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Kinematics: An Organized Study of the  
Geometry of Deformation & Motion 

“…the various possible types of motion in themselves, leaving out … the  

causes to which the initiation of motion may be ascribed … constitutes the 

Science of Kinematics.”—ET Whittaker 

MetaData 

The prose, video, slides and the Q&A in this chapter are directed at scoring the following points: 

1. Kinematics is the clincher in the introduction to Continuum Mechanics. The Tensor theory we have learned 

is designed to make it easy to understand Kinematics.  

2. It is a mistake to rush to the study of the forces that influence deformation and motion without having the 

patience to understand what deformation and motion themselves are. 

 

 

FOUR 
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3. Kinematics provides the accurate description of the geometry – leading us to precise concepts of 

deformation terms such as displacement, strain, and other descriptors of deformation. From there we can 

know about the rates of strain, stretching rates, vorticity and other descriptors of motion. 

4. One of the most important triumphs of Kinematics is the separation of motions and displacements that do 

not matter to the study of material behavior. This is done in the multiplicative decomposition of the 

fundamental deformation descriptor: The Deformation Gradient. 

5. Differentiation of integrals plays key role. Leibniz Reynold’s Transport Theorem extends the familiar Leibniz 

theorem from calculus. A generalized version of this is provided for scalars, vectors and tensor valued fields. 

6. Basic deformations such as rotation, translation, extension, shear and as well as constrained flow such as 

Irrotational, Steady and Rigid flow fields are discussed. 
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Everything starts from the Geometry 

Engineers take great pain and spare no effort to ensure that service components do not undergo 

stresses or forces beyond their capability. Mechanics of materials provide the science to make 

the necessary computations to ensure this. It is a mistake, in 

our journey to understand that science, to quickly run to the 

study of stresses and forces. Everything we shall learn has a 

geometric background. Loading concepts such as tension, 

compression, torsion, bending, etc., have clear geometric 

implications. The unfortunate fellow in the picture below is 

obviously in tension. We have three examples of how that 

tension can be applied.  

In each case, the geometrical issue is the possible separation of the hands from the body. There 

are forces involved obviously, but their effects and consequences are about the attempt to 

change in his geometry: Separation of his hands or the ripping apart of his body! This is tension: 

It tends to lengthen.  

The geometry of compression is the opposite. Try to carry two or more bags of cement on your 

head, you will get that feeling that your height is being reduced.  

In the book shearing deformation diagram shown, the essential geometrical effect is the turning 

of the roughly rectangular cross section into a parallelogram. Decreasing an angle and increasing 

another. This kind of deformation and motion occurs all the time when we hoe, shave (sheep 
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shearing, etc.,) or in a much cataclysmic way, in earthquakes, landslides and 

other less portentous ways. Shearing creates relative angular displacements 

and motions in parts of the material body of interest to us.  

Torsion also creates relative angular displacements. This is usually caused by 

moments in the longitudinal direction. In practical cases, it induces, in addition 

to the relative angular displacements, a warping deformation or motion in the 

longitudinal direction. Shafts, loaded by longitudinal moments, are often 

subjected to the shearing and warping caused by torsion. 

Bending means, among other things, the alteration, or attempted alteration of the curvature of 

a body. In a straight bar, the curvature is decreased. Such changes in curvature also creates 

compression and tension on opposite sides of such bars. In a prismatic body, there is a cease-fire 

zone that is essentially neutral – free of the tension and compression, in a 3D body, there will 

usually be accompanying shear stresses. When the latter is NOT the case, it is said to be pure 

bending – the curvature alteration leading only to tensile 

and compressive stresses. 

While the geometry of motion leads to the definition of 

purely geometric quantities such as strain, stretch and 

related quantities, the foregoing show that the loading 

situations encountered can also be accurately described 

by the geometry. 

The case of thermal stresses is interesting. Consider a bar compelled, as shown in figure ___ to 

keep its length unchanged. Ordinarily, the heat supplied should lead to elongation. However, the 

geometrical constraint here creates the forces to prevent it from doing so. This causes thermal 

stresses. 

This bar will be in compression as the effect of geometry is 

essentially to create the forces decreasing its length from the state 

the applied heat would have placed it.  

Kinematics, the study of the geometry of deformation and motion “is the machinery for 

describing all possible deformations a body can undergo.”.  
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Bodies: Material & Spatial Descriptions 

To launch our description of the geometry of deformation, we look at the body we are concerned 

about in the ambient environment of a 3-Dimensional Euclidean Point Space, ℰ. More specifically, 

there is a subset of ℰ between which is in a one to one correspondence with each point in the 

body.  

A deformation is a mapping from this subset to another subset of the same space: 

𝐱 = 𝛘(𝐗) 

A deformation that changes over time, is a motion. If at specific points 𝑡 = 1,2, … , 𝑛 in time, we 

have, 

𝐱1 = 𝛘1(𝐗), 𝐱2 = 𝛘2(𝐗),… , 𝐱𝑛 = 𝛘𝑛(𝐗),… 

Motion can also can be described by the single, continuous, time dependent function,  

𝐱 = 𝛘(𝐗, 𝑡) or 𝐱 = 𝛘𝑡(𝐗) 

so that motion is defined as set of mappings, 𝐱 = 𝛘(. , 𝑡), 𝑡 ∈ ℝ. We assume that our subset of ℰ 

is connected. Each member of the set of mappings, that is, each specific deformation in the set, 

is a known as a configuration or description at a point in time. We can take the configurations as 

photographs of the body as it undergoes its motion. If we take that view, even though we can 

have several photographs, at most one of them, represents the current state of the body. This 

configuration is called the Spatial Configuration. Example in figure shows two configurations of a 

body. If the second picture is its current state, we 

may have several pictures of intermediate states 

from the original. Any of these configurations may 

be chosen as a reference configuration as distinct 

from the current, spatial configuration. In several 

applications, it may be convenient to select the 

initial configuration as Reference, even though there is no obligation to do so. It is customary, for 

analytical purposes to have a spatial and a reference configuration in mind. Care must be taken 

to remember that these two refer to the same actual body at different times. At a particular time, 

the spatial configuration is always visible. If our reference, for example, were to be the initial 
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configuration, it means that at the beginning of the process, the initial and spatial configurations 

coincide as both are visible at that instant. 

Our one-to-one mapping of the material points to the subset of ℰ implies that no two material 

points occupy the same point at the same time. If we enlarge the infinitesimal segments of the 

referential and spatial circles marked, we obtain the arrows in figure____: 

As a result of the motion, the referential element has 

deformed from the material (or referential) vector 𝑑𝐗 to 

the spatial vector 𝑑𝐱. As we already know, the 

transformation of one vector to another was caused by a 

tensor. Here we are looking at the material set of elements in the referential configuration that 

has been transformed in the motion. These contain, as we have seen, the same elements as in 

the referential configuration. These differential elements of the arc length represent the tangents 

and are transformed as, 

𝑑𝐱 = 𝐅 𝑑𝐗 

where transformation tensor field 𝐅(𝐗, 𝑡) = Grad 𝛘(𝐗, 𝑡) the material (referential) gradient of 

the deformation or motion function, 𝛘(𝐗, 𝑡).  

Notice that the transformation stretches (or contracts), rotates and translates the original vector 

into the new. All elements of that transformation are captured in the transformation tensor 

called the Deformation Gradient. Our objective is use the deformation gradient and define the 

geometric concepts of displacement, strain, stretch, rotation, that come from that 

transformation. 

The vector equation here can also be written in terms of components as, 

𝑥𝑖 = 𝜒𝑖(𝑋1, 𝑋2, 𝑋3),     𝑖 = 1,2,3  

for each component because each vector equation is actually three scalar equations 

Note also that for something to be dependent on the position vector 𝑿 means exactly the same 

thing as to be dependent on its three scalar components.  

In Cartesian coordinates, let 𝒆𝛼,  𝛼 = 1,2,3 and 𝐄𝑘 ,  𝑘 = 1,2,3 be the basis vectors in the spatial 

and reference coordinates respectively 

For the differential vectors and the tensor, we can write, in component form,  
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𝑑𝐱 = 𝑑𝑥𝛼𝐞𝛼  

𝐅 =
𝜕𝜒𝑖
𝜕𝑋𝑗

𝐞𝑖⊗𝐄𝑗 𝑎𝑛𝑑  

𝑑𝐗 = 𝑑𝑋𝑘𝐄𝑘 

Deformation gradient, 𝐅 is called a two-toe tensor because it belongs to both configurations (one 

toe on each). It is a mixed tensor, having basis dyads from two configurations. It transforms the 

infinitesimal tensor from reference to spatial configuration. 

We noted above that the function 𝐱 = 𝛘(𝐗) is the deformation.  

Volume Ratio 

Consider three referential vectors (𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3) 

forming the tetrahedron in Figure ____. The volume of 

the tetrahedron, 

1

6
[𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3] ≠ 0 

i.e. the volume will not vanish if the three vectors are 

neither colinear nor all coplanar. As a result of the 

motion, the corresponding spatial vectors will form a deformed tetrahedron. Each side will be a 

transformed referential vector into the spatial: (𝑑𝐱1, 𝑑𝐱2, 𝑑𝐱3) will be related to the material 

vectors in such a way that, 

𝑑𝐱𝑖 = 𝐅𝑑𝐗𝒊 

The volume ratio between the spatial and material configurations, 

𝐽 =
[𝑑𝐱1, 𝑑𝐱2, 𝑑𝐱3]

[𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3]
=
[𝐅𝑑𝐗1, 𝐅𝑑𝐗2, 𝐅𝑑𝐗3]

[𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3]
= det 𝐅. 

The linear independence of vectors (𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3) is guaranteed by the non-vanishing of the 

tetrahedron or we shall have chosen a trivial volume. However, what guarantee do we have for 

the spatial tetrahedron? 

In particular, we examine the situation, 

𝑑𝐱 = 𝐅𝑑𝐗 = 𝐨 

the zero vector. What can this mean physically or otherwise? The linear independence of the 

denominator in the determinant expression guarantees the linear independence and 
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consequently the non-vanishing of the numerator provided the deformation gradient is an 

invertible tensor. Mathematically, the Jacobian (determinant of 𝐅) of the transformation is zero. 

We were able to find a non-trivial (not a zero tensor) transformation tensor that transforms a 

real vector into nothingness! We, by a deformation transformation destroyed matter!  

Our physical considerations preclude this possibility. We exclude from consideration such a 

possibility. And since we cannot have 𝐽 = 0, we can therefore conclude that  

𝐽 > 0 

Since continuity forces it to pass through zero to negative; if iy cannot be zero, it cannot be 

negative. The only allowable transformations have a positive determinant.  

The Reference Map 

The set of mappings that gives each deformation, and consequently, the entire motion is a set of 

one-to-one mappings. Such mappings are invertible. It follows that, at each time 𝑡, we have, 

𝐗 = 𝛘−1(𝐱, 𝑡) 

From which we can find the reference configuration that resulted in each spatial configuration a 

time 𝑡. The material point that occupied the spatial position 𝐱 at time  𝑡 can be computed by the 

reference map. 

Motion Examples 

In the attached 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎® Animation Code, it is easy to see that,  

𝐱 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3𝐗 = 𝑋1𝐄1 + 𝑋2𝐄2 + 𝑋3𝐄3 
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We use different 

base vectors 

because we are 

not compelled to 

refer the 

referential and 

spatial to the 

same base. Let us 

for simplicity use 

the same base for 

now, we can see 

that the 

functional relationship is, 

𝑥1 = 𝑋1 + 𝑋2𝑡;  𝑥2 = 4𝑋1𝑋2𝑡 + 𝑋2; 𝑥3 = 𝑋3 

Which, in this case, is the vector equation or motion, 

𝐱 = 𝛘𝑡(𝐗) ≡ 𝛘(𝐗,  𝑡) 

Now issue the Mathematica command, 

 Grad[myMap[𝑋1, 𝑋2, 𝑡], {𝑋1, 𝑋2}] 

You will easily see that, the deformation gradient in this case is, 

{𝐅(𝑋1, 𝑋2, 𝑋3, 𝑡)} = [
1 𝑡 0
4𝑡𝑋2 1 + 4𝑡𝑋1 0
0 0 1

] 

Which is the matrix of the components of the deformation gradient tensor. Consider the more 

general deformation, 

𝐱 = 𝝌(𝐗, 𝑡) = (1 + 𝑡𝑋1 + 𝑘1𝑋2)𝐞1 + (𝑘2𝑋1 + 𝑡𝑋2)𝐞2 + 𝑡𝐞3 

Where 𝑘1 and 𝑘2 are constants, and 𝑡 is the time variable. To obtain the reference map, we can 

invert this function and obtain, 

𝐗 = 𝝌−𝟏(𝐱, 𝑡) =
𝑡𝑥1 − 𝑘1𝑥2
𝑡2 − 𝑘1𝑘2

𝐄1 +
𝑡𝑥2 − 𝑘2𝑥1
𝑡2 − 𝑘1𝑘2

𝐄2 +
𝑥3
𝑡
𝐄3 

Mathematica code for this inversion is,  
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This is a simple example of a reference map. For a more specific deformation at a given time, say 

𝑡 = 1,   

𝐱 = 𝝌(𝐗) = (𝑋1 + 𝑘1𝑋2)𝐞1 + (𝑘2𝑋1 + 𝑋2)𝐞2 + 𝑡𝐞3 

We can invert this function and obtain, 

𝐗 = 𝝌−𝟏(𝐱) =
𝑥1 − 𝑘1𝑥2
1 − 𝑘1𝑘2

𝐄1 +
𝑥2 − 𝑘2𝑥1
1 − 𝑘1𝑘2

𝐄2 + 𝑥3𝐄3 

Solving this in Mathematica for specific values for 𝑘1,  𝑘2, we have, 

 

Simple Motions.  

The following examples of simple motions have been named: 

1. Pure translation, 𝛘(𝐗, 𝑡) = 𝐗 + 𝐜(𝑡), where 𝐜 is a differentiable vector-valued function 

of time. 

