜, since the scalar products are 

all scalar quantities, we can multiply or divide by them like regular scalars. Let the 

products, 𝐓𝐚 = 𝐮, 𝐓𝐛 = 𝐯 and 𝐓𝐜 = 𝐰. It follows that 𝐮, 𝐯 and 𝐰 are also linearly 

independent since 𝐓 is non-singular. Hence 

det 𝐒𝐓 =
[𝐒𝐓𝐚, 𝐒𝐓𝐛, 𝐒𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

=
[𝐒(𝐓𝐚), 𝐒(𝐓𝐛), 𝐒(𝐓𝐜)]

[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

=
[𝐒𝐮, 𝐒𝐯, 𝐒𝐰]

[𝐮, 𝐯, 𝐰]

[𝐓𝐚, 𝐓𝐛, 𝐓𝐜]

[𝐚, 𝐛, 𝐜]
 

= det 𝐒 det 𝐓 
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2.84 Given that the skew tensor (𝐞 ×) ≡ 𝐖, and that 𝐐(𝜃) ≡  𝐈 +

𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) is the rotation along the axis 𝐞 through the 

angle 𝜃, Find out if the set {𝐈,𝐖,𝐖2} is linearly independent. 

 First note that 𝐖 is antisymmetric but 𝐖2 = (𝐞 ⊗ 𝐞) − 𝐈 is the linear combination 

of two symmetric tensors, and therefore symmetric. Assume that {𝐈,𝐖,𝐖2} to be 

linearly dependent. It means we can find 𝛼, 𝛽 and 𝛾 not all equal to zero such that  

𝛼𝐈 + 𝛽𝐖 + 𝛾𝐖2 = 0  

Since 𝛼, 𝛽 and 𝛾 are not all equal to zero, we assume in particular that 𝛽 ≠ 0. 

Consequently, we can write, 

𝐖 = −
𝛼

𝛽
𝐈 −

𝛾

𝛽
𝐖2 

In which we have expressed the anti-symmetric tensor 𝐖 as a linear combination 

of two symmetric tensors! A contradiction! We can conclude that the set {𝐈,𝐖,𝐖2} 

is linearly independent. 

2.85 Given that every rotation tensor 𝐐 can be expressed in terms of the 

skew tensor 𝐖(≡ 𝐞 ×) as a function of the rotation angle 𝜃: 𝐐(𝜃) =

𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃) and that {𝐈,𝐖,𝐖2} is linearly 

independent set of tensors, show that, {𝐈, 𝐐, 𝐐T} is also a linearly 

independent set. 

 Assume that the tensor set, {𝐈, 𝐐, 𝐐T} is linearly dependent. It means we can find 

𝛼, 𝛽 and 𝛾 not all equal to zero such that  

𝛼𝐈 + 𝛽𝐐 + 𝛾𝐐T = 0 

Since 𝐐(𝜃) = 𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃), we substitute and obtain, 

𝛼𝐈 + 𝛽𝐐 + 𝛾𝐐T = 

=  𝛼𝐈 + 𝛽(𝐈 + 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃)) + 𝛾(𝐈 − 𝐖sin 𝜃 + 𝐖2(1 − cos 𝜃)) 

= (𝛼 +  𝛽 + 𝛾)𝐈 + ( 𝛽 − 𝛾) 𝐖sin 𝜃 + ( 𝛽 + 𝛾)𝐖2(1 − cos 𝜃) 

= 𝑎𝐈 + 𝑏𝐖 + 𝑐𝐖2 = 0 
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if we write (𝛼 +  𝛽 + 𝛾) = 𝑎, ( 𝛽 − 𝛾) sin 𝜃 = 𝑏 and ( 𝛽 + 𝛾)(1 − cos 𝜃) = 𝑐 

thereby contradicting the well-known fact that {𝐈,𝐖,𝐖2} is a linearly independent 

set. 

2.86 If for an arbitrary unit vector 𝐞, the tensor, 𝐐(𝜃) = cos(𝜃)𝐈 + (1 −

cos(𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)(𝐞 ×) where (𝐞 ×) is the vector cross of 𝐞. 

Given that for any vector 𝐮, the vector 𝐯 ≡  𝐐(𝜃) 𝐮 has the same 

magnitude as 𝐮, and that, for any scalar 𝛼, 𝐐(𝜃)(𝛼𝐞) = 𝛼𝐞, What is the 

physical meaning of 𝐐(𝜃)? 

 𝐐(𝜃) is a rotation about the vector 𝒆 counterclockwise through an angle 𝜃. It 

therefore does not alter the magnitude or direction of any vector in the direction 

of 𝒆; for any other vector, it has no effect on the magnitude but affects direction. 

2.87 Define 𝐒𝐲𝐦 as the set of all symmetric tensors. Show that 𝐒𝐲𝐦 is 

invariant under 𝔾 where 𝔾 is the proper orthogonal group of all 

rotations, in the sense that for any tensor 𝐀 ∈ 𝐒𝐲𝐦 every 𝐐 ∈ 𝔾 ⇒

𝐐𝐀𝐐𝐓 ∈ 𝐒𝐲𝐦. 

 Since we are given that 𝐀 ∈ Sym, we inspect the tensor 𝐐𝐀𝐐T. Its transpose is, 

(𝐐𝐀𝐐T)T = (𝐐T)T𝐀𝐐T = 𝐐𝐀𝐐T. So that 𝐐𝐀𝐐T is symmetric and therefore 

𝐐𝐀𝐐T ∈ Sym. so that the transformation is invariant. 

2.88 Define 𝕃+as the set of all tensors with a positive determinant. Show 

that 𝕃+ is invariant under G, the proper orthogonal group of all 

rotations, in the sense that for any tensor 𝐀 ∈ 𝕃+ 𝐐 ∈ 𝐆 ⇒ 𝐐𝐀𝐐T ∈

𝕃+. 