2. Pure rotation, 𝛘(𝐗, 𝑡) = 𝐐(𝑡)𝐗, where 𝐐 is a proper orthogonal function. (A complicated 

way of saying that it is a rotation function of time). 

3. Simple Shear. 𝛘(𝐗, 𝑡) = (𝐈 + 𝛼(𝑡)𝐞1⊗𝐞2)𝐗, where 𝛼 is a differentiable, scalar valued 

function of time. Q: Transpose the dyad and what do you get? Compare to the original 

shear motion. The following Mathematica graphic is about Uniform Shear. 

The Deformation gradient here is easily calculated by hand. Do this to ensure you don’t 

get lost in the mechanical computation and lose the context: 

𝐱 = 𝛘(𝐗) = 𝐱 = (0.5 + 𝑋1 + 0.5𝑋2)𝐞1 + 𝑋2𝐞2 + 𝑋3𝐞𝟑 

for the element occupying 𝑋1𝐄1 + 𝑋2𝐄2 + 𝑋3𝐄3 initially. 
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Clearly, 
𝜕𝑥1

𝜕𝑋1
= 1,  

𝜕𝑥1

𝜕𝑋2
= 0.5,  

𝜕𝑥1

𝜕𝑋3
= 0 and 

𝜕𝑥2

𝜕𝑋2
=

𝜕𝑥3

𝜕𝑋3
 with all other components of the 

deformation gradient vanishing. 

(
1 0.5 0
0 1 0
0 0 1

) 

is the matrix of the deformation gradient 

components. Note that the off-diagonal 

value, 0.5 is the tangent of the angle of 

shear – the reduction in the original right 

angle. 

Use Mathematica to find 𝐅,  𝐂,  𝐄,  𝐔 and 

𝐑.  

Another Shear Example. Consider a deformation gradient, 

𝐅 = [𝐞1 𝐞2 𝐞3] (
1 0 0
𝛾 1 0
0 0 1

)⊗ (
𝐄1
𝐄2
𝐄3

) 

Comparing this to the above transformation, we can see that it represents a shearing 

deformation with gamma being the tangent of the reduction in the originally right angle 

in the 𝑥1 − 𝑥2 plane.  

Let 𝛾 = 2 tan 𝛽. It is easy to show that the above deformation gradient can be broken 

down to Rotation tensor 𝐑 and Stretch tensors 𝐔 and 𝐕 such that, 

𝐑 = [𝐞1 𝐞2 𝐞3] (
cos 𝛽 sin 𝛽 0
− sin 𝛽 cos 𝛽 0
0 0 1

)⊗ (
𝐄1
𝐄2
𝐄3

) 

𝐔 = [𝐄1 𝐄2 𝐄3] (
cos 𝛽 sin 𝛽 0

sin 𝛽 sec 𝛽 (1 + sin2 𝛽) 0
0 0 1

)⊗ (
𝐄1
𝐄2
𝐄3

) 

𝐕 = 𝐑𝐔𝐑T = [𝐞1 𝐞2 𝐞3] (
sec 𝛽 (1 + sin2 𝛽) sin 𝛽 0

sin 𝛽 cos 𝛽 0
0 0 1

)⊗ (

𝐞1
𝐞2
𝐞3
) 
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4. Uniform extension. 𝛘(𝐗, 𝑡) = (𝜆1(𝑡)𝐞1, 𝜆2(𝑡)𝐞2, 𝜆3(𝑡)𝐞3 ) ⊗ [
𝑋1𝐞1
𝑋2𝐞2
𝑋3𝐞3

], where 𝜆𝑖, 𝑖 =

1,2,3 are differentiable scalar-valued functions of time. In the special case that 𝜆1 = 𝜆2 =

𝜆3, the motion is called a pure dilatation. 

Consider the unit cube shown below in a triaxial extension so that a typical point 𝐏 located 

at (𝑋1, 𝑋2, 𝑋3)in the undeformed 

state, moves to (𝑥1, 𝑥2, 𝑥3) in 

such a way that,  

𝐱 = 𝛘(𝐗) = 𝛼1𝑋1𝐞1 + 𝛼2𝑋2𝐞2

+ 𝛼3𝑋3𝐞3 

Note that uniaxial extension can 

be obtained by allowing two of 

the constants to be unity while 

biaxial will be ensured by one of the constants becoming one as follows: 

Uniaxial: 𝐱 = 𝛘(𝐗) = 𝛼1𝑋1𝐞1 + 𝑋2𝐞2 + 𝑋3𝐞3 

Biaxial: 𝐱 = 𝛘(𝐗) = 𝑋1𝐞1 + 𝛼2𝑋2𝐞2 + 𝛼3𝑋3𝐞3 

𝐅 = (𝐞1 𝐞2 𝐞3)

[
 
 
 
 
 
 
𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥1
𝜕𝑋3

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

𝜕𝑥2
𝜕𝑋3

𝜕𝑥3
𝜕𝑋1

𝜕𝑥3
𝜕𝑋2

𝜕𝑥3
𝜕𝑋3]

 
 
 
 
 
 

⊗ [
𝐄1
𝐄2
𝐄3

] 

= (𝐞1 𝐞2 𝐞3) [
𝛼1 0 0
0 𝛼2 0
0 0 𝛼3

] ⊗ [
𝐄1
𝐄2
𝐄3

] 

= 𝛼1𝐞1⊗𝐄1 + 𝛼2𝐞2⊗𝐄2 + 𝛼3𝐞3⊗𝐄3 

The Green Lagrange strain tensor is, 

𝐄 = −
1

2
(1 − 𝛼1

2)𝐄1⊗𝐄1 −
1

2
(1 − 𝛼2

2)𝐄2⊗𝐄2 −
1

2
(1 − 𝛼3

2)𝐄3⊗𝐄3 
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Motions 1 and 2 in the list are called rigid body 

motions because they do not, by themselves, 

cause shape changes in the body. Real life 

motions may be a combination of some of these 

and more complicated motions like in the 

earlier examples. It is a goos practice to visualize 

these motions as we shall do in the examples section later. Mathematica animations of these 

and other motions are available and tinkering with the motion equations to obtain new 

motions in combination is a good way to get a clearer view of motions in general. We can 

then compute the deformation gradients and other useful tensors describing aspects of such 

motions. 

Components of Two-Towed Tensors 

The deformation gradient is a special tensor. It is a tensor field that transforms small vectors from 

referential configuration to current, spatial configuration: 𝑑𝐱 = 𝐅𝑑𝐗. This equation can be 

written in the form,  

𝑑𝐗 = 𝐅−1𝑑𝐱 

In which the inverse deformation gradient tells what vector in the reference state was 

transformed to 𝑑𝐱 in the spatial. Hence 𝐅−1, just like 𝐅, is two towed: from spatial to referential. 

From the product in the transformation equation, 

𝑑𝐱 = 𝐅𝑑𝐗 

It makes sense that 𝑑𝐱 = 𝑑𝑥𝛼𝐞𝛼,  𝑎𝑛𝑑 𝑑𝐗 = 𝑑𝑋𝑘𝐄𝑘 shows that the deformation gradient should 

derive its second basis from referential configuration so that, 

𝑑𝐱 = 𝑑𝑥𝛼𝐞𝛼 = (
𝜕𝜒𝑖
𝜕𝑋𝑗

𝐞𝑖⊗𝐄𝑗)  𝑑𝑋𝑘𝐄𝑘 

So that scalar products of bases from the same configurations are in scalar product in the dyad 

operation above. For the same reason, the bases of 𝐅−1 are from material to spatial: 

𝐅−1 = [𝐅−1]𝑖𝑗𝐄𝑖⊗𝐞𝑗 

One more issue, hidden from us in the ONB system of the Cartesian, is that, since the referential 

coordinate is in a reciprocal side of the expression, 
𝜕𝜒𝑖

𝜕𝑋𝑗
, the base vector associated with it MUST 
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also be a reciprocal base. A fill analysis of this can be seen from reciprocal base systems which is 

needed for non ONB systems. In Cartesian systems, the natural and the reciprocal bases coincide. 

In curvilinear coordinates such as Cylindrical and Spherical Polar, this is not so. For example, for 

spherical polar, the reciprocal basis can be derived from the natural basis (obtained by 

differentiating the position vector, as follows: 

(

𝐠1

𝐠2

𝐠3
) =

(

 
 
 
 

1

𝐠1 ⋅ 𝐠1
0 0

0
1

𝐠2 ⋅ 𝐠2
0

0 0
1

𝐠3 ⋅ 𝐠3)

 
 
 
 

(

𝐞𝜌
𝜌𝐞𝜃

𝜌 sin 𝜃 𝐞𝜙
) =

(

 
 

1 0 0

0
1

𝜌2
0

0 0
1

𝜌2 sin2 𝜃  )

 
 
(

𝐞𝜌
𝜌𝐞𝜃

𝜌 sin 𝜃 𝐞𝜙
)

=

(

 
 

𝐞𝜌
𝜌𝐞𝜃
𝜌2

𝜌 sin 𝜃 𝐞𝜙

𝜌2 sin2 𝜃 )

 
 
=

(

 
 

𝐞𝜌
𝐞𝜃
𝜌
𝐞𝜙

𝜌 sin 𝜃)

 
 

 

The multiplying matrix is made up of the components of the inverse metric tensor. The following 

table shows the list of natural and reciprocal bases for Cartesian, Cylindrical Polar and Spherical 

Polar Coordinate systems. 

Coordinate System Natural Basis Vectors  Reciprocal Base Vectors 

Cartesian 
{
𝜕𝐫

𝜕𝑥1
= 𝐞1;  

𝜕𝐫

𝜕𝑥2
= 𝐞2;  

𝜕𝐫

𝜕𝑥3
= 𝐞3} 

{𝐞1, 𝐞2, 𝐞3} 

Cylindrical Polar 
{
𝜕𝐫

𝜕𝑟
= 𝐞𝑟;   

𝜕𝐫

𝜕𝜙
= 𝑟𝐞𝜙;   

𝜕𝐫

𝜕𝑧
= 𝐞𝑧} {𝐞𝑟;  

𝐞𝜙

𝑟
;  𝐞𝑧} 

Spherical Polar 
{
𝜕𝐫

𝜕𝜌
= 𝐞𝜌;   

𝜕𝐫

𝜕𝜃
= 𝜌𝐞𝜃;   

𝜕𝐫

𝜕𝜙
= 𝜌 sin𝜃𝐞𝜙} {𝐞𝜌;   

𝐞𝜃
𝜌
;  

𝐞𝜙

𝜌 sin 𝜃
} 

While the natural basis vectors are computed by simple differentiation, the reciprocal vectors 

are computed from reciprocity relationships. In the case of orthogonal systems, linear or 

curvilinear, this relationship becomes simply dividing by the magnitude of the respective natural 

base vector. The deformation gradient from a material configuration in cylindrical Polar 

coordinates {𝑅, Θ, 𝑍} to a spatial configuration {𝑟, 𝜃, 𝑧} in the same coordinate system is, 
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𝐅 = (𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧)

[
 
 
 
 
 
𝜕𝑟

𝜕𝑅

𝜕𝑟

𝜕Θ

𝜕𝑟

𝜕𝑍
𝜕𝜃 

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝑧

𝜕𝑅

𝜕𝑧

𝜕Θ

𝜕𝑧

𝜕𝑍]
 
 
 
 
 

⊗ [

𝐄𝑹
𝐄Θ
𝑅
𝐄𝑍

]. 

We used upper case to depict the Material system. It is the reciprocal system. If both were 

spherical, {𝜚, Θ, Φ} → {𝜌, 𝜃, 𝜙}the deformation gradient becomes,  

𝐅 = (𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙)

[
 
 
 
 
 
 
𝜕𝜌

𝜕𝜚

𝜕𝜌

𝜕Θ

𝜕𝜌

𝜕Φ
𝜕𝜃

𝜕𝜚

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕Φ
𝜕𝜙

𝜕𝜚

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕Φ]
 
 
 
 
 
 

⊗

[
 
 
 
 
 
𝐄𝜚
𝐄Θ
𝜚
𝐄Φ

𝜚 sinΘ]
 
 
 
 
 

. 

Polar Decomposition Theorem. 

In our discussion of tensors, we saw that two additive decompositions of any second-order tensor 

can be done. In this section, we are looking at a multiplicative decomposition, motivated by the 

reality that it is NOT the entire transformation wrought by the deformation gradient that concern 

us in the study of geometrical changes resulting from the application of loads. The important 

result called by this name takes its naming roots from complex analysis where a complex variable 

is represented in two dimensional Polar Coordinates. As we shall see, there is no direct link to 

this in the proof or application of the theorem. It successfully separates portions of the 

deformation gradient that do not cause shape changes from the parts that are relevant in 

geometric modifications resulting from the transformation. 

Theorem. For a given deformation gradient 𝑭, there is a unique rotation tensor 

𝑹, and unique, positive definite, symmetric tensors 𝑼 and 𝑽 for which,  

𝑭 = 𝑹𝑼 = 𝑽𝑹  

 

This is a fundamental theorem in continuum mechanics called the Polar Decomposition 

Theorem. 

Observation. This theorem will be proved shortly. Before embarking on the proof, observe the 

following: 
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1. By the results of this theorem, 𝐑T𝐑 = 𝐑𝐑T = 𝐈. 𝐑 is a rotation tensor while 𝐔 and 𝐕 are 

the right (or material) stretch tensor and the left (spatial) stretch tensors respectively. Being 

a rotation tensor, 𝐑 must be proper orthogonal. In addition to its components being an 

orthogonal matrix, the matrix representation of 𝐑 must have a determinant that is positive: 

det 𝐑 = +1. 

2. Note that 𝐂 = 𝐅T𝐅 = 𝐔T 𝐑T𝐑 𝐔 = 𝐔T𝐈 𝐔 = 𝐔2. 

Definition: Positive Definite. A tensor 𝐓 is positive definite if for every real vector 𝐮,   the 

quadratic form 𝐮 ⋅ 𝐓𝐮 > 𝟎.   If 𝐮 ⋅ 𝐓𝐮 ≥ 𝟎 Then 𝐓 is said to be positive semi-definite.  