 Since we are given that 𝐀 ∈ 𝕃+
, the determinant of 𝐀 is positive. Consider 

det (𝐐𝐀𝐐T). We observe the fact that the determinant of a product of tensors is 

the product of their determinants (proved above). We see clearly that, 
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det(𝐐𝐀𝐐T) = det(𝐐) × det(𝐀) × det(𝐐T). Since 𝐐 is a rotation, det(𝐐) =

det(𝐐T) = 1. Consequently, we see that,  

det(𝐐𝐀𝐐T) = det(𝐐) × det(𝐀) × det(𝐐T) = det(𝐐𝐀𝐐T) 

= 1 × det(𝐀) ×  1 = det(𝐀) 

Hence the determinant of 𝐐𝐀𝐐T is also positive and therefore 𝐐𝐀𝐐T ∈ 𝕃+
 

2.89 If for an arbitrary unit vector 𝐞, the tensor, 𝐐(𝜃) = cos(𝜃)𝐈 + (1 −

cos(𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)(𝐞 ×) where (𝐞 ×) is the vector cross of 𝐞. 

Show that for any vector 𝐮, the vector 𝐯 ≡  𝐐(𝜃) 𝐮 has the same 

magnitude as 𝐮. What is the physical meaning of 𝐐(𝜃)? 

 Let the scalar 𝑥 ≡ 𝐞 ⋅ 𝐮 be the projection of 𝐮 onto the unit vector 𝐞. The square of 

the magnitude of 𝐯 is |𝐯|𝟐 

=  𝐯 ⋅  𝐯 = ( cos𝜃(𝟏𝐮) + (1 − cos𝜃)(𝐞 ⊗ 𝐞)𝐮 + sin𝜃(𝐞 × 𝐮))

⋅ ( cos𝜃(𝟏𝐮) + (1 − 𝑐𝑜𝑠𝜃)(𝐞 ⊗ 𝐞)𝐮 + sin𝜃(𝐞 × 𝐮)) ⋅ 

= (𝐮 cos𝜃 + (1 − cos𝜃)𝑥𝐞 + sin𝜃(𝐞 × 𝐮))
2
 

= (𝐮 cos𝜃) ⋅ (𝐮 cos𝜃 + (1 − cos𝜃)𝑥𝐞 + sinθ(𝐞 × 𝐮)) 

+𝑥𝐞 ⋅ (𝐮 cos𝜃 + (1 − cos𝜃)𝑥𝐞 + sin𝜃(𝐞 × 𝐮))(1 − cos𝜃) 

+(𝐞 × 𝐮) ⋅ (𝐮 cos𝜃 + (1 − cos𝜃)𝑥𝐞 + sin𝜃(𝐞 × 𝐮))sin𝜃 

= 𝐮𝟐 cos2 𝜃 + 2(cos 𝜃 − cos2 𝜃)𝑥2 +  2(𝐞 × 𝐮 ⋅ 𝐮)sin𝜃 cos𝜃

+ (1 − cos𝜃)2𝑥2 + 2𝑥(𝐞 × 𝐮 ⋅ 𝐞)(1 − cos𝜃) sin𝜃

+ sin2 𝜃 (𝐞 × 𝐮)2 

= 𝐮𝟐 cos2 𝜃 + 2(cos𝜃 − cos2 𝜃)x2 +  2(𝐞 × 𝐮 ⋅ 𝐮)sin𝜃 cos𝜃

+ (1 − cos𝜃)2x2 + 2𝑥(𝐞 × 𝐮 ⋅ 𝐞)(1 − cos𝜃) sin𝜃

+ sin2 𝜃 (𝐮2 − 𝑥2) 

= 𝐮𝟐(cos2 𝜃 + sin2 𝜃) + 𝑥2[2(cos𝜃 − cos2 𝜃) + (1 − cos𝜃)2 − sin2 𝜃] 

= 𝐮𝟐 

As the term in square brackets vanish when expanded. 
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2.90 If for an arbitrary unit vector 𝐞, the tensor, 𝐐(𝜃) = cos(𝜃)𝐈 + (1 −

cos(𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)(𝐞 ×) where (𝐞 ×) is the vector cross of 𝐞. 

Show that for arbitrary 0 < 𝛼, 𝛽 ≤ 2𝜋, that 𝐐(𝛼 + 𝛽) = 𝐐(𝛼)𝐐(𝛽). 

 It is convenient to write 𝐐(𝛼) and 𝐐(𝛽) in terms of their 𝑖, 𝑗 components; we 

assume that the unit vector 𝐞 = (𝑥1, 𝑥2, 𝑥3): 

[𝑸(𝛼)]𝑖𝑗 = cos𝛼 𝛿𝑖𝑗 + (1 − cos𝛼)𝑥𝑖𝑥𝑗 − sin𝛼 𝑒𝑖𝑗𝑘𝑥𝑘 

Consequently, we can write for the product 𝐐(𝛼)𝐐(𝛽), 

[𝑸(𝛼)𝑸(𝛽)]𝑖𝑗 = [𝑸(𝛼)]𝑖𝑘[𝑸(𝛽)]𝑘𝑗 = 

= [𝑐𝑜𝑠 𝛼 𝛿𝑖𝑘 + (1 − 𝑐𝑜𝑠 𝛼)𝑥𝑖𝑥𝑘 − 𝑠𝑖𝑛 𝛼 𝜖𝑖𝑘𝑙𝑥𝑙][𝑐𝑜𝑠 𝛽 𝛿𝑘𝑗 + (1 − 𝑐𝑜𝑠 𝛽)𝑥𝑘𝑥𝑗

− 𝑠𝑖𝑛 𝛽 𝜖𝑘𝑗𝑛𝑥𝑛] 

= 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝛿𝑖𝑘𝛿𝑘𝑗 + 𝑐𝑜𝑠 𝛼 (1 − 𝑐𝑜𝑠 𝛽)𝛿𝑖𝑘𝑥𝑘𝑥𝑗 − 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 𝛿𝑖𝑘𝜖𝑘𝑗𝑛𝑥𝑛