Now every positive definite tensor 𝐓 has a square root 𝐔 such that, 

𝐔2 ≡ 𝐔T𝐔 = 𝐔𝐔𝐓 = 𝐓 

Proof. To prove this theorem, we must first show that 𝐅T𝐅 is symmetric and positive definite. 

Take its transpose; symmetry becomes obvious.  

To show positive definiteness, for an arbitrary real vector 𝐮 consider the expression, 𝐮 ⋅ 𝐅T𝐅𝐮. 

Let the vector 𝐛 = 𝐅𝐮. Then we can write, 

𝐮 ⋅ 𝐅T𝐅𝐮 = 𝐮 ⋅ 𝐅T𝐛 = 𝐛 ⋅ 𝐅𝐮 = 𝐛 ⋅ 𝐛 = |𝐛|2 > 0 

as the magnitude of any real vector must be positive. Hence 𝐂 = 𝐅T𝐅 is positive definite.  

Since every positive definite tensor has a positive definite square root. Let that square root be 𝐔 

𝐅𝐓𝐅 = 𝐔𝐔 = 𝐔𝐓𝐔 

= 𝐔𝐓𝐈𝐔 = 𝐔𝐓𝐑𝐓𝐑𝐔 

= (𝐑𝐔)𝐓𝐑𝐔 

Which shows that 𝐅 = 𝐑𝐔 

We can also find a positive definite tensor 𝐕 such that 𝐅 = 𝐕𝐑 

Write 𝐅 = 𝐑𝐔 = 𝐕𝐑 ⇒ 𝐕 = 𝐑𝐔𝐑−𝟏 

The fact that 𝐕 is positive definite can also be established from the fact that  

𝐕𝟐 = 𝐑𝐔𝐑−𝟏𝐑𝐔𝐑−𝟏 

= 𝐑𝐔𝐔𝐑−𝟏 = 𝐑𝐔𝐔𝐑𝐓 

= 𝐑𝐔(𝐑𝐔)𝐓 

= 𝐅𝐅𝐓 

 which is obviously positive-definite. 

To complete the Polar Decomposition Theorem, we now need to show that the 𝐑 in 
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𝐅 = 𝐑𝐔 

is a rotation. Now, from the above equation, we have that, 

𝐅𝐔−1 = 𝐑 

so that 

𝐑T𝐑 = 𝐔−𝐓𝐅T𝐅𝐔−1 = 𝐔−1𝐔2𝐔−1 = 𝐈 

Which shows 𝐑 to be an orthogonal tensor. But  

det 𝐑 = det(𝐅𝐔−1) = det 𝐅 × det𝐔−1 > 0. 

From physical considerations, we know that determinant of the deformation gradient is 

necessarily positive and that of the inverse of 𝐔 is positive because 𝐔−1 is also positive definite. 

Hence we can see that, det𝐑 = +𝟏. Which, when added to the fact that 𝐑T𝐑 = 𝐈 proves 

thatmeans that 𝐑 is a rotation. 

End of Theorem 

Meaning of the Polar Decomposition Theorem. 

The diagram in Figure _____ depicts the polar decomposition theorem.  
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Beginning from any material configuration, the transformation given by the deformation gradient 

leads to the spatial configuration. However, this transformation can be achieved in two two-stage 

processes.  

1. A stretch in the material configuration through the Right Stretch Tensor 𝐔; followed by a 

rotation by the rotation tensor 𝐑 to the spatial configuration. Note that the rotation 

tensor is neither a material nor a spatial tensor. It is, like the deformation gradient, a two-

toe tensor; operating on a material vector and producing a spatial tensor. 

2. A transformation to the spatial configuration by the rotation tensor 𝐑, followed by a 

stretch to the final state in that configuration by the left stretch tensor. The latter is a 

spatial tensor as it takes a spatial vector (output of the rotation tensor), and returns a 

spatial vector. 

The right stretch tensor is a material tensor. As we can see, the different tensors that come to 

our attention are classified by what kinds of arguments they can take and what kind of vectors 

they produce. On the other hand, vectors are classified by where they reside. For example, the 

material vector is so called because it is made up of elements in the referential (material) 

configuration. Spatial tensors are similarly defined.  

For tensors, when the input as well as output of a tensor are material vectors, such is a material 

tensor. Examples encountered so far include the Right Stretch Tensor, its inverse, The Right 

Cauchy-Green Tensor and its inverse. These tensors are also symmetrical and positive definite. 

Spatial tensors take spatial vectors and produce spatial vectors as do the Left Stretch Tensor, its 

inverse and the Left Cauchy-Green Tensor and its inverse.  

Two-Toe Tensors are neither material not spatial tensors. They take spatial inputs and produce 

material, or vice versa. Examples include the Rotation Tensor, its transpose (same as its inverse), 

the Deformation Gradient, its transpose and its inverse.  

 

We the nature of the kind of tensor or the group a tensor belongs can be established by the 

following reasoning: 
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Consider a spatial vector 𝐬. The dot product 𝐬 ⋅ 𝑑𝐱 has physical significance while 𝐬 ⋅ 𝑑𝐗 does not 

as the two operands do not exist at the same time so an operation between them makes no 

physical sense. 

Clearly,  

𝐬 ⋅ 𝑑𝐱 = 𝐬 ⋅ 𝐅𝑑𝐗 = 𝑑𝐗 ⋅ 𝐅T𝐬 

meaning that 𝐅T𝐬 is a material vector so that 𝐅T transforms spatial vectors to material. Beginning 

with a material vector 𝐭. The physically meaningful product,  

𝐭 ⋅ 𝑑𝐗 = 𝐭 ⋅ 𝐅−1𝑑𝐱 = 𝑑𝐱 ⋅ 𝐅−𝐓𝐭 

Showing that 𝐅−𝐓 transforms material to spatial while 𝐅−1transforms spatial vectors to material. 

These tensors are two-toed. 

Area Transformation 

For an element of area 𝑑𝐚 in the deformed 

body with a vector 𝑑𝐱 projecting out of its 

plane (does not have to be normal to it). For 

the elemental volume, we have the following 

relationship: 

𝑑𝐯 = 𝐽𝑑𝐕 = 𝑑𝐚 ⋅ 𝑑𝐱 = 𝐽𝑑𝐀 ⋅ 𝑑𝐗 

where 𝑑𝐀 is the element of area that transformed to 𝑑𝐚 and 𝑑𝐗 is the image of  𝑑𝐱 in the 

undeformed material. Noting that, 𝑑𝐱 = 𝐅𝑑𝐗 we have, 

𝑑𝐚 ⋅ 𝐅𝑑𝐗 − 𝐽𝑑𝐀 ⋅ 𝑑𝐗 = 0 

=  (𝐅T𝑑𝐚 − 𝐽𝑑𝐀) ⋅ 𝑑𝐗 

For an arbitrary vector 𝑑𝐗, we have: 

𝐅T𝑑𝐚 − 𝐽𝑑𝐀 = 𝐨 

so that, 

𝑑𝐚 =  𝐽𝐅−T𝑑𝐀 = 𝐅𝐜𝑑𝐀 

where 𝐅𝐜 is the cofactor tensor of the deformation gradient. We have used the transformation 

of volume to obtain an expression for the area transformation. The cofactor tensor is responsible 

for local area changes while the determinant of the deformation gradient is responsible for local 

volume changes. 
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Measuring Shape Changes 

Strain 

Strain is our attempt to quantify relative displacements and changes in orientations of material 

line elements as a result of the deformation. Wholesale movements of the entire element itself, 

by rotation, translation or a combination of both do not qualify as strain. We call such 

transformations Rigid Body Motions. Examples are:  

1. Rotation: of all material points in the element about an axis 

2. Translation: of all the material element by the same amount in a given direction. 

Strain is a definition. Successful strain functions are so because experience and usage in using 

them as measuring and prediction tools have been successful. A proper strain function must 

satisfy two conditions:  

• Two deformations, differing only by rigid body motions represent the same strained 

system in so far as they create the same shape changes in identical materials. A correct 

strain function will detect this and compute equal quantities for the situations they 

represent. 

• When the deformation gradient becomes 𝐅 = 𝐈, the identity tensor, the strain function 

must vanish everywhere. This means that,  

Many strain functions can be defined in so far as they satisfy the above conditions. A number 

have been used successfully in certain situations. 

The most successful strain functions are defined from the Right and Left Cauchy-Green Tensors. 

They are defined either as material tensors or spatial tensors. Let us consider first the Green-

Lagrange Strain Tensor, 𝐄 defined as 

𝐄 =
1

2
(𝐂 − 𝐈) 

where 𝐂 = 𝐅T𝐅, the right Cauchy Green Tensor. It will become clear shortly that this strain 

function is more familiar than it looks. A comparison of what it computes will be made to our 

elementary conception of strain as the quotient of “increase in length and original length”. It will 

soon become clearer that this is the strain function we have in mind from that common 

definition.  
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Next, we look at the Euler-Almansi Strain Tensor, 𝐞 

𝐞 =
1

2
(𝐈 − 𝐁−1) 

where 𝐁 = 𝐅𝐅T is called the Left Cauchy-Green Tensor. (𝐁−1 is named in honor of another great 

man and referred to as the Finger Tensor.). We have shown that 𝐂 = 𝐔2 is a material tensor 

while 𝐁 = 𝐕2 is spatial. Consequently, 𝐄 is a material strain tensor field while 𝐞 is spatial. 

Generalized Strain: The Seth-Hill Strain Functions 

It has been shown by Seth and Hill that the popular strain functions are special cases of 

generalized strain functions. These functions, named for the authors, are called the Seth-Hill 

functions. The referential Seth Hill Strain Function is, 

1

𝑚
(𝐔𝑚 − 𝐈) for 𝑚 ≠ 0, 

loge 𝐔 ,  𝑚 = 0 

It is easy to see that the Euler-Lagrange Strain function is the special case of the Seth-Hill material 

strain function when 𝑚 = 2. 

On the spatial side of things, we have another class of strain function generators. Here is the 

spatial Seth-Hill Strain function: 

1

𝑚
(𝐕𝑚 − 𝐈) for 𝑚 ≠ 0 

loge 𝐕 ,  𝑚 = 0 

Again, as before, the Euler-Almansi Strain function, 𝐞 =
1

2
(𝐈 − 𝐁−1) is the special case of the 

spatial Seth-Hill Strain function when 𝑚 = −2. 

Uniaxial Extension 

They told you that strain is Increase in length over original length! Here is what they were talking 

about: 

We noted earlier that Uniaxial extension transformation function is, 𝐱 = 𝛘(𝐗) = 𝛼1𝑋1𝐞1 +

𝑋2𝐞2 + 𝑋3𝐞3. Let us write 𝛼1 = 𝑙1/𝑙0 and examine the implications. What is the value of 𝛼1𝑋1 

when 𝛼1 = 𝑙1/𝑙0? Of course, it is zero when 𝑋1 = 0, and it is equal to 𝑙1 when 𝑋1 = 𝑙0. In one 

word, it properly defines the spatial configuration for the uniaxial extension we are so used to!  

in this case, 𝛼2 = 𝛼3 = 1. Consequently, the Lagrangian Strain becomes, 
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The Green Lagrange strain tensor is, 

𝐄 = −
1

2
(1 − (

𝑙1
𝑙0
)
2

)𝐄1⊗𝐄1 

≈
𝑙1 − 𝑙0
𝑙0

𝐄1⊗𝐄1 

To see that this is true, consider that, 

𝑙1
2 − 𝑙0

2

2𝑙0
2 =

(𝑙1 − 𝑙0)(𝑙1 + 𝑙0)

2𝑙0
2  

Now, observe that, 

lim
𝑙0→𝑙1

(𝑙1 − 𝑙0)(𝑙1 + 𝑙0)

2𝑙0
2 =

𝑙1 − 𝑙0
𝑙0

 

When strains are small, in uniaxial extension, it is correct to state that change in length divided 

by original length is equal to strain! What do the components of the strain tensor mean? 

Begin with the meaning of the deformation gradient. The strain tensor components deal with the 

fibers along the coordinate axes. A look at the strain computations in earlier 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎® 

code reveals the fact that extension (or contraction) supplies the diagonal elements of the strain 

tensor. Translations and rotations create zero strain as they are rigid-body motions. In the 

example here, the orientation of the extension along the coordinate axes shows that linear 

extension or contraction along a coordinate axes creates a strain component element in the 

diagonal for that coordinate. It can similarly be shown that shear creates off diagonal element in 

the strain tensor. If it is limited to a coordinate plane, the off-diagonal elements appropriate to 

that plane will be created. For example, a shear on the 𝐞1 – 𝐞2 plane creates components 𝐞1⊗

 𝐞2 or 𝐞2 – 𝐞1. It does not matter which is chosen as the strain tensor, by definition, MUST be 

symmetrical. 

Stretch Tensors, Right and Left 

The Polar decomposition theorem immediately shows why the deformation gradient cannot be 

a proper measure of strain. Consider the expression, 𝐅1 = 𝐑1𝐔,  𝐅2 = 𝐑2𝐔 so that the only 

difference between the two deformation gradients is the fact that the rotations are different, but 

the stretch tensors are the same. The strains should be the same but, if we were to use the 
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deformation gradient as our strain function, we would compute two different values. This 

disqualifies the deformation gradient as a correct measure of strain. 

Consider two infinitesimal material vectors, 𝑑𝐗1and  𝑑𝐗2and subject the material in which they 

are placed to the deformation gradient 𝐅. Clearly, the images of these two elements in the spatial 

state will be:  

𝑑𝐱1 = 𝐅𝑑𝐗1and 𝑑𝐱2 = 𝐅𝑑𝐗2 

We now proceed to find the magnitude of the 

image vectors by taking the scalar products as 

follows: 

𝑑𝐱1 ⋅ 𝑑𝐱2 = 𝐅𝑑𝐗1 ⋅ 𝐅𝑑𝐗2 

= 𝐑𝐔𝑑𝐗1 ⋅ 𝐑𝐔𝑑𝐗2 

= 𝐔𝑑𝐗1 ⋅ 𝐑
T𝐑𝐔𝑑𝐗2 

= 𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗2 

Upon recalling that the transpose of a rotation is its inverse. So that, if both vectors are the same, 

we have that,  

𝑑𝐱1 ⋅ 𝑑𝐱1 = 𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗1 

And after taking square roots, we see that, 

‖𝑑𝐱‖ = ‖𝐔𝑑𝐗‖ 

Which tells us that the magnitude of the spatial vector is governed by a transformation of the 

material vector, not by the deformation gradient, but by the right stretch tensor.  