+ (1 − 𝑐𝑜𝑠 𝛼) 𝑐𝑜𝑠 𝛽 𝑥𝑖𝑥𝑘𝛿𝑘𝑗 + (1 − 𝑐𝑜𝑠 𝛼)(1 − 𝑐𝑜𝑠 𝛽)𝑥𝑖𝑥𝑘
2𝑥𝑗

− (1 − 𝑐𝑜𝑠 𝛼) 𝑠𝑖𝑛 𝛽 𝑥𝑖𝑥𝑘𝑥𝑛𝜖𝑘𝑗𝑛 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝜖𝑖𝑘𝑙𝑥𝑙𝛿𝑘𝑗

− 𝑠𝑖𝑛 𝛼 (1 − 𝑐𝑜𝑠 𝛽)𝜖𝑖𝑘𝑙𝑥𝑙𝑥𝑘𝑥𝑗 + 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 𝜖𝑖𝑘𝑙𝜖𝑘𝑗𝑛𝑥𝑛𝑥𝑙  

= 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝛿𝑖𝑗 + 𝑐𝑜𝑠 𝛼 (1 − 𝑐𝑜𝑠 𝛽)𝑥𝑖𝑥𝑗 − 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 𝜖𝑖𝑗𝑛𝑥𝑛

+ (1 − 𝑐𝑜𝑠 𝛼) 𝑐𝑜𝑠 𝛽 𝑥𝑖𝑥𝑗 + (1 − 𝑐𝑜𝑠 𝛼)(1 − 𝑐𝑜𝑠 𝛽)𝑥𝑖𝑥𝑗

− (1 − 𝑐𝑜𝑠 𝛼) 𝑠𝑖𝑛 𝛽 𝑥𝑖𝑥𝑘𝑥𝑛𝜖𝑘𝑗𝑛 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝜖𝑖𝑗𝑙𝑥𝑙

− 𝑠𝑖𝑛 𝛼 (1 − 𝑐𝑜𝑠 𝛽)𝜖𝑖𝑘𝑙𝑥𝑙𝑥𝑘𝑥𝑗 + 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 𝜖𝑖𝑘𝑙𝜖𝑘𝑗𝑛𝑥𝑛𝑥𝑙  

= 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 𝛿𝑖𝑗 + 𝑐𝑜𝑠 𝛼 (1 − 𝑐𝑜𝑠 𝛽)𝑥𝑖𝑥𝑗 − 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 𝜖𝑖𝑗𝑛𝑥𝑛

+ (1 − 𝑐𝑜𝑠 𝛼) 𝑐𝑜𝑠 𝛽 𝑥𝑖𝑥𝑗 + (1 − 𝑐𝑜𝑠 𝛼)(1 − 𝑐𝑜𝑠 𝛽)𝑥𝑖𝑥𝑗

− (1 − 𝑐𝑜𝑠 𝛼) 𝑠𝑖𝑛 𝛽 𝑥𝑖𝑥𝑘𝑥𝑛𝜖𝑘𝑗𝑛 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝜖𝑖𝑗𝑙𝑥𝑙

− 𝑠𝑖𝑛 𝛼 (1 − 𝑐𝑜𝑠 𝛽)𝜖𝑖𝑘𝑙𝑥𝑙𝑥𝑘𝑥𝑗 + 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 (𝛿𝑙𝑗𝛿𝑖𝑛 − 𝛿𝑙𝑛𝛿𝑗𝑖)𝑥𝑛𝑥𝑙  

= (𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽)𝛿𝑖𝑗 + [1 − (𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽)]𝑥𝑖𝑥𝑗

− [(𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽)]𝜖𝑖𝑗𝑛𝑥𝑛 

= [𝐐(𝛼 + 𝛽)]𝑖𝑗 

With the boxed terms vanishing on account of antisymmetric contraction with 

symmetric object.  
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2.91 If for an arbitrary unit vector 𝐞, the tensor, 𝐐(𝜃) = cos(𝜃)𝐈 + (1 −

cos(𝜃))𝐞 ⊗ 𝐞 + sin(𝜃)(𝐞 ×) where (𝐞 ×) is the vector cross of 𝐞. 

Show that . 𝐐(𝜃) is a periodic tensor function with period 2𝜋. [Hint: 

𝐐(𝛼 + 𝛽) = 𝐐(𝛼)𝐐(𝛽) 

 Since 𝐐(𝛼 + 𝛽) = 𝐐(𝛼)𝐐(𝛽) we can write that 𝐐(𝛼 + 2𝜋) = 𝐐(𝛼)𝐐(2𝜋). But a 

direct substitution shows that, 𝐐(0) =  𝐐(2𝜋) = 𝐈. We therefore have that, 

𝐐(𝛼 + 2𝜋) = 𝐐(𝛼)𝐐(2𝜋) =  𝐐(𝛼) 

which completes the proof. The above results show that 𝐐(𝛼) is a rotation along 

the unit vector 𝐞 through an angle 𝛼. 

2.92 Given that 𝐐 is an orthogonal tensor, show that the principal invariants 

of a tensor 𝑆 satisfy 𝐼𝑘(𝐐𝐒𝐐T) = 𝐼𝑘(𝐒), 𝑘 = 1,2, or 3, that is, Rotations 

and orthogonal transformations do not change the Invariants. 

 𝐼1(𝐐𝐒𝐐T) =  tr(𝐐𝐒𝐐T) 

=  tr(𝐐T𝐐𝐒) =  tr(𝐒) 

= 𝐼1(𝐒) 

𝐼2(𝐐𝐒𝐐T) =
1

2
[tr2(𝐐𝐒𝐐T) − tr(𝐐𝐒𝐐T𝐐𝐒𝐐T)] 

=
1

2
[𝐼1

2(𝐒) − tr(𝐐𝐒𝟐𝐐T)] 

=
1

2
[𝐼1

2(𝐒) − tr(𝐐T𝐐𝐒𝟐)] 

=
1

2
[𝐼1

2(𝐒) − tr(𝐒𝟐)] = 𝐼2(𝐒) 

𝐼3(𝐐𝐒𝐐T) = det(𝐐𝐒𝐐T) 

= det(𝐐T𝐐𝐒) = det(𝐒) 

= 𝐼3(𝐒) 

Hence 𝐼𝑘(𝐐𝐒𝐐T) = 𝐼𝑘(𝐒),   𝑘 = 1,2,  𝑜𝑟 3 

2.93 Show that if 𝛀 is skew, its axial vector 𝛚 is such that |𝛀|2 = 2𝛚2 
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 |𝛀|2 = 𝛀:𝛀 = (𝛚 ×): (𝛚 ×) 