It is left as an exercise for you to make the inverse argument, that, in terms of the spatial lengths, 

the referential length can be found from, 

‖𝑑𝐗‖ = ‖𝐕−1𝑑𝐱‖ 

Shear Strain 

The above arguments helps us clarify issues with normal strains on infinitesimal elements. Once 

we know the Right stretch tensor, we can find the new length of any fibre. In shear strain, we are 

interested, not in elongation or reductions in lengths, but in the changes in the angles between 

infinitesimal elements.  
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Using the same diagram, we can take a look at the angle between these two referential elements 

as they are transformed in the deformation In the referential configuration, the angle between 

the line elements, 𝑑𝐗1 and 𝑑𝐗2 is, 

Θ = cos−1 (
𝑑𝐗1 ⋅ 𝑑𝐗2
‖𝑑𝐗1‖‖𝑑𝐗2‖

) 

To find the angle between any two elements in the spatial configuration we simply recall that the 

angle we seek is  

𝜃 = cos−1 (
𝑑𝐱1 ⋅ 𝑑𝐱2
‖𝑑𝐱1‖‖𝑑𝐱2‖

) = cos−1 (
𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗2
‖𝐔𝑑𝐗1‖‖𝐔𝑑𝐗2‖

) 

To find shear strain, we look at two elements in the referential configuration that are at right 

angles. Shear strain is DEFINED as the change in the right angle between these two elements: We 

subtract the new angle 𝜃 in radians from 
𝜋

2
. As it is with elongations or contractions of length, the 

changes in angles are controlled, not by the deformation gradient or the rotation, but by the right 

and left stretch tensors. The insight leading to the Seth-Hill generalized strain functions become 

clearer as they correctly recognized the particular tensor responsible for the shape changes 

linearly as well, as in relative angular displacements. 

Displacement Function 

Consider a material that has been subjected to a deformation as shown below. Here, for 

simplicity, we refer both configurations to the same Cartesian origin and let the two coordinate 

systems coincide. 

Let a point 𝐏 be located at the point 𝐗 in the 

material configuration be such that it 

transforms to the point 𝐩 located at 𝐱 =

𝛘(𝐗) in the spatial. 

Consider the vector 𝐮 = 𝛘(𝐗) − 𝐗 Let us take 

the material gradient of this equation and 

write, 

𝐇 ≡ Grad 𝐮 = Grad 𝛘(𝐗) − 𝐈 = 𝐅 − 𝐈 
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Small Strains. 

The built environment, using linear elasticity, has at its core the fact tha strains are small: a very 

reasonable assumption in the days where hard metals such as Iron and its ores or aluminum in 

its harder varieties were the chief materials for the built environment and manufacturing. Things 

have changed significantly and those assumptions are no longer always valid. In this section, we 

will make the assumption of “small strains” and observe its implications on the quantities we 

have been looking at. In component form, we can write, 

𝐻𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑋𝑗

 

Upon noting that the identity tensor, in Cartesian coordinates has the Kronecker delta as its 

coefficients, we can therefore write, 

𝐹𝑖𝑗 = 𝛿𝑖𝑗 + 𝐻𝑖𝑗 

Again, in Cartesian, the transpose is simply the reversal of the indices. Hence we can write, 

 

𝐄 =
1

2
(𝐅T𝐅 − 𝐈) =

1

2
((𝐇 + 𝐈)T(𝐇 + 𝐈) − 𝐈) 

=
1

2
(𝐇 + 𝐇T + 𝐇T𝐇) 

In component form as, 

𝐸𝑖𝑗 =
1

2
(𝐻𝑖𝑗 + 𝐻𝑗𝑖 + 𝐻𝑘𝑖𝐻𝑘𝑗) 

=
1

2
(
𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖
+
𝜕𝑢𝑘
𝜕𝑋𝑖

𝜕𝑢𝑖
𝜕𝑋𝑗

) 

If we can neglect second-order terms, and realizing that the spatial is indistinguishable from the 

material, then we obtain the familiar form for strain-displacement relationships: 

𝐸𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

As we can see, this expression is valid only when the strains are sufficiently small that the 

exclusion of second-order terms does not affect the results significantly. 
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Derivatives of Motion 

In this section, we take a closer look at the derivatives of motion. The matter deserves a closer 

look because, while there is a single object under consideration, for the purpose of analysis, we 

have two different views of it: the referential or material view and the spatial or current view. It 

is important to get clarity on which we are talking about when we do differential and integral 

calculus on the body. It is also important to note the relationship between the quantities 

obtained from the referential perspective and the spatial (current) configuration.  

Disambiguation Issues 

The terminology of kinematics can be confusing. It can be helpful to be aware of at least four 

issues as we attempt to compute various derivatives. It may pay us handsomely to have made 

those decisions early.  

1. Disambiguate “Spatial”. Sometimes, it refers to the current configuration: the spatial 

configuration that is visible. At other times it refers to the Euclidean space, as distinct from 

time – as we talk about variations that are temporal and those that are spatial. We shall use 

the qualifiers “current” for spatial configurations when it becomes necessary to 

disambiguate. We may also use the word “field” to qualify the derivatives according to 

position, to distinguish that from the current configuration. 

2. Resident Configuration of Vectors and Tensors. In applying the tools of calculus to any 

quantity, it may be helpful to first identify what configuration it lives in: Spatial or Referential. 

This helps to avoid several issues of ambiguity in computation and analysis 

3. Material and Spatial Operations. We can differentiate a tensor or vector or scalar, no matter 

where it lives, by looking at a material point it occupies or by focusing on the current position 

it occupies. Talking about a material derivative, for example, we are looking at the derivative 

based on the material point occupied in the referential state. A spatial derivative is with 

respect to the current location in the visible configuration. 

4. The Function and its Value. Matter here is rather pedantic in the sense that the mixing of 

these two will not likely lead to a confusion or error. Perhaps only a Mathematician will 

quarrel with you. Yet, in the statement, 𝐱 = 𝛘(𝐗, 𝑡), the function itself is on the RHS, the value 

is on the left. When we write, 𝐱(𝐗, 𝑡), we confuse the two.  
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Material Derivative 

The spatial vector, 𝐱 = 𝛘(𝐗, 𝑡), in temporal differentiation, produces the velocity of the particle 

that was located at 𝐗 in the referential configuration. Hence, 

𝐯 ≡
𝜕𝛘(𝐗, 𝑡)

𝜕𝑡
|
𝐗

 

Of course, you will see other textbooks present this as 𝐯 =
𝜕𝐱

𝜕𝑡
 since the motion function 𝛘(𝐗, 𝑡) 

evaluates to 𝐱. That is point #4 above. Note that the motion vector as well as velocity, its material 

derivative, are both spatial vectors. By this we are referring to their “place of residence”. In full, 

spatial vector, velocity, is the material time derivative of the spatial vector valued function called 

motion. Differentiating the function again, we obtain acceleration: 

𝐚 ≡
𝜕2𝛘(𝐗, 𝑡)

𝜕𝑡2
|
𝐗

 

which, as before, could be written with no penalty as,  

𝐚 =
𝜕2𝛘(𝐗, 𝑡)

𝜕𝑡2
|
𝐗

=
𝜕𝐯

𝜕𝑡
 

We are now in a position to generalize this: 

Given differentiable scalar 𝜙(𝐗, 𝑡), vector 𝐟(𝐗, 𝑡) or tensor 𝚵(𝐗, 𝑡) valued function, the following 

partial derivatives, 

𝐷𝜙(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝜙(𝐗, 𝑡)

𝜕𝑡
|
𝐗

 

𝐷𝐟(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝐟(𝐗, 𝑡)

𝜕𝑡
|
𝐗

 

𝐷𝚵(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝚵(𝐗, 𝑡)

𝜕𝑡
|
𝐗

 

are called Material Time Derivatives of the respective functions. Notice that we were silent on 

whether the functions themselves were spatial. Suffice here is to say that are all expressed in 

terms of the material vector 𝐗 and 𝑡. 

Each of the above functions could have been expressed in terms of spatial vector 𝐱 using the 

inverse of the relationship, 𝐱 = 𝛘(𝐗, 𝑡), and we could have, 



28 
 

𝐷𝜙(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝜙(𝐗, 𝑡)

𝜕𝑡
|
𝐗

=
𝜕𝜙(𝛘−1(𝐱, 𝑡), 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)

 

At other times, we may choose to write,  

�̂�(𝐱, 𝑡) = 𝜙(𝛘−1(𝐱, 𝑡), 𝑡) 

emphasizing the fact that there is an alteration of the functional form once the transformation 

by the reference map, 𝛘−1(𝐱, 𝑡), is made. When this distinction is not made, it can lead to 

confusion when actual functions are considered especially when the function is expressed 

directly in terms of spatial arguments. In either case, the Material time derivative of a spatial 

function, expressed in terms of the spatial vector can be found using the relationship provided in 

the next section. Notice that to distinguish between the two functions on either side of the above 

equation is necessary as they do not have the same functional form. At the end of substituting 

the Reference Map, 𝛘−1(𝐱, 𝑡), you obtain, �̂�(𝐱, 𝑡), which computes the same value as 

𝜙(𝛘−1(𝐱, 𝑡), 𝑡) but is a different function from 𝜙(𝐱, 𝑡). Here is an occasion where distinguishing 

a function from the value produced is not a trivial matter. The example provided here highlights 

this computational issue clearly. It is important to note that, 

�̂�(𝐱, 𝑡) = 𝜙(𝛘−1(𝐱, 𝑡), 𝑡) 

= 𝜙(𝐗, 𝑡) 

≠ 𝜙(𝐱, 𝑡) 

Hence the hat! The same argument applied to vector 𝐟(𝐗, 𝑡) and tensor 𝚵(𝐗, 𝑡) valued functions. 

Material Derivatives of Spatial Fields 

Our focus on the use of the word spatial for representing current configuration, robs us of the 

proper name of this subsection. Observe that the motion, 𝛘(𝐗, 𝑡), as well as its inverse, the 

Reference Map, 𝛘−1(𝐱, 𝑡) are also fields. A field is a mapping from a Euclidean Point Space, ℰ. Or, 

equivalently, each point in ℰ is associated with a specific value of the function. So are functions 

defined with respect to the same arguments. We can take gradients of these fields and find their 

relationships. 

For any scalar valued field, 𝜙(𝐱, 𝑡), of the spatial vector 𝐱, from multi-variable calculus, we find, 

𝑑�̂� =
𝜕�̂�

𝜕𝐱
⋅ 𝑑𝐱 +

𝜕�̂�

𝜕𝑡
𝑑𝑡 = grad �̂� ⋅ 𝑑𝐱 +

𝜕�̂�

𝜕𝑡
𝑑𝑡 



29 
 

grad in this equation and subsequently, it the spatial field gradient when written with small letter 

”g”. We use the symbolism, 
𝜕�̂�

𝜕𝐱
 as a notational convenience here and subsequently. You easily 

check that this is the same (using Cartesian coordinates) as, 

𝜕�̂�

𝜕𝐱
⋅ 𝑑𝐱 =

𝜕�̂�

𝜕𝑥1
𝑑𝑥1 +

𝜕�̂�

𝜕𝑥2
𝑑𝑥2 +

𝜕�̂�

𝜕𝑥3
𝑑𝑥3 

= (
𝜕�̂�

𝜕𝑥1
𝐞1 +

𝜕�̂�

𝜕𝑥2
𝐞2 +

𝜕�̂�

𝜕𝑥3
𝐞3) ⋅ (𝐞1𝑑𝑥1 + 𝐞2𝑑𝑥2 + 𝐞3𝑑𝑥3) 

= grad �̂� ⋅ 𝑑𝐱 = (�̂�,𝑖 𝐞𝑖) ⋅ 𝑑𝐱 

As will be applicable in general coordinates where the 𝐞𝑖 are no longer Cartesian orthonormal 

vectors and �̂�,𝑖’s are now covariant derivatives. This symbolism produces, as we have seen, 

correct results. We shall use it subsequently without necessarily demonstrating validity. 

Meanwhile, Material Time Derivatives of scalars, vectors and tensors can be found, using the 

above results, even when their arguments are spatial rather than referential vectors; 

𝐷𝜙(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝜙(𝐗, 𝑡)

𝜕𝑡
|
𝐗

=
𝜕𝜙(𝛘−1(𝐱, 𝑡), 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)

=
𝜕�̂�(𝐱, 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)

 

= grad �̂� ⋅
𝜕𝐱

𝜕𝑡
+
𝜕�̂�

𝜕𝑡
 = grad �̂� ⋅

𝜕𝛘(𝐗, 𝑡)

𝜕𝑡
|
𝐗

+
𝜕�̂�

𝜕𝑡
 

= grad �̂� ⋅ 𝐯 +
𝜕�̂�

𝜕𝑡
 

In the same way, a vector valued function, by the same argument, 

𝐷𝐟(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝐟(𝐗, 𝑡)

𝜕𝑡
|
𝐗

=
𝜕𝐟(𝛘−1(𝐱, 𝑡), 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)

=
𝜕𝐟(𝐱, 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)

 

= (grad 𝐟)
𝜕𝐱

𝜕𝑡
+
𝜕𝐟

𝜕𝑡
 = (grad 𝐟) (

𝜕𝛘(𝐗, 𝑡)

𝜕𝑡
|
𝐗

) +
𝜕𝐟

𝜕𝑡
 

= (grad 𝐟)𝐯 +
𝜕𝐟

𝜕𝑡
 

And lastly, for a tensor valued function, by the same argument, 

𝐷𝚵(𝐗, 𝑡)

𝐷𝑡
≡
𝜕𝚵(𝐗, 𝑡)

𝜕𝑡
|
𝐗

=
𝜕𝚵(𝛘−1(𝐱, 𝑡), 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)

=
𝜕�̂�(𝐱, 𝑡)

𝜕𝑡
|
𝛘−1(𝐱,𝑡)
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= (grad �̂�)
𝜕𝐱

𝜕𝑡
+
𝜕�̂�

𝜕𝑡
 = (grad �̂�) (

𝜕𝛘(𝐗, 𝑡)

𝜕𝑡
|
𝐗

) +
𝜕�̂�

𝜕𝑡
 

= (grad �̂�)𝐯 +
𝜕�̂�

𝜕𝑡
 

Since velocity is a vector-valued function, its material time derivative, also called the substantial 

acceleration 

𝐷𝐯

𝐷𝑡
= (grad 𝐯)𝐯 +

𝜕𝐯

𝜕𝑡
 

The first term is the convective acceleration, due to change in location while the second term is 

the acceleration recorded at the location, also called local acceleration. 