= (𝑒𝑖𝑘𝑗𝜔𝑘𝐞𝑖 × 𝐞𝑗): (𝑒𝛼𝛾𝛽𝜔𝛾𝐞𝛼 × 𝐞𝜷) 

= 𝑒𝑖𝑘𝑗𝜔𝑘𝑒𝛼𝛾𝛽𝜔𝛾𝛿𝑖𝛼𝛿𝑗𝛽 

= 2𝛿𝑘𝛾𝜔𝑘𝜔𝛾 = 2𝛚2 

2.94 For an arbitrary tensor 𝐮, the vector cross is given as, 𝐮 ×.Use the 

result det(𝐒 + 𝐓) = det(𝐒) + tr(𝐓c𝐒T) + tr(𝐒c𝐓T) + det(𝐓) to show 

that det(𝐒 + 𝐮 ×) = det 𝐒 (1 + (𝐮 ×)𝐒−1) + (𝐮 ⊗ 𝐮): 𝐒. 

 𝐓 → 𝐮 ×, then 𝐓c = 𝐮 ⊗ 𝐮 and 𝐓T = − 𝐮 × and det(𝐮 ×) = 0. 

det(𝐒 + 𝐮 ×) = det 𝐒 + tr((𝐮 ⊗ 𝐮)𝐒T) − tr(𝐒c(𝐮 ×)) 

= det 𝐒 + (𝐮 ⊗ 𝐮): 𝐒𝐓 + (𝐮 ×): 𝐒c 

2.95 Use the result det(𝐒 + 𝐮 ×) = det 𝐒 + (𝐮 ⊗ 𝐮): 𝐒𝐓 + (𝐮 ×): 𝐒c to show that for 

a skew tensor, det (𝐈 + 𝛀) = 1 +
1

2
|𝛀|2 

 Note that for any skew tensor, 𝛀 and its axial vector 𝐮  

|𝛀|2 = 2𝐮2 

  In the given result, let 𝐒 = 𝐈, and let 𝐮 be the axial vector of 𝛀. Then, 

det(𝐈 + 𝛀) = det 𝐈 + (𝐮 ⊗ 𝐮): 𝐈 + 𝛀: 𝐈 

As the identity tensor is both self-transpose and self-cofactor. Simplifying, 

det(𝐈 + 𝛀) = 1 + tr (𝐮 ⊗ 𝐮) + tr 𝛀 

= 1 +  𝐮 ⋅ 𝐮 

= 1 +
1

2
|𝛀|2 

Using the fact that a skew tensor is necessarily traceless. 

2.96 Show that operating with the transpose of a rotation gives the 

coordinates of a fixed vector in rotated coordinates. 
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 In the figure shown, Let the original coordinates be 𝐎 𝑥1 𝑥2 𝑥3 and imagine that we 

are leaving the vector 𝐎𝐏 which is presented as 𝐯 = 𝑎𝑖𝐞𝑖 where 𝐞1, 𝐞2and 𝐞3 are 

unit vectors along 𝐎 𝑥1 𝑥2 𝑥3 If the coordinates are  

rotated to 𝐎 𝑦1 𝑦2 𝑦3  such that the same vector now becomes 𝐯 = 𝑏𝑖𝛏𝑖 where 𝛏1, 

𝛏2and 𝛏3 are unit vectors along the 𝐎 𝑦1 𝑦2 𝑦3 system. These will be the new 

coordinates after the rotation of coordinates to this point.  

Clearly, 𝐎𝐀 = 𝑎1 and 𝐎𝐁 = 𝑎2. We need to find the lengths , 𝐎𝐀′′ = 𝑏1 and 

𝐎𝐁′′ = 𝑏2. We drop perpendicular lines to the lines 𝐎 𝑦1 and 𝐎 𝑦2 meeting them 

at 𝐀′′ and 𝐁′′respectively. It is clear that 𝐎𝐀′ = 𝑎1 cos 𝛼. Furthermore, 𝐀𝐀′′′ =

𝑎2 sin 𝛼 because 𝐏𝐀 is the hypotenuse 

of a right angled triangle 𝐀𝐏𝐀′′′with 

angle 𝛼 at  𝐀𝐏𝐀′′′ And it is easy to see 

that 𝐀𝐀′𝐀′′𝐀′′′ is a rectangle. Its 

opposite sides are equal, consequently, 

the length  

𝐎𝐀′′ = 𝑏1 = 𝑎1 cos 𝛼 + 𝑎2 sin 𝛼. 

= 𝑎1(𝛏1 ⋅ 𝐞1) + 𝑎2(𝛏1 ⋅ 𝐞2) 

By the same arguments, noting that 𝐁𝐁′𝐁′′𝐁′′′ is also a rectangle. If we rotate from 

the coordinates 𝐎 𝑥1 𝑥2 𝑥3 to 𝐎 𝑦1 𝑦2 𝑦3, the rotation vector is:𝐑 = 𝛏𝑖 ⊗ 𝐞𝑖. We 

take the transpose of this tensor and writing the unit vector with a prime because 

we are actually moving 𝐎 𝑥1 𝑥2 𝑥3 to 𝐎 𝑦1 𝑦2 𝑦3 while 

keeping the vector 𝐯 unchanged. Hence, we have: 

𝐑T𝐯 = (𝐞𝑗 ⊗ 𝛏𝑗)𝑎𝑖𝐞𝑖 

= 𝑎𝑖𝐞𝑗(𝛏𝑗 ⋅ 𝐞𝑖) 

Expanding for this two-dimensional case, we have: 

𝐑T𝐯 = 𝐞1(𝑎1(𝛏1 ⋅ 𝐞1) + 𝑎2(𝛏1 ⋅ 𝐞2)) + 𝐞2(𝑎1(𝛏2 ⋅ 𝐞1) + 𝑎2(𝛏2 ⋅ 𝐞2)) 

as expectedt. 
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2.97 Suppose that 𝐔 and 𝐂 are symmetric, positive-definite tensors with 