Example. 

Consider a motion defined by  

𝐱 = (1 + 𝑡)𝑋1𝐞1 + (1 + 𝑡)
2𝑋2𝐞2 + (1 + 𝑡

2)𝑋3𝐞3 

Let us find the velocity and acceleration. Clearly, in Material terms, 

𝐕(𝐗, 𝑡) = 𝑋1𝐞1 + 2(1 + 𝑡)𝑋2𝐞2 + 2𝑡𝑋3𝐞3 

and acceleration, 

𝐀(𝐗, 𝑡) = 2𝑋2𝐞2 + 2𝑋3𝐞3 

And if we observe that the reference map here is,  

𝐗 = 𝛘−1(𝐱) =
𝑥1
1 + 𝑡

𝐞1 +
𝑥2

(1 + 𝑡)2
𝐞2 +

𝑥3
1 + 𝑡2

𝐞3 

We can substitute here and obtain the spatial description of the velocity and acceleration:  

𝐯(𝐱, 𝑡) =
𝑥1𝐞1
1 + 𝑡

+
2𝑥2𝐞2
1 + 𝑡

+
2𝑡𝑥3𝐞3
1 + 𝑡2

𝐚(𝐱, 𝑡) =
2𝑥2

(1 + 𝑡)2
𝐞2 +

2𝑥3
1 + 𝑡2

𝐞3 
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Now try to evaluate this 

substantial acceleration from the 

spatial velocity! Be careful that 

you are not getting just the local 

acceleration! The following 

Mathematica code computes this 

using the convective and local 

terms: 

 

 

The Two Gradients. 

When the field argument in a gradient is a spatial vector field variable, we have used grad (⋅) to 

express the gradient. On the other hand, if the argument is a referential field variable, we shall 

use the capitalized form, Grad (⋅). The relationship between this two can be useful. It is easily 

established with the symbolism of this chapter as we shall do right away: take the partial 

derivative of any differentiable scalar, vector or tensor-valued field (⋅), that can be defined in the 

spatial as well as the material configuration, 

𝜕(⋅)

𝜕𝐗
=
𝜕(⋅)

𝜕𝐱
•
𝜕𝐱

𝜕𝐗
 

These derivatives with respect to the field variables in the spatial and referential configurations 

are the gradients. Accordingly, recall that the motion, 𝐱 = 𝛘(𝐗, 𝑡) 

Grad (⋅) = ( grad (⋅))
𝜕𝛘(𝐗, 𝑡)

𝜕𝐗
= ( grad (⋅))𝐅(𝐗, 𝑡) 

Specifically, for scalar, vector and tensor fields, we have, 

Grad 𝜙 = (grad 𝜙)𝐅(𝐗, 𝑡) = 𝐅𝐓(𝐗, 𝑡)(grad 𝜙) 

Grad 𝐟 = ( grad 𝐟)𝐅(𝐗, 𝑡), and 

Grad 𝚵 = ( grad 𝚵)𝐅(𝐗, 𝑡). 
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Integrals of Motion 

A Review of Leibniz Theorem 

Integrals of motion involved the differentiation of integrals of motion. As we shall explore under 

what conditions such differentiations may take place under the integrals, we make use of the 

results of Differential and Integral calculus that we need to recall. A quick review of Leibniz 

theorem from elementary calculus does not hurt at this point. 

Leibniz Integral Rule, well-illustrated here states that, 

𝑑

𝑑𝑡
∫ 𝑓(𝑥, 𝑡)𝑑𝑥
𝜙1(𝑡)

𝜙0(𝑡)

= ∫
𝜕

𝜕𝑡
𝑓(𝑥, 𝑡)𝑑𝑥

𝜙1(𝑡)

𝜙0(𝑡)

+ 𝑓(𝜙1(𝑡), 𝑡)
𝑑𝜙1(𝑡)

𝑑𝑡
− 𝑓(𝜙0(𝑡), 𝑡)

𝑑𝜙0(𝑡)

𝑑𝑡
 

Notice that when 𝜙0 and 𝜙1, the limits of the integration are constants, the remainder terms 

vanish and it is ok to change the order of integration and the original equation is correct. The 

following Mathematica code implements a concrete example and can be amended to investigate 

other examples: 

 

Leibniz-Reynolds Transport Theorem 

A generalization of the above rule is known as the Reynold’s Transport Theorem as follows: 

https://en.wikipedia.org/wiki/Leibniz_integral_rule
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The rate of change of an extensive property Φ per unit volume, for the system is equal to the time 

rate of change of Φ within the volume Ω and the net rate of flux of the property Φ through the 

surface 𝜕Ω, or 

𝐷

𝐷𝑡
∫Φ(𝐱, 𝑡)𝑑𝑣
Ω

= ∫
𝜕Φ(𝐱, 𝑡)

𝜕𝑡
𝑑𝑣

Ω

+∫ Φ(𝐱, 𝑡)𝐯 ⋅ 𝐧 𝑑𝑠
𝜕Ω

 

Our first task is to show that this becomes the Leibniz Rule when restricted to one dimension. 

That the first integral on the RHS comes from a generalization of Leibniz rule is easy to see. The 

second integral is for the boundary. Here, we have 

∫
𝜕Φ(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥

𝑥1(𝑡)

𝑥0(𝑡)

 

𝐯 =
𝑑𝑥(𝑡)

𝑑𝑡
𝐢 the boundary Ω becomes the interval [𝑥0(𝑡), 𝑥1(𝑡)], at the beginning of the interval, 

𝐧, the outward drawn normal becomes −𝐢, at the end of the interval, it is 𝐢. The line integral 

occurs only at two points which are now just the beginning points and end points, hence that 

sum of the evaluations at those two points:  

Φ(𝑥0(𝑡), 𝑡) (
𝑑𝑥0(𝑡)

𝑑𝑡
𝐢) ⋅ (−𝐢) + Φ(𝑥1(𝑡), 𝑡) (

𝑑𝑥1(𝑡)

𝑑𝑡
𝐢) ⋅ (𝐢) 

and this recovers the original Leibniz rule. 

Proof. 

𝑑

𝑑𝑡
∫Φ(𝐱, 𝑡)𝑑𝑣
Ω

=
𝑑

𝑑𝑡
∫ Φ(𝐱, 𝑡)

𝑑𝑣

𝑑𝑉
𝑑𝑉

Ω

=
𝐷

𝐷𝑡
∫ Φ(𝐱, 𝑡)𝐽𝑑𝑉
Ω0

  

 = ∫
𝐷

𝐷𝑡
[Φ(𝐱, 𝑡)𝐽]𝑑𝑉

Ω0

 

= ∫ [Φ̇(𝐱, 𝑡)𝐽 +
𝐷𝐽

𝐷𝑡
Φ(𝐱, 𝑡)] 𝑑𝑉

Ω0

= ∫ [Φ̇(𝐱, 𝑡) +
1

𝐽

𝐷𝐽

𝐷𝑡
Φ(𝐱, 𝑡)] 𝐽𝑑𝑉

Ω0

 

= ∫[Φ̇(𝐱, 𝑡) + (div 𝐯)Φ(𝐱, 𝑡)]𝑑𝑣
Ω

 

Consequently, if Φ(𝐱, 𝑡) is a scalar function,  

 

𝐼̇(𝑡) = ∫ [
𝜕Φ(𝐱, 𝑡)

𝜕𝑡
+ 𝐯 ⋅ grad Φ(𝐱, 𝑡) + (div 𝐯)Φ(𝐱, 𝑡)] 𝑑𝑣

Ω
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= ∫ [
𝜕Φ(𝐱, 𝑡)

𝜕𝑡
+ div(𝐯Φ)] 𝑑𝑣

Ω

 

which after applying the divergence theorem of Gauss, we find to be, 

𝐼̇(𝑡) ≡ ∫ [
𝜕Φ

𝜕𝑡
+ div(𝐯Φ)] 𝑑𝑣

Ω

= ∫
𝜕Φ

𝜕𝑡
𝑑𝑣

Ω

+∫ Φ𝐯 ⋅ 𝐧 𝑑𝑠
𝜕Ω

 

as required.  

If the original integrand was a vector-valued differentiable time dependent field, 𝐟(𝐱, 𝑡). Then we 

have, 

𝑑

𝑑𝑡
∫ 𝐟(𝐱, 𝑡)𝑑𝑣
Ω

=
𝑑

𝑑𝑡
∫ 𝐟(𝐱, 𝑡)

𝑑𝑣

𝑑𝑉
𝑑𝑉

Ω

=
𝑑

𝑑𝑡
∫ 𝐟(𝐱, 𝑡)𝐽𝑑𝑉
Ω0

 

= ∫
𝐷

𝐷𝑡
[𝐟(𝐱, 𝑡)𝐽]𝑑𝑉

Ω0

= ∫ [
𝐷𝐟

𝐷𝑡
𝐽 + 𝐟

𝐷𝐽

𝐷𝑡
] 𝑑𝑉

Ω0

 

= ∫ [
𝜕𝐟

𝜕𝑡
𝐽 + (grad 𝐟)𝐽𝐯 + 𝐟

𝐷𝐽

𝐷𝑡
] 𝑑𝑉

Ω0

 

= ∫ [
𝜕

𝜕𝑡
𝐟(𝐱, 𝑡) + (grad 𝐟)𝐯 + 𝐟 div 𝐯 +] 𝐽𝑑𝑉

Ω0

 

= ∫ [
𝜕

𝜕𝑡
𝐟(𝐱, 𝑡) + div (𝐟 ⊗ 𝐯)] 𝑑𝑣

Ω

 

= ∫
𝜕

𝜕𝑡
𝐟(𝐱, 𝑡)𝑑𝑣

Ω

+∫ (𝐟⊗ 𝐯)𝐧 𝑑𝑠
∂Ω

. 

We end this section with the material time derivative with a tensor integrand: Let 𝚵(𝐱, 𝑡) be a 

tensor valued temporal spatial field. Then, the spatial field material time derivative, 

𝑑

𝑑𝑡
∫𝚵(𝐱, 𝑡)𝑑𝑣
Ω

=
𝑑

𝑑𝑡
∫ 𝚵(𝐱, 𝑡)

𝑑𝑣

𝑑𝑉
𝑑𝑉

Ω

=
𝐷

𝐷𝑡
∫ 𝚵(𝐱, 𝑡)𝐽𝑑𝑉
Ω0

 

= ∫
𝐷

𝐷𝑡
[𝚵(𝐱, 𝑡)𝐽]𝑑𝑉

Ω0

= ∫ [
𝐷𝚵

𝐷𝑡
𝐽 + 𝚵

𝐷𝐽

𝐷𝑡
] 𝑑𝑉

Ω0

 

= ∫ [
𝜕𝚵

𝜕𝑡
𝐽 + (grad 𝚵)𝐽𝐯 + 𝚵

𝐷𝐽

𝐷𝑡
] 𝑑𝑉

Ω0

 

= ∫ [
𝜕

𝜕𝑡
𝚵(𝐱, 𝑡) + (grad 𝚵)𝐯 + 𝚵 div 𝐯] 𝐽𝑑𝑉

Ω0

 

= ∫ [
𝜕

𝜕𝑡
𝚵(𝐱, 𝑡) + div (𝚵⊗ 𝐯)] 𝑑𝑣

Ω
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= ∫
𝜕

𝜕𝑡
𝚵(𝐱, 𝑡)𝑑𝑣

Ω

+∫ (𝚵⊗ 𝐯)𝐧𝑑𝑠
∂Ω

 

After applying Gauss theorem and observing that div (𝚵⊗ 𝐯) =  𝚵 div 𝐯 + (grad 𝚵)𝐯. We can 

now state Reynolds Transport Theorem for scalar, vector or tensor-valued field 𝚵(𝐱, 𝑡): 

The net rate of change of 𝚵(𝐱, 𝑡) in Ω is equal to the rate of change occurring within the boundary 

Ω and the rate of influx across the boundary 𝜕Ω: 

𝑑

𝑑𝑡
∫𝚵(𝐱, 𝑡)𝑑𝑣
Ω⏟        

Net Rate of 
Change

= ∫
𝜕

𝜕𝑡
𝚵(𝐱, 𝑡)𝑑𝑣

Ω⏟        
Rate of Change

Within

 +  ∫ 𝚵(𝐯 ⋅ 𝐧)𝑑𝑠
∂Ω⏟        
influx Across
Boundary

 

Rates of Shape Changes 

Stretching and Strain Rates 

Strains, stretches and other tensors associated with deformation and motion may suffice in the 

characterization of solids in deformation. However, for flowing bodies such as fluids or plastic 

processes, the rates of shape changes become more important measures. In this section, we 

delve into some of these aspects. 

Based on the earlier pages, we may view the deformation gradient as a Material Gradient of the 

deformation 𝐱 = 𝝌(𝐗, 𝑡), 

𝐅 = Grad 𝝌(𝐗, 𝑡) 

The material time derivative (that is, keeping 𝐗 fixed) of this is, 

𝐷𝐅

𝐷𝑡
 =

𝐷

𝐷𝑡
Grad 𝝌(𝐗, 𝑡) = Grad �̇�(𝐗, 𝑡) 

= Grad 𝐯 = (grad 𝐯)𝐅 

= 𝐋𝐅 

where 𝐋 ≡ grad 𝐯 is called the velocity gradient.  

From Equation 7b, breaking the deformation gradient using the right stretch tensor, we can write 

that the velocity gradient, 

𝐋 = �̇�𝐅−1 = (𝐑�̇� + �̇�𝐔)𝐔−1𝐑T = 𝐑�̇�𝐔−1𝐑T + �̇�𝐑T 
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Unless otherwise stated, the dot, as in �̇�, represents a material time derivative. Before expressing 

this in terms of skew and symmetric parts, observe first that 𝐑𝐑T = 𝐈, which, differentiating 

gives, 

�̇�𝐑T + 𝐑�̇�T = �̇�𝐑T + (�̇�𝐑T)
T

 

= 0 

showing that 𝐐(𝑡) ≡ �̇�(𝑡)𝐑T(𝑡) is a skew tensor. This is true whenever an orthogonal tensor is 

a differentiable function of time. And since rotation alters neither symmetry nor skewness, we 

can write that,  

𝐋 = 𝐑 sym(�̇�𝐔−1)𝐑T + 𝐑 skw(�̇�𝐔−1)𝐑T + �̇�𝐑T 

= 𝐃+𝐖str +𝐖rot 

= 𝐃+𝐖 

The symmetric part, sym 𝐋 = 𝐃, is called the stretching or the rate of strain tensor, the skew 

part, skw 𝐋 = 𝐖 is the spin tensor. The axial vector of the skew spin tensor is called the vorticity 

𝛚. Furthermore, Again, using the left stretch tensor 𝐕, we can write that the velocity gradient, 

𝐋 = �̇�𝐅−1 = (�̇�𝐑 + 𝐕�̇�)𝐑T𝐕−1 = �̇�𝐕−1 + 𝐕�̇�𝐑T𝐕−1 = 𝐃+𝐖 

the symmetric and skew parts of the velocity gradient. Hence, 

𝐃 = sym(�̇�𝐕−1 + 𝐕�̇�𝐑T𝐕−1) 

=
1

2
(�̇�𝐕−1 + 𝐕−T�̇�T) +

1

2
(𝐕�̇�𝐑T𝐕−1 + 𝐕−T𝐑�̇�T𝐕T) 

=
1

2
(�̇�𝐕−1 + 𝐕−1�̇�) +

1

2
(𝐕�̇�𝐑T𝐕−1 − 𝐕−1�̇�𝐑T𝐕) 

on account of the symmetry of the left stretch tensor and skewness of 𝐑�̇�T 

The skew part of the velocity gradient, 

𝐖 = skw(�̇�𝐕−1 + 𝐕�̇�𝐑T𝐕−1) 

=
1

2
(�̇�𝐕−1 − 𝐕−T�̇�T) +

1

2
(𝐕�̇�𝐑T𝐕−1 − 𝐕−T𝐑�̇�T𝐕T) 

=
1

2
(�̇�𝐕−1 − 𝐕−1�̇�) +

1

2
(𝐕�̇�𝐑T𝐕−1 + 𝐕−1�̇�𝐑T𝐕) 

again on account of the symmetry of the left stretch tensor and skewness of 𝐑�̇�T 

𝐃 = 𝐑 sym(�̇�𝐔−1)𝐑T is the stretching tensor 

𝐖str ≡ 𝐑 skw(�̇�𝐔−1)𝐑T is stretch spin 
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𝐖rot ≡ �̇�𝐑
T is rotation spin 

Relationship between the stretching tensor and the material derivative of the Lagrange Follows 

from: 

2𝐅T𝐃𝐅 = 𝐅T(𝐋 + 𝐋T)𝐅 

= 𝐅T(�̇�𝐅−1 + 𝐅−T�̇�T)𝐅 

= 𝐅T�̇� + �̇�T𝐅 = 2�̇� 

Instantaneous Rates of Stretch and Spin 

Suppose we fix an instant in time and consider the instantaneous values of the stretching and 

rotation rates. Making that instant our reference configuration, we can write, 

𝐅 = 𝐔 = 𝐕 = 𝐑 = 𝐈 

as all these tensors are identity at the instant when displacement coincides with the reference. 

At this instant, substituting the identity tensor as above, we see that, 

𝐃|𝑖𝑛𝑠𝑡 = 𝐑 sym(�̇�𝐔
−1)𝐑T 

= sym(�̇�) 

= �̇� = sym(�̇�𝐕−1 + 𝐕�̇�𝐑T𝐕−1) 

= �̇� 

𝐖|𝑖𝑛𝑠𝑡 = skw(�̇�𝐕−1 + 𝐕�̇�𝐑T𝐕−1) 

=
1

2
(�̇�𝐕−1 − 𝐕−1�̇� + 𝐕�̇�𝐑T𝐕−1 + 𝐕−1�̇�𝐑T𝐕)  

= �̇� 

Skew Tensors, Vorticity & Circulation 

Vorticity is the axial vector of a tensor of motion. We will recall that only skew tensors possess 

axial vectors. Furthermore, our introduction to Stokes Theorem in the previous chapter shows 

the relationship between a line integral along a closed path and the curl of a vector. When this 

integral is the circulation caused by the motion of a fluid body, the vector in question is the axial 

vector of the skew part of the velocity gradient. These facts make it necessary to take a closer 

look at some properties of skew tensors. 
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Given a skew tensor 𝐖, its cubic characteristic equation, det(𝐖− 𝛼𝐈) = 0 necessarily has a 

solution, 𝛼 = 0. In order to see this, notice that, every skew tensor has a zero eigenvalue. The 

transpose, 𝐖T = − 𝐖, its negative. Consequently, for any 𝐚, 𝐛 ∈ 𝔼,  

𝐚 ⋅ 𝐖𝐛 = −𝐛 ⋅ 𝐖𝐚 

Now the characteristic equation, det(𝐖− 𝛼𝐈) = 0, of 𝐖, is a cubic polynomial in 𝜆. There is, 

therefore, at least on real root. Let this be 𝜆 and let 𝛏1 be the associated eigenvector. Clearly, 

𝛏1 ⋅ 𝐖𝛏1 = 𝛏1 ⋅ 𝐖
T𝛏1 = −𝛏1 ⋅ 𝐖𝛏1 

= 𝛏1 ⋅ 𝜆𝛏1 

= 𝜆|𝛏1|
2 = 0 

Which can only be true if 𝜆 = 0. Hence one root is zero as the magnitude of the eigenvector of a 

real eigenvalue can never vanish. 

One consequence of this result is that the component representation of any skew tensor 

becomes especially simple. If we form a positively-oriented orthonormal system (such that, 𝛏𝑖 =

𝑒𝑖𝑗𝑘𝛏𝑗 × 𝛏𝑘) with the three eigenvectors, 𝛏𝑖, 𝑖 = 1,2,3, (No assumptions that 𝛏2, 𝛏𝟑 are 

eigenvectors) we can expand 𝐖 and write, 

𝐖 = (𝛏𝑖 ⋅ 𝐖𝛏𝑗)𝛏𝑖⊗ 𝛏𝑗  

= (𝛏1 ⋅ 𝐖𝛏1)𝛏1⊗𝛏1 + (𝛏1 ⋅ 𝐖𝛏2)𝛏1⊗𝛏2 +⋯+ (𝛏3 ⋅ 𝐖𝛏3)𝛏3⊗𝛏3 

= (𝛏2 ⋅ 𝐖𝛏𝟑 − 𝛏𝟑 ⋅ 𝐖𝛏𝟐)𝛏2⊗ 𝛏3 

= 𝑤(𝛏3⊗ 𝛏2 − 𝛏2⊗𝛏3) 

where 𝑤 = 𝛏𝟑 ⋅ 𝐖𝛏𝟐. All diagonal elements vanish by the skewness of 𝐖 as well as all 

components containing the first eigenvector since its eigenvalue is zero:  

𝛏𝑖 ⋅ 𝐖𝛏1 = −𝛏1 ⋅ 𝐖𝛏𝑖 = 0 ∀𝑖 = 2, 3. 

The axial vector of 𝐖 is a scaled version of 𝛏1. The scaling factor is tensor coefficient, 𝛏3 ⋅ 𝐖𝛏2 

for is we write, 𝐩 ≡ (𝛏3 ⋅ 𝐖𝛏2)𝛏1 For any 𝐚 ∈ 𝔼, we can compute,  

𝐩 × 𝐚 = (𝛏3 ⋅ 𝐖𝛏2)𝛏1 × 𝐚 

= (𝛏3 ⋅ 𝐖𝛏2)(𝛏2 × 𝛏3) × 𝐚 

= (𝛏3 ⋅ 𝐖𝛏2)((𝛏2 ⋅ 𝐚)𝛏3 − (𝛏3 ⋅ 𝐚)𝛏2) 

= (𝛏3 ⋅ 𝐖𝛏2)[𝛏3⊗𝛏2 − 𝛏2⊗𝛏3]𝐚 

= 𝐖𝐚 
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Showing that 𝐩 = (𝛏3 ⋅ 𝐖𝛏2)𝛏1 is the axial vector of 𝐖 as required. This gives an easy method to 

compute the first eigenvector of a skew tensor: Normalize the axial vector; and obtain the 

magnitude thereof.  

Finally, the remaining two eigenvalues of 𝐖 are purely imaginary. We can see that this is so in 

the following:  

First eigenvalue is zero; the first invariant of a skew tensor is zero. This is obvious from the fact 

that the diagonal components all vanish giving a trace of zero. Let 𝑤 = 𝛏3 ⋅ 𝐖𝛏2, we can also see 

this without any reference to components remembering that 𝑤𝛏1 is the axial vector of 𝐖: 

𝐼1 = [𝐖𝛏1, 𝛏2, 𝛏3] + [𝛏1,𝐖𝛏2, 𝛏3] + [𝛏1, 𝛏2,𝐖𝛏3] 

= [𝜆𝛏1, 𝛏2, 𝛏3] + [𝛏1, 𝑤𝛏1, 𝛏3] + [𝛏1, 𝛏2, 0] 

= 0 

𝐼2 = [𝐖𝛏1,𝐖𝛏2, 𝛏3] + [𝛏1,𝐖𝛏2,𝐖𝛏3] + [𝐖𝛏1, 𝛏2,𝐖𝛏3] 

= [𝛏1, 𝑤𝛏1 × 𝛏2, 𝑤𝛏1 × 𝛏3] = [𝛏1, 𝑤𝛏3, −𝑤𝛏2] 

= 𝑤2[𝛏1, 𝛏2, 𝛏3] = 𝑤
2 

𝐼3 = [𝐖𝛏1,𝐖𝛏2,𝐖𝛏3] = [0,𝐖𝛏2,𝐖𝛏3] = 0 

So that the characteristic equation is, 

𝜆3 + 𝐼2𝜆 = 𝜆
3 + 𝑤2𝜆 = 0 

yielding roots 𝜆 = 0,±𝑖|𝑤|. 

Definition. Vorticity. The skew part of the velocity gradient, 𝐋 = grad 𝐯, 

𝐖 ≡ skw 𝐋 =
1

2
(grad 𝐯 − gradT𝐯) 

As any other skew tensor, has an axial vector. This axial vector, 𝛚 is defined as the vorticity of 

the motion.  

End of Definition 

We observe that the curl of velocity, (defined earlier in 3.___). Given the third order alternating 

tensor, 𝐄 = 𝑒𝑖𝑗𝑘𝐞𝑖⊗𝐞𝑗⊗𝐞𝑘 

curl 𝐯 = div 𝐄𝐯 

= 𝑒𝑖𝑗𝑘𝑣𝑘 ,𝑗 𝐞𝑖  

in component form. The vector cross of this vector is equal to grad 𝐯 − gradT𝐯, for, 

((curl 𝐯) ×) = 𝑒𝑖𝑗𝑘𝑣𝑘 ,𝑗 𝐞𝑖 × 

= 𝑒𝛼𝑖𝛽𝑒𝑖𝑗𝑘𝑣𝑘,𝑗 𝐞𝛼⊗𝐞𝛽 
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= (𝛿𝛽𝑗𝛿𝛼𝑘 − 𝛿𝛽𝑘𝛿𝛼𝑗)𝑣𝑘 ,𝑗 𝐞𝛼⊗𝐞𝛽 

= 𝑣𝑘 ,𝑗 𝐞𝑘⊗𝐞𝑗−𝑣𝑘,𝑗 𝐞𝑗⊗𝐞𝑘 

= grad 𝐯 − gradT𝐯 

Showing that  

𝐖 = skw 𝐋 =
1

2
(grad 𝐯 − gradT𝐯) 

= (𝛚 ×) =
1

2
((curl 𝐯) ×) 

from which, twice the vorticity, 

2𝛚 =  curl 𝐯 

equals the curl of the flow velocity. 

Circulation 

The line integral over boundary curve Γ of the velocity along the closed path shown is defined as 

circulation. Given a positively oriented surface 𝒮, and bounded as 

shown by a path Γ, the line integral, 

𝐶Γ = ∫𝐯(𝐱, 𝑡) ⋅ 𝑑𝐱
 

Γ

 

Clearly, only the resolved component of the velocity along the 

tangent contributes to this integral. Stokes theorem states that, 

given a positively oriented surface 𝒮, and bounded as shown by a path Γ, the line integral, 

∫𝐯(𝐱, 𝑡) ⋅ 𝑑𝐱
 

Γ

=∬(curl 𝐯) ⋅ 𝑑𝐬.
 

𝒮

 

That is, the line integral taken over the path shown is equal to the surface integral over the entire 

surface. The vorticity of the flow, 𝛚 =
1

2
 curl 𝐯, so that the circulation is, 
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∫𝐯(𝐱, 𝒕) ⋅ 𝒅𝐱
 

𝚪

= 𝟐∬𝛚 ⋅ 𝒅𝐬.
 