𝐔2 = 𝐂, write the invariants of 𝐂 in terms of 𝐔 

𝐼1(𝐂) =  tr(𝐔2) =  𝐼1
2(𝐔) − 2𝐼2(𝐔) 

 By the Cayley-Hamilton theorem, 

𝐔3 − I1𝐔
2 + I2𝐔 − I3𝐈 = 𝟎 

which contracted with 𝐔 gives, 

𝐔4 − I1𝐔
3 + I2𝐔

2 − I3𝐔 = 𝟎 

so that, 

𝐔4 = I1𝐔
3 − I2𝐔

2 + I3𝐔 

and  

tr(𝐔4) = 𝐼1tr(𝐔
3) − 𝐼2tr(𝐔

2) + 𝐼3tr(𝐔) 

= 𝐼1(𝐔)(𝐼1
3(𝐔) − 3𝐼1(𝐔)𝐼2(𝐔) + 3𝐼3(𝐔)) − 𝐼2(𝐔)(𝐼1

2(𝐔) − 2𝐼2(𝐔))

+ 𝐼1(𝐔)𝐼3(𝐔) 

= 𝐼1
4(𝐔) − 4𝐼1

2(𝐔)𝐼2(𝐔) + 4𝐼1(𝐔)𝐼3(𝐔) + 2𝐼2
2(𝐔) 

But, 

𝐼2(𝐂) =
1

2
[𝐼1

2(𝐂) − tr(𝐂2)] =
1

2
[𝐼1

2(𝐔2) − tr(𝐔4)] =
1

2
[tr2(𝐔2) − tr(𝐔4)] 

=
1

2
[(𝐼1

2(𝐔) − 2𝐼2(𝐔))
2
− tr(𝐔4)] 

=
1

2
[ 𝐼1

4(𝐔) − 4𝐼1
2(𝐔)𝐼2(𝐔) + 4𝐼2

2(𝐔)

− ( 𝐼1
4(𝐔) − 4𝐼1

2(𝐔)𝐼2(𝐔) + 4𝐼1(𝐔)𝐼3(𝐔) + 2𝐼2
2(𝐔))] 

The boxed items cancel out so that, 

𝐼2(𝐂) = 𝐼2
2(𝐔) − 2𝐼1(𝐔)𝐼3(𝐔) 

as required. 

𝐼3(𝐂) = det(𝐂) = det(𝐔2) = (det(𝐔))2 = 𝐼3
2(𝐔) 

2.98 A tensor function 𝚽(𝐀) in the domain 𝐴 (𝑖𝑒, 𝐀 ∈ 𝐴) is said to be 

invariant under G if for every 𝐐 ∈ G, 𝚽(𝐐𝐀𝐐T) =  𝐐𝚽(𝐀)𝐐T. Show 
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that if 𝚽1(𝐀) and 𝚽2(𝐀) are both invariant under G, then the product 

function 𝚽1(𝐀)𝚽2(𝐀) is also invariant under G. 

 𝚽1(𝐀) and 𝚽2(𝐀) are both invariant under G, therefore, 𝚽1(𝐐𝐀𝐐T) =

 𝐐𝚽1(𝐀)𝐐T and 𝚽2(𝐐𝐀𝐐T) =  𝐐𝚽2(𝐀)𝐐T. Clearly, 

𝚽1(𝐐𝐀𝐐T)𝚽2(𝐐𝐀𝐐T) =  𝐐𝚽1(𝐀)𝐐T 𝐐𝚽2(𝐀)𝐐T 

=  𝐐𝚽1(𝐀)𝚽2(𝐀)𝐐T 

Which obviously shows that 𝚽1(𝐀)𝚽2(𝐀) satisfies the conditions for invariance 

under G. 

2.99 Define Psym as the set of all symmetric, positive definite tensors. Show 

that Psym is invariant under 𝔾 where is the proper orthogonal group of 

all rotations, in the sense that for any tensor A ∈ Psym 𝐐 ∈ G𝔾 ⇒

𝐐𝐀𝐐T ∈ Psym. (G285) 

 Since we are given that 𝐀 ∈ Psym, it means its characteristic equation has roots 

that are all positive. This equation can be written as  

|𝐀 − λ𝐈| = 0 

The eigenvalues are the roots of the above equation. We now try to find the 

characteristic equation of the tensor 𝐐𝐀𝐐T. Following the above equation, if 𝛼 is 

an eigenvalue of 𝐐𝐀𝐐T,  then,  

|𝐐𝐀𝐐T − 𝛼𝐈| = |𝐐𝐀𝐐T − 𝛼𝐐𝐈𝐐T| 

= |𝐐(𝐀 − 𝛼𝐈)𝐐T| 

= det(𝐐) × det(𝐀 − 𝛼𝐈) × det(𝐐T) 

= det(𝐀 − 𝛼𝐈) = 0. 

Clearly, 𝐐𝐀𝐐T has the same characteristic equations as 𝐀 and hence they have the 

same eigenvalues. Since 𝐀 ∈ Psym we have reached the same conclusion 

that 𝐐𝐀𝐐T ∈ Psym. 
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2.100  

  

 

Higher-Order Tensors 

Triads and tetrads define tensors of order three and four. This section formalizes certain issues 

on tensors of orders higher than two – beyond their basis tensors. Apart from tensors obtained 

from direct products of first and second order tensors, or from spatial derivatives (Frechet 

derivatives) perhaps the only important tensor of the third order is the alternating tensor we 

have accompanied in one way or another, from the d=beginning of the book. They were also 

useful in defining the curls of vectors and tensors. 

Fourth Order Tensors 

Definition 

A fourth-order tensor is a linear transformation of a second-order tensor to a 

second-order tensor. 

End of Definition 

Given a second order tensor 𝐀, the transformation, 

𝕋𝐀 = 𝐁 

Such that 𝐁 is also a second order tensor makes 𝕋 a fourth-order tensor provided the 

transformation is linear; that is, for 𝛼, 𝛽 ∈ ℝ, and 𝐀,𝐁 ∈ 𝕃,  

𝕋(𝛼𝐀 +  𝛽𝐁) = 𝛼𝕋𝐀 + 𝛽𝕋𝐁. 