𝓢

 

Constraints on Flow 

Irrotational & Circulation-Preserving Flow Fields 

A flow field is defined as Irrotational when the vorticity vanishes. In an irrotational field, by 

Equation___, the circulation also vanishes: 

𝐶Γ = ∫𝐯(𝐱, 𝑡) ⋅ 𝑑𝐱
 

Γ

= 0 

Kelvin’s Circulation Theorem.  

If the material acceleration is the gradient of a potential, then the motion is circulation preserving; 

that is, its circulation does not change.  

To establish this theorem, we need to first show that the rate of change of circulation is the 

derivative of the integral  

𝐶Γ = ∫𝐯(𝐱, 𝑡) ⋅ 𝑑𝐱
 

Γ

 

of the velocity taken over the closed path:  

Let Γ0 be the closed path transformed to Γ from the reference configuration by the deformation 

Gradient field, 𝐅(𝐗, 𝑡). 𝐕(𝐗, 𝑡) is the velocity in referential terms (always evaluates to the same 

values as 𝐯(𝛘−1(𝐱, 𝑡), 𝑡)). Taking a material derivative of both sides, 

𝐷𝐶Γ
𝐷𝑡

=
𝐷

𝐷𝑡
∫𝐯(𝐱, 𝑡) ⋅ 𝑑𝐱
 

Γ

=
𝐷

𝐷𝑡
∫ 𝐕(𝐗, 𝑡) ⋅ 𝐅𝑑𝐗
 

Γ0

 

= ∫
𝐷

𝐷𝑡
(𝐕(𝐗, 𝑡) ⋅ 𝐅)𝑑𝐗

 

Γ0

 

= ∫ [
𝐷𝐕

𝐷𝑡
⋅ 𝐅𝑑𝐗 + 𝐕 ⋅

𝐷𝐅

𝐷𝑡
𝑑𝐗]

 

Γ0

= ∫ [
𝐷𝐕

𝐷𝑡
⋅ 𝐅𝑑𝐗 + 𝐕 ⋅ 𝐋𝐅𝑑𝐗]

 

Γ0

 

= ∫ [
𝐷𝐯

𝐷𝑡
⋅ 𝑑𝐱 + 𝐯 ⋅ 𝐋𝑑𝐱]

 

Γ

 

Note that 𝐋𝑑𝐱 = (grad 𝐯)𝑑𝐱 = 𝑑𝐯. Hence,  

𝐷𝐶Γ
𝐷𝑡

= ∫ [
𝐷𝐯

𝐷𝑡
⋅ 𝑑𝐱 + 𝐯 ⋅ 𝑑𝐯]

 

Γ

= ∫
𝐷𝐯

𝐷𝑡
⋅ 𝑑𝐱

 

Γ

+
1

2
∫𝑑(𝐯 ⋅ 𝐯)
 

Γ
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= ∫
𝐷𝐯

𝐷𝑡
⋅ 𝑑𝐱

 

Γ

 

As the integral of a full differential velocity taken over a closed path vanishes if the function is 

single valued. If ∃𝜙(𝐗, 𝑡) such that acceleration,  

𝐷𝐯

𝐷𝑡
=  grad 𝜙(𝐗, 𝑡), 

Then,  

𝐷𝐶Γ
𝐷𝑡

= ∫
𝐷𝐯

𝐷𝑡
⋅ 𝑑𝐱

 

Γ

 

= ∫(grad 𝜙(𝐗, 𝑡)) ⋅ 𝑑𝐱
 

Γ

 

= ∫𝑑𝜙(𝐗, 𝑡)
 

Γ

= 0 

Which, again, takes a full differential through a closed path, and hence vanishes. 

It follows therefore, that an acceleration, derivable from the gradient of a potential is circulation 

preserving. 

End of Theorem 

Rigid Field 

Consider two particles 𝐗 and 𝐘 in the referential configuration. The distance between these in 

the spatial configuration, 𝜙(𝑡),  is a function of time: 

𝜙(𝑡) = ‖𝛘(𝐗, 𝑡) − 𝛘(𝐘, 𝑡)‖ 

Differentiating 
1

2
(𝜙(𝑡))

2
, we can write, 

𝜙(𝑡)�̇�(𝑡) = (𝐱 − 𝐲) ⋅ (�̇� (𝐗, 𝑡) − �̇�(𝐘, 𝑡)) 

= (𝐱 − 𝐲) ⋅ (𝐯(𝐗, 𝑡) − 𝐯(𝐘, 𝑡)) 

Which must vanish if the distance between the two points never changes. Taking a spatial 

gradient with respect to 𝐱, observing that grad (𝐮 ⋅ 𝐯) = (gradT𝐮)𝐯 + (gradT𝐯)𝐮 

gradT 𝐯(𝐱, 𝑡)(𝐱 − 𝐲) + 𝐈(𝐯(𝐱, 𝑡) − 𝐯(𝐲, 𝑡)) = 0 

or, 

𝐯(𝐱, 𝑡) = 𝐯(𝐲, 𝑡) − gradT 𝐯(𝐱, 𝑡)(𝐱 − 𝐲) 

Taking spatial gradient again with respect to 𝐲, we have that, 
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grad 𝐯(𝐲, 𝑡) = −gradT 𝐯(𝐱, 𝑡) 

But 𝐱 and 𝐲 are two arbitrary points. Setting 𝐱 = 𝐲, we have that, grad 𝐯(𝐱, 𝑡) = −gradT 𝐯(𝐱, 𝑡) 

showing that the velocity gradient in a rigid velocity field is skew. It follows that grad 𝐯 = 𝐖(𝑡), 

a skew tensor, and 𝐰(𝑡), its axial vector, such that,  

𝐯(𝐱, 𝑡) = 𝐯(𝐲, 𝑡) + grad 𝐯(𝐱, 𝑡)(𝐱 − 𝐲) 

= 𝐯(𝐲, 𝑡) +𝐖(𝑡)(𝐱 − 𝐲) 

= 𝐯(𝐲, 𝑡) + 𝐰(𝑡) × (𝐱 − 𝐲) 

 

Steady Field 

The material acceleration, 

𝐷𝐯

𝐷𝑡⏟
Substantial
Acceleration

=
𝜕𝐯

𝜕𝑡⏟
Local

Acceleration

+ (grad 𝐯)𝐯⏟      
Convective
Acceleration

 

The motion in a subset of the flow field is said to be steady if the local derivatives (if we use 

velocity, it then means local acceleration 
𝜕𝐯

𝜕𝑡
= 0). In steady motion acceleration only occurs from 

change of location: 

𝐷𝐯

𝐷𝑡⏟
Substantial
Acceleration

= (grad 𝐯)𝐯⏟      
Convective
Acceleration

 

In steady motion, the flow field remains unchanged from point to point. Velocities (or other flow 

properties) may vary from point to point, nevertheless as a result of convective acceleration. 

Time Derivatives: Material and Spatial 

We end this chapter with a note on the notation for two important partial derivatives. In 

equation___ we noted a relationship between the time derivatives. It is worth noting that both 

are partial derivatives with respect to time. The difference in each case is what is kept fixed. It is 

this difference that necessitates a difference in notations for representing them which causes a 

significant amount of confusion in the Literature as books and articles are sometimes difficult to 

follow.  
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For a given scalar, vector or tensor field 𝚵(𝐗),let us write, �̂�(𝐱, 𝑡) ≡ 𝚵(𝛘−1(𝐗, 𝑡)), its spatial form, 

the derivative, 

𝜕�̂�

𝜕𝑡
=
𝜕

𝜕𝑡
�̂�(𝐱, 𝑡)|

𝐱=𝛘(𝐗,𝑡)
 

keeping the spatial variable (current position) constant, is the spatial time derivative. The regular 

partial differentiation notation is reserved for this description. 

Another partial derivative arises from the fact that the motion confers a time value on functions 

that are defined with respect to the material configuration via the reference map, 𝛘−1(𝐗, 𝑡) 

which is the inverse of the deformation or motion. If the function 𝚵(𝐗) is differentiated with 

respect to time, keeping the particular particle in reference fixed (following the particle) then, 

the derivative, 

𝐷𝚵

𝐷𝑡
=
𝜕

𝜕𝑡
𝚵(𝐱, 𝑡)|

𝐗
 

We have what is called the substantial derivative. It is also by several other names including 

advective, convective, hydrodynamic, Lagrangian, particle, substantive, Stokes, total derivative 

or simply as the derivative following the motion to emphasize the fact that the particle here is 

kept fixed rather than the location in the current view.  

And from equation____ we have this general relationship, 

𝐷𝚵

𝐷𝑡
=
𝜕�̂�

𝜕𝑡
+ (grad �̂�)𝐯 

 Between the material and spatial partial derivatives with respect to time which we call material 

time and spatial time derivatives respectively. As we saw from the definition of steady motion, 

the fact that a field value is not changing at a point only means that the spatial time derivative 

vanishes. The material time derivative can be non-zero because of the term including the velocity 

gradient. In the special case of steady flow, we saw that the convective acceleration remains and 

is the reason why, despite the fact that the acceleration at a particular point is zero, as seen from 

its spatial velocity not changing at that point, the particle may still be accelerated to another 

position through the convective term, resulting in a non-zero value for the substantial 

acceleration even in steady flow. 
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Conversely, in isochoric flow, the density as we follow the particle remains unchanged. Here, we 

have, 

𝐷𝜌

𝐷𝑡
=
𝜕𝜌

𝜕𝑡
+ (grad 𝜌) ⋅ 𝐯 = 0 

=
𝜕𝜌

𝜕𝑡
+ div(𝜌𝐯) − 𝜌 div 𝐯 

Examples 

1 For the uniform biaxial deformation, given that 𝑥1 = 𝜆1𝑋1, 𝑥1 = 𝜆2𝑋2 and 𝑦
3 = 𝑥3. 

Compute the Deformation Gradient tensor, the Lagrangian Strain Tensor as well as the 

Eulerian Strain Tensor components. 

 

𝐅 = (𝐞1 𝐞2 𝐞3)

[
 
 
 
 
 
 
𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥1
𝜕𝑋3

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

𝜕𝑥2
𝜕𝑋3

𝜕𝑥3
𝜕𝑋1

𝜕𝑥3
𝜕𝑋2

𝜕𝑥3
𝜕𝑋3]

 
 
 
 
 
 

⊗ [
𝐄1
𝐄2
𝐄3

] 

= (𝐞1 𝐞2 𝐞3) [
𝜆1 0 0
0 𝜆2 0
0 0 1

] ⊗ [
𝐄1
𝐄2
𝐄3

] 

= 𝛼1𝐞1⊗𝐄1 + 𝛼2𝐞2⊗𝐄2 + 𝛼3𝐞3⊗𝐄3 

The Green Lagrange strain tensor is, 

𝐄 = −
1

2
(1 − 𝛼1

2)𝐄1⊗𝐄1 −
1

2
(1 − 𝛼2

2)𝐄2⊗𝐄2 

Clearly a biaxial state of strain. The rest of the results can be seen from the attached 

code: 
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2 If the tensor 𝑺 is positive definite, Show that det (𝐒
1

2) =  [det(𝐒)]
1

2. 

 Let the eigenvalues of 𝐒 be 𝜆1, 𝜆2 and 𝜆3. Then the determinant of 𝐒 is 𝜆1𝜆2𝜆3 the square 

root of this is √𝜆1𝜆2𝜆3. But since 𝐒 is positive definite, The eigenvalues of 𝑺
1

2 are 

√𝜆1, √𝜆2 and √𝜆3 so that the determinant of 𝐒
1

2, ie [det(𝐒)]
1

2 = √𝜆1√𝜆2√𝜆3 =

√𝜆1𝜆2𝜆3 

3 Show that rotation alters neither symmetry nor skewness in a tensor. 

 Consider a symmetric tensor 𝐒, and a rotation tensor 𝐑. We take a transpose of the 

rotated tensor 𝐓 = 𝐑𝐒𝐑T 

𝐓T = (𝐑𝐒𝐑T)T 

= (𝐑T)T𝐒T𝐑T =  𝐑𝐒𝐑T 

= 𝐓 

On account of the symmetry of tensor 𝐒 and the fact that the transpose of a transpose 

is the original tensor. 
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Consider a skew tensor 𝐖, and a rotation tensor 𝐑. We take a transpose of the rotated 

tensor 𝛀 = 𝐑𝐖𝐑T 

𝛀T = (𝐑𝐖𝐑T)T 

= (𝐑T)T𝐖T𝐑T = − 𝐑𝐖𝐑T 

= −𝛀 

On account of the skewness of tensor 𝐖 and the fact that the transpose of a transpose 

is the original tensor. 

4 
Show that the tensor 𝐂 = (𝐄1 𝐄2 𝐄3) (

163.24 34.6 4.2
34.6 19. −30.
4.2 −30. 178.

)⊗ [
𝐄1
𝐄2
𝐄3

] is positive 

definite. (a) Find the square root of the 𝐂 by finding its spectral decomposition from its 

eigenvalues and eigenvectors. (b) Use the Mathematica function MatrixPower[C, ½] to 

compare your result. 

 From the code below, it is clear that its eigenvalues are all positive, hence it is positive 

definite. The tensor 𝐂 as well as its square root have the same eigenvectors. It is clear 

that the eigenvectors of 

the square root are the 

square roots of the 

eigenvalues of 𝐂 as the 

figures show.  
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 For a proper orthogonal tensor Q, show that the eigenvalue equation always yields an 

eigenvalue of +1. This means that 𝜆 = 1 is always a solution for the equation, 

det(𝐐 − λ𝐈) 

 For a proper orthogonal tensor, the cofactor, 

𝐐c = (det 𝐐)𝐐−T = 𝐐−T = 𝐐 

Showing that it is self-cofactor. The characteristic equation is, 

𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 − 𝐼3 = 0. 

𝐼3 = 1 for every proper orthogonal tensor; 𝐼2 = 𝐼1since it is self cofactor. The second 

invariant is the trace of the cofactor equaling the first which is the trace of the tensor. 

Consequently, the characteristic equation becomes, 

𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 − 𝐼3 = 0 

Substitute 𝜆 = 1, the equation becomes, 1 − 𝐼1 + 𝐼1 − 1 = 0, identically. Hence this is 

an eigenvalue of the tensor. 