We can form second-order bases for fourth-order tensors like the bases for second-order tensors. 

In order to do that, we define covariant and contravariant second-order bases as follows: From 

the base vectors 𝐠𝑖 and 𝐠𝑗 we define the contravariant tensor bases, 𝐆𝑖𝑗 ≡ 𝐠𝑖 ⊗ 𝐠𝑗 . The 

covariant tensor bases are similarly defined from the covariant base vectors so that, 𝐆𝑖𝑗 ≡ 𝐠𝑖 ⊗

𝐠𝑗.  

It is also necessary to define the behavior of familiar products as they apply to second order bases 

and tensors. Following the definition of the dyad product from its interactions with vectors, we 
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introduce two products for second order tensors that create fourth order tensors: The Dyadic 

Product, ⊗, and the Squared Times product, ⊠. Define the dyadic and squared times products 

of tensors as, (𝐀 ⊗ 𝐁)𝐂 = (𝐁: 𝐂)𝐀 and (𝐀 ⊠ 𝐁)𝐂 = 𝐀𝐂𝐁T We proceed to show that 

(𝐀 ⊠ 𝐁) (𝐂 ⊗ 𝐃) = 𝐀𝐂𝐁T ⊗ 𝐃, for,  

(𝐀 ⊠ 𝐁) (𝐂 ⊗ 𝐃)𝐄 = (𝐀 ⊠ 𝐁)(𝐃: 𝐄)𝐂 

= (𝐀𝐂𝐁T)𝐃: 𝐄 

= (𝐀𝐂𝐁T ⊗ 𝐃)𝐄 

so that 

(𝐀 ⊠ 𝐁) (𝐂 ⊗ 𝐃) = 𝐀𝐂𝐁T ⊗ 𝐃 

The following examples define the fourth-order identity tensors, Identity, symmetrizer, 

transposer and the anti-symmetrizer. 

1. Define the dyadic and squared times products of tensors as, (𝐀 ⊗ 𝐁)𝐂 = (𝐁: 𝐂)𝐀 and 

(𝐀 ⊠ 𝐁)𝐂 = 𝐀𝐂𝐁T For vectors 𝐚, 𝐛 and tensors 𝐀,𝐁 show that (𝐀 ⊠ 𝐁) (𝐚 ⊗ 𝐛) = 𝐀𝐚 ⊗

𝐁𝐛. 

(𝐀 ⊠ 𝐁) (𝐚 ⊗ 𝐛) = 𝐀(𝐚 ⊗ 𝐛)𝐁T = 𝐀𝐚 ⊗ 𝐁𝐛 

2. Define the dyadic and squared times products of tensors as, (𝐀 ⊗ 𝐁)𝐂 = (𝐁: 𝐂)𝐀 and 

(𝐀 ⊠ 𝐁)𝐂 = 𝐀𝐂𝐁T For vectors 𝐚, 𝐛, 𝐜 and 𝐝 show that (𝐚 ⊗ 𝐛) ⊠ (𝐜 ⊗ 𝐝) =  (𝐚 ⊗ 𝐜) ⊗

(𝐛 ⊗ 𝐝) 

For a tensor 𝐄,  

((𝐚 ⊗ 𝐛) ⊠ (𝐜 ⊗ 𝐝))𝐄 = (𝐚 ⊗ 𝐛)𝐄(𝐝 ⊗ 𝐜) 

= (𝐚 ⊗ 𝐜)[(𝐄T𝐛) ⋅ 𝐝] 

= (𝐚 ⊗ 𝐜) tr((𝐝 ⊗ 𝐛)𝐄) 

= (𝐚 ⊗ 𝐜)[(𝐛 ⊗ 𝐝): 𝐄] 

= ((𝐚 ⊗ 𝐜) ⊗ (𝐛 ⊗ 𝐝))𝐄 

so that (𝐚 ⊗ 𝐛) ⊠ (𝐜 ⊗ 𝐝) =  (𝐚 ⊗ 𝐜) ⊗ (𝐛 ⊗ 𝐝). 
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3. Define the tensor basis 𝐆𝑖𝑗 ≡ 𝐠𝑖 ⊗ 𝐠𝑗, observe that unlike the scalar component 𝑔𝑖𝑗, the 

tensor 𝐆𝑖𝑗 is not symmetrical in its indices; furthermore, show that 𝕀 ≡ 𝑔𝑖𝑗𝐆
𝑖𝑗 ⊠ 𝑔𝛼𝛽𝐆𝛼𝛽  is 

the fourth order identity tensor. 

By the definition of 𝐆𝑖𝑗 ≡ 𝐠𝑖 ⊗ 𝐠𝑗, It is immediately clear that 𝐆𝑖𝑗 ≡ [𝐆𝑗𝑖]
𝑇

. It is therefore not 

symmetric in its components. We further observe that 𝑔𝑖𝑗𝐆
𝑖𝑗  is the component representation 

of the second-order unit tensor. 

Lastly, 𝕀 is the fourth-order identity tensor. This is evident because, given any second-order 

tensor 𝐓, 𝕀𝐓 = 𝐓. To show this to be true, take any component representation of 𝐓 and expand 

𝕀𝑻: 

𝕀𝐓 = (𝑔𝑖𝑗𝐆
𝑖𝑗 ⊠ 𝑔𝛼𝛽𝐆𝛼𝛽)𝐓 

= (𝑔𝑖𝑗𝐆
𝑖𝑗 ⊠ 𝑔𝛼𝛽𝐆𝛼𝛽)𝑇𝑘𝑙𝐠

𝑖 ⊗ 𝐠𝑗  

= (𝑔𝑖𝑗𝐆
𝑖𝑗 ⊠ 𝑔𝛼𝛽𝐆𝛼𝛽)𝑇𝑘𝑙𝐆

𝑘𝑙 

= 𝑔𝑖𝑗𝑔𝛼𝛽𝑇𝑘𝑙(𝐆
𝑖𝑗 ⊠ 𝐆𝛼𝛽)𝐆𝑘𝑙 

= 𝑔𝑖𝑗𝑔𝛼𝛽𝑇𝑘𝑙𝐆
𝑖𝑗𝐆𝑘𝑙𝐆𝛽𝛼  

= 𝑔𝑖𝑗𝑔𝛼𝛽𝑇𝑘𝑙𝑔
𝑗𝑘𝑔𝑙𝛽𝐆𝑖𝛼 

= 𝛿𝑖
𝑘𝛿𝛽

𝑙 𝑇𝑘𝑙𝐆
𝑖𝛼 = 𝑇𝑖𝛼𝐆𝑖𝛼 

= 𝐓 

Showing that, 𝕀 = 𝐈 ⊠ 𝐈 

4. Given that 𝕀 = 𝐈 ⊠ 𝐈, show that, 𝕀 = 𝑔𝑖𝑗𝑔𝑘𝑙𝐆
𝑖𝑗 ⊠ 𝐆𝑘𝑙 = 𝑔𝑖𝑘𝑔𝑗𝑙𝐆

𝑖𝑗 ⊗ 𝐆𝑘𝑙  

The first expression is recognizable as 𝐈 ⊠ 𝐈 since 

𝕀 = 𝐈 ⊠ 𝐈 = 𝑔𝑖𝑗𝐆
𝑖𝑗 ⊠ 𝑔𝛼𝛽𝐆𝛼𝛽 

= 𝑔𝑖𝑗𝑔𝛼𝛽𝐆𝑖𝑗 ⊠ 𝐆𝛼𝛽 

Let us see how the second expression operates on a second-order tensor: 

𝑔𝑖𝑘𝑔𝑗𝑙(𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙)𝐓 = 𝑔𝑖𝑘𝑔𝑗𝑙(𝐆

𝑖𝑗 ⊗ 𝐆𝑘𝑙)𝑇𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽 

= 𝑔𝑖𝑘𝑔𝑗𝑙𝑇𝛼𝛽(𝐆𝑖𝑗 ⊗ 𝐆𝑘𝑙)𝐠𝛼 ⊗ 𝐠𝛽 

= 𝑔𝑖𝑘𝑔𝑗𝑙𝑇𝛼𝛽𝐆𝑖𝑗 (𝐆𝑘𝑙: (𝐠𝛼 ⊗ 𝐠𝛽)) 

= 𝑔𝑖𝑘𝑔𝑗𝑙𝑇𝛼𝛽𝐆𝑖𝑗𝑔𝑘𝛼𝑔𝑙𝛽 = 𝛿𝑖
𝛼𝛿𝑗

𝛽
𝑇𝛼𝛽𝐆𝑖𝑗 
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= 𝑇𝑖𝑗𝐆
𝑖𝑗 = 𝐓 

confirming that 𝑔𝑖𝑘𝑔𝑗𝑙𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙 =  𝕀 = 𝑔𝑖𝑘𝑔𝑗𝑙(𝐠

𝑖 ⊗ 𝐠𝑗) ⊗ (𝐠𝑘 ⊗ 𝐠𝒍). 

5. For a second-order tensor 𝐀 show that 𝐀𝕀 = 𝕀𝐀 = 𝐀 where 𝕀 is the fourth-order unit tensor. 

Note that 𝕀 = 𝐈 ⊠ 𝐈. Therefore, 𝐀𝕀 =  𝐀(𝐈 ⊠ 𝐈) =  𝐈T𝐀𝐈 =  𝐀. Similarly, 𝕀𝐀 =  (𝐈 ⊠ 𝐈)𝐀 =

 𝐈𝐀𝐈T =  𝐀 since the identity tensor is symmetric and hence self-transpose. 

6. The transposer tensor 𝕋 turns a second-order tensor into its transpose: 𝕋𝐒 = 𝐒T = 𝐒𝕋; 

show that 𝕋 = 𝑔𝑖𝑙𝑔𝑗𝑘𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙  

𝕋𝐒 = 𝑔𝑖𝑙𝑔𝑗𝑘(𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙)𝐒 

= 𝑔𝑖𝑙𝑔𝑗𝑘(𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙)(𝑆𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽)  

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑆
𝛼𝛽𝐆𝑖𝑗 (𝐆𝑘𝑙: (𝐠𝛼 ⊗ 𝐠𝛽)) 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑆
𝛼𝛽𝐆𝑖𝑗(𝐠𝑘 ⋅ 𝐠𝛽)(𝐠𝑙 ⋅ 𝐠𝛼) 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑆
𝛼𝛽𝐆𝑖𝑗𝛿𝛽

𝑘𝛿𝛼
𝑙 = 𝑆𝑗𝑖𝐆

𝑖𝑗  

= 𝐒T 

𝐒𝕋 = 𝐒𝑔𝑖𝑙𝑔𝑗𝑘(𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙) 

= (𝑆𝛼𝛽𝐠𝛼 ⊗ 𝐠𝛽)𝑔𝑖𝑙𝑔𝑗𝑘(𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙)  

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑆
𝛼𝛽 ((𝐠𝛼 ⊗ 𝐠𝛽): 𝐆𝑖𝑗)𝐆𝑘𝑙 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑆
𝛼𝛽𝐆𝑘𝑙(𝐠𝑖 ⋅ 𝐠𝛼)(𝐠𝑗 ⋅ 𝐠𝛽) 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑆
𝛼𝛽𝐆𝑘𝑙𝛿𝛼

𝑖 𝛿𝛽
𝑗
= 𝑆𝑖𝑗𝐆𝑗𝑖  

= 𝐒T 

7. Define the symmetrizer, 𝕊 and anti symmetrizer, 𝕎 tensors as fourth order tensors that 

return the symmetric and antisymmetric parts of a second-order tensor; show that 𝕊 =
1

2
(𝕀 + 𝕋) and 𝕎 =

1

2
(𝕀 − 𝕋). 

Consider a tensor 𝐀. 