5 For a vector-valued spatial field, we are given that Grad 𝐟 = (grad 𝐟)𝐅(𝐗, 𝑡). Show that, 

Div 𝐟 =  (grad 𝐟): 𝐅T 

 We are given,  

Grad 𝐟 = (grad 𝐟)𝐅 

Take the trace of both sides: 

tr Grad 𝐟 = tr((grad 𝐟)𝐅) 

= (gradT 𝐟): 𝐅 = (grad 𝐟): 𝐅T 

= Div 𝐟 

6 For a vector-valued spatial field, we are given that Grad 𝐟 = (grad 𝐟)𝐅(𝐗, 𝑡). Show that, 

div 𝐟 =  (Grad 𝐟): 𝐅−T 

 We are given,  

Grad 𝐟 = (grad 𝐟)𝐅 

Post product with 𝐅−1 ⇒  grad 𝐟 = (Grad 𝐟)𝐅−1 

Take the trace of both sides: 

tr grad 𝐟 = tr((Grad 𝐟)𝐅−1) 

= (GradT 𝐟): 𝐅−1 = (Grad 𝐟): 𝐅−T 
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= div 𝐟 

7 Given that  

𝑟 = 𝑟(𝑋2),  𝜃 = 𝜃(𝑋1) and 𝑧 = 𝑧(𝑋3) 

𝑋1, 𝑋2, 𝑋3 to 𝑟, 𝜃,  𝑧 are the transformation equations of a straight bar into a semi-

circular arc. Find the deformation Gradient and the Strain tensors associated with the 

deformation. 

 1. If we deform a straight bar into a circular 

bar as shown below, the transformation function 

can be found by the following consideration: 

Note that each horizontal filament in the original 

bar becomes a circular filament in the spatial configuration. The vertical 

undeformed sections become radial sections in the spatial state. For the 

moment, we assume nothing happens in the axial or z direction in each caseLet 

the centerline be a semicircle at a distance 𝑅 and let the thickness contract 

uniformly with a factor 𝛼 

⇒ 𝑟 = 𝑅 + 𝛼𝑋2,  and 

𝜃 =
𝜋𝑋1
2𝐿

 

If the bar contracts uniformly in 𝑋3direction, 𝑧 = 𝛽𝑋3 

𝐅 = (𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧)

[
 
 
 
 
 
 
𝜕𝑟

𝜕𝑋1

𝜕𝑟

𝜕𝑋2

𝜕𝑟

𝜕𝑋3
𝜕𝜃 

𝜕𝑋1

𝜕𝜃

𝜕𝑋2

𝜕𝜃

𝜕𝑋3
𝜕𝑧

𝜕𝑋1

𝜕𝑧

𝜕𝑋2

𝜕𝑧

𝜕𝑋3]
 
 
 
 
 
 

⊗ [
𝐄1
𝐄2
𝐄3

] 

= (𝐞𝑟 𝐞𝜃 𝐞𝑧)

[
 
 
 
 
 
 

𝑟

0
𝜕𝑟

𝜕𝑋2
0

𝜕𝜃 

𝜕𝑋1
0 0

0 0
𝜕𝑧

𝜕𝑋3]
 
 
 
 
 
 

⊗ [
𝐄1
𝐄2
𝐄3

] 
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= (𝐞𝑟 𝐞𝜃 𝐞𝑧) [

0 𝛼 0
𝜋𝑟

2𝐿
0 0

0 0 𝛽

]⊗ [
𝐄1
𝐄2
𝐄3

] 

= (
𝜋𝑟

2𝐿
𝐞𝜃 𝛼𝐞𝑟 𝛽𝐞𝑧)⊗ [

𝐄1
𝐄2
𝐄3

] 

=
𝜋𝑟

2𝐿
𝐞𝜃⊗𝐄1 + 𝛼𝐞𝑟⊗𝐄2 + 𝛽𝐞𝑧⊗𝐄3 

Clearly,  

𝐂 = 𝐅T𝐅 = (
𝜋𝑟

2𝐿
𝐄1⊗𝐞𝜃 + 𝛼𝐄2⊗𝐞𝑟 + 𝛽𝐄3⊗𝐞𝑧) (

𝜋𝑟

2𝐿
𝐞𝜃⊗𝐄1 + 𝛼𝐞𝑟⊗𝐄2 + 𝛽𝐞𝑧

⊗𝐄3) 

= (
𝜋𝑟

2𝐿
𝐄1⊗𝐞𝜃) (

𝜋𝑟

2𝐿
𝐞𝜃⊗𝐄1) + ⋯+ (𝛽𝐄3⊗𝐞𝑧)(𝛽𝐞𝑧⊗𝐄3) 

= (
𝜋𝑟

2𝐿
)
2

𝐄1⊗𝐄1 + 𝛼
2𝐄2⊗𝐄2 + 𝛽

2𝐄3⊗𝐄3 

since each set of basis vectors is orthonormal, and the Right Stretch Tensor, 

𝐔 =
𝜋𝑟

2𝐿
𝐄1⊗𝐄1 + 𝛼𝐄2⊗𝐄2 + 𝛽𝐄3⊗𝐄3 

Is the square root of the Right Cauchy Green tensor. The positive square roots are taken 

since both 𝐂 as well as 𝐔 are necessarily positive definite and can only have positive 

eigenvalues. 

8 In the torsion of the circular bar shown, given that the transformation equations are, 

𝑟 = 𝑅,  𝜃 = Θ + 𝑓(𝑍),  𝑍 = 𝑍, find the deformation gradient and the strain function. 

 It is convenient to refer the torsion problem to cylindrical coordinates. In consistency 

with our practice so far, we select 𝑅,  Θ and 𝑍 for the undeformed body and  𝑟,  𝜃 and 𝑧 

for the typical point in the spatial configuration.  

For a cylindrical bar, it is reasonable to assume that each there are no changes to the 

radial and axial components in any element;  
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Only the angular coordinates are altered by an amount depending on the undeformed 

value and the axial component 𝑍. Hence, 

𝐅 = (𝐞𝑟 𝑟𝐞𝜃 𝐞3)

[
 
 
 
 
 
𝜕𝑟

𝜕𝑅

𝜕𝑟

𝜕Θ

𝜕𝑟

𝜕𝑍
𝜕𝜃 

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝑧

𝜕𝑅

𝜕𝑧

𝜕Θ

𝜕𝑧

𝜕𝑍]
 
 
 
 
 

⊗ [

𝐄𝑹
𝐄Θ/𝑅
𝐄𝑍

]

= (𝐞𝑟 𝐞𝜃 𝐞3) [

1 0 0

0
𝑟

𝑅
𝑟
𝜕𝑓

𝜕Z
0 0 1

]⊗ [
𝐄𝑹
𝐄Θ
𝐄𝑍

] 

The following Mathematica code computes the appropriate tensors of the deformation: 

 From the above computations, we find that the Green Lagrange strains are: 

𝐄 =
1

2
[(
𝑟

𝑅
)
2

 − 1] 𝐄𝛩⊗𝐄𝛩 +

1

2
𝑟2𝑓2(𝑍)𝐄Z⊗𝐄Z +

1

2𝑅
(𝑟2𝑓(𝑍)) (𝐄Θ⊗

𝐄Z + 𝐄Z⊗𝐄𝚯) 

And the right Cauchy-Green Tensor for the 

deformation is: 

𝐂 = 𝐄𝑅⊗𝐄𝑅 + (
𝑟

𝑅
)
2

𝐄𝛩⊗𝐄𝛩

+ [1 + 𝑟2𝑓2(𝑍)]𝐄Z⊗𝐄Z

+
𝑟2𝑓(𝑍)

R
(𝐄Θ⊗𝐄Z + 𝐄Z

⊗𝐄Θ) 

Explain the meaning of the components 

9 In Cartesian Coordinates, the deformation of a rectangular sheet is given by: 

𝒓 = (𝝀𝟏𝒙
𝟏 + 𝒌𝟏𝒙

𝟐)𝐠𝟏 + (𝒌𝟐𝒙
𝟏 + 𝝀𝟐𝒙

𝟐)𝐠𝟐 + 𝝀𝟑𝒙𝟑𝐠𝟑 Compute the tensors 𝑭, 𝑪, 𝑬,𝑼 

and 𝑹. Show that 𝑹𝑻 ⋅ 𝑹 = 𝑰. For 𝜆1 = 1.1, 𝜆2 = 1.25, 𝑘1 = 0.15, 𝑘2 = −0.2, 

determine the principal values and directions of 𝑬. Verify that the principal directions 

are mutually orthogonal. Compute the strain invariants and show that they are 

consistent with the characteristic equation. 



52 
 

  

10 A body undergoes a deformation defined by, 𝑦1 = 𝛼𝑥1, 𝑦2 = −(𝛽𝑥2 + 𝛾𝑥3), 𝑎𝑛𝑑 𝑦3 =

𝛾𝑥2 − 𝛽𝑥3 where 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are constants. Determine 𝑭, 𝑪, 𝑬,𝑼 and 𝑹. 

  

11 In the motion, 𝐱 = ((1 + 𝑡)𝑋2 − 𝑡𝑋1)𝐞1 + ((1 + 𝑡)
2𝑋1 + 𝑡𝑋2)𝐞2 + (1 + 𝑡2)𝑋3𝐞3, 

Find the Reference Map, Spatial Velocity and Substantial Acceleration. Show that the 

latter can be found either by directly differentiating the material velocity or adding the 

local acceleration to the velocity gradient tensor operation on the spatial velocity. 
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 Here is the Mathematica code: 

12 The spatial tensor field, 𝐋 = grad[𝐯(𝐱, t)]is defined as the velocity gradient. Show that 

for a motion governed by the deformation gradient, 𝐅(𝐗, 𝑡) = Grad 𝛘(𝐗, 𝑡)the 

corresponding velocity gradient is (
𝐷𝐅

𝐷𝑡
) 𝐅−𝟏 

 The material derivative of the deformation gradient is, 

𝐷𝐅(𝐗, 𝑡)

𝐷𝑡
=  

𝜕

𝜕𝑡
Grad 𝛘(𝐗, 𝑡) |

𝑿
 

= Grad
𝐷𝛘(𝐗, 𝑡)

𝐷𝑡
= grad 𝐯(𝐱, 𝑡)𝐅 

So that �̇� = 𝐋𝐅. Therefore,  

𝐋 = �̇�𝐅−1 

13 If the tensor 𝐓(𝛼)is a differentiable function of 𝛼 ∈ ℝ, and that, 
𝑑

𝑑𝛼
det(𝐓) =

det(𝐓) tr(�̇�𝐓−𝟏), if we write, 𝐽 ≡ det 𝐅, Prove Liouville’s theorem that 
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𝐷𝐽

𝐷𝑡
= 𝐽 div 𝐯 

 Applying the given equation to the deformation gradient, we have, 

𝑑

𝑑𝑡
det(𝐅) = det(𝐅) tr(�̇�𝐅−𝟏) 

If we replace the scalar parameter 𝛼 by 𝑡. But from example 26, we find that the velocity 

gradient, 𝐋 = �̇�𝐅−1. Substituting, we have, 

𝑑

𝑑𝑡
det(𝐅) =

𝐷𝐽

𝐷𝑡
= det(𝐅) tr(grad 𝐯) = 𝐽 div 𝐯. 

14 

Given the Deformation Gradient Tensor (𝐞1 𝐞2 𝐞3) (
1

3

2

4

3

0 1 0
0 0 1

)⊗ [
𝐄1
𝐄2
𝐄3

]Find the 

rotation tensor, the right stretch tensor and the left stretch tensor. Demonstrate that 

the Rotation tensor is proper orthogonal. 

  

15 In the two dimensional deformation defined by the deformation  

𝑦1 = 0.1 𝑥1(1 + 2 𝑥1 + 𝑥2) 

𝑦2 = 0.2𝑥2(1 + 𝑥2) 

where 𝑥𝑖  and 𝑦𝑖 are Cartesian coordinates of a particle in the reference and deformed 

configurations respectively. Determine the deformation on a line element 𝒂0 = 𝒆1 +

2𝒆2passing through the point (2,-2) in the reference configuration. 
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16 If the element of area 𝑑𝒂 is the image of the undeformed area element 𝑑𝑨 that has 

undergone a deformation given by the deformation gradient 𝑭, prove Nanson’s formula 

that  𝑑𝒂 = 𝐽𝑑𝐀 ⋅ 𝐅−1 where 𝐽 is the volume ratio for the transformation and is the 

determinant of the 𝑭. 

  

17 Given that one eigenvalue of  𝐖 is zero. Find 𝑤 ∈ ℝ, show that we can express the 

tensor as, 𝐖 =  𝑤(𝛏3⊗ 𝛏2 − 𝛏2⊗ 𝛏3) where 𝛏1 is the eigenvector associated with zero 

eigenvalue, and  𝛏2, 𝛏𝟑 forms an orthonormal basis with it.  

 If we form a positively-oriented orthonormal system (such that, 𝛏𝑖 = 𝑒𝑖𝑗𝑘𝛏𝑗 × 𝛏𝑘) with 

the three eigenvectors, 𝛏𝑖 , 𝑖 = 1,2,3, (No assumptions that 𝛏2, 𝛏𝟑 are eigenvectors) we 

can expand 𝐖 and write, 

𝐖 = (𝛏𝑖 ⋅ 𝐖𝛏𝑗)𝛏𝑖⊗ 𝛏𝑗  

= (𝛏1 ⋅ 𝐖𝛏1)𝛏1⊗ 𝛏1 + (𝛏1 ⋅ 𝐖𝛏2)𝛏1⊗ 𝛏2 +⋯+ (𝛏3 ⋅ 𝐖𝛏3)𝛏3⊗ 𝛏3 

= (𝛏2 ⋅ 𝐖𝛏𝟑 − 𝛏𝟑 ⋅ 𝐖𝛏𝟐)𝛏2⊗ 𝛏3 

= 𝑤(𝛏3⊗𝛏2 − 𝛏2⊗ 𝛏3) 

where 𝑤