𝕊𝐀 =
1

2
(𝕀 + 𝕋)𝐀 =

1

2
(𝕀𝐀 + 𝕋𝐀) =

1

2
(𝐀 + 𝐀T) = sym 𝐀 

Similarly, 
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𝕎𝐀 =
1

2
(𝕀 − 𝕋)𝐀 =

1

2
(𝕀𝐀 − 𝕋𝐀) =

1

2
(𝐀 − 𝐀T) = skw𝐀 

8. For any second-order tensor 𝐀 Show that 𝕊𝐀 =  𝐀𝕊, and that 𝕎𝐀 = 𝐀𝕎 where 𝕊 is the 

fourth-order symmetrizer tensor. [Hint: 𝐀𝕀 = 𝕀𝐀, 𝕋𝐒 = 𝐒𝕋] 

Consider a tensor 𝐀. 

𝕊𝐀 =
1

2
(𝕀 + 𝕋)𝐀 

=
1

2
(𝕀𝐀 + 𝕋𝐀) =

1

2
(𝐀 + 𝐀T) 

= sym𝐀 

𝐀𝕊 =  𝐀(
1

2
(𝕀 + 𝕋)) 

=
1

2
(𝐀𝕀 + 𝐀𝕋) 

=
1

2
(𝕀𝐀 + 𝕋𝐀) = sym𝐀 

so that 𝕊𝐀 =  𝐀𝕊 = sym 𝐀. Similarly, 

𝕎𝐀 =
1

2
(𝕀 − 𝕋)𝐀 =

1

2
(𝕀𝐀 − 𝕋𝐀) 

=
1

2
(𝐀 − 𝐀T) = skw𝐀 

𝐀𝕎 = 𝐀(
1

2
(𝕀 − 𝕋)) =

1

2
(𝐀𝕀 − 𝐀𝕋) 

=
1

2
(𝕀𝐀 − 𝕋𝐀) =

1

2
(𝐀 − 𝐀T) 

= skw 𝐀 

showing that 𝕎𝐀 = 𝐀𝕎 = skw 𝐀 

9. For the fourth order tensors 𝕊, 𝕋, and 𝕎 show that (a) 𝕋𝕋 = 𝕀, (b) 𝕋𝕊 = 𝕊𝕋, (c) 𝕊𝕊 = 𝕊 (d) 

𝕎𝕎 = 𝕎 and (e) 𝕊𝕎 = 𝕎𝕊 = 𝕆. 

(a) An indicial proof 𝕋𝕋 = 𝕀 is straightforward. A direct proof is however more illuminating: 

Consider the double transpose: 

𝕋𝕋𝐀 = 𝕋𝐀T = (𝐀T)T = 𝐀 =  𝕀𝐀 

showing clearly that 𝕋𝕋 = 𝕀. 
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(b)  

𝕋𝕊 =  𝕋(
1

2
(𝕀 + 𝕋)) =

1

2
(𝕋𝕀 + 𝕋𝕋) =

1

2
(𝕋 + 𝕀) = 𝕊 

𝕊𝕋 = (
1

2
(𝕀 + 𝕋))𝕋 =

1

2
(𝕀𝕋 + 𝕋𝕋) =

1

2
(𝕋 + 𝕀) = 𝕊 

so that 𝕋𝕊 = 𝕊𝕋 = 𝕊 

(c) For a second-order tensor 𝐀 

𝕊𝕊𝐀 = 𝕊(sym𝐀) 

= (
1

2
(𝕀 + 𝕋)) sym 𝐀 

=
1

2
sym𝐀 +

1

2
sym𝐀 

= sym𝐀 =  𝕊𝐀 

so that 𝕊𝕊 = 𝕊. 

(d) For a second-order tensor 𝑨 

𝕎𝕎𝐀 = 𝕎(skw𝐀) 

= (
1

2
(𝕀 − 𝕋)) skw𝐀 

=
1

2
skw𝐀 +

1

2
skw𝐀 

= skw𝐀 = 𝕎𝐀 

(e) For a second-order tensor 𝐀 

𝕊𝕎𝐀 = 𝕊(skw𝐀) 

= (
1

2
(𝕀 + 𝕋)) skw 𝐀 

=
1

2
skw𝐀 −

1

2
skw 𝐀 

= 𝕆𝐀 = 𝐎 

Similarly,  

𝕎𝕊𝐀 = 𝕎sym𝐀 

= (
1

2
(𝕀 − 𝕋)) sym𝐀 
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=
1

2
sym 𝐀 −

1

2
sym𝐀 = 𝐎 

showing that 𝕊𝕎 = 𝕎𝕊 = 𝕆 the fourth-order zero tensor. 

10. Given that, the transposer 𝕋 = 𝑔𝑖𝑙𝑔𝑗𝑘𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙, show that 𝕋𝕋 = 𝕀. 

𝕋𝕋 = (𝑔𝑖𝑙𝑔𝑗𝑘𝐆
𝑖𝑗 ⊗ 𝐆𝑘𝑙)(𝑔𝛼𝛾𝑔𝛽𝛿𝑮𝛼𝛽 ⊗ 𝐆𝛿𝛾) 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑔
𝛼𝛾𝑔𝛽𝛿𝐆𝑖𝑗 ⊗ 𝐆𝛿𝛾(𝐆

𝑘𝑙: 𝐆𝛼𝛽) 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑔
𝛼𝛾𝑔𝛽𝛿𝐆𝑖𝑗 ⊗ 𝐆𝛿𝛾(𝛿𝛼

𝑘𝛿𝛽
𝑙  ) 

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑔
𝑘𝛾𝑔𝑙𝛿𝐆𝑖𝑗 ⊗ 𝐆𝛿𝛾  

= 𝑔𝑖𝑙𝑔𝑗𝑘𝑔
𝑘𝛾𝑔𝑙𝛿(𝐠𝑖 ⊗ 𝐠𝑗) ⊗ (𝐠𝛿 ⊗ 𝐠𝛾) 

= 𝑔𝑖𝑙𝑔𝑗𝑘(𝐠
𝑖 ⊗ 𝐠𝑗) ⊗ (𝐠𝑙 ⊗ 𝐠𝑘) 

= 𝑔𝑖𝑘𝑔𝑗𝑙(𝐠
𝑖 ⊗ 𝐠𝑗) ⊗ (𝐠𝑘 ⊗ 𝐠𝑙) 

= 𝕀 
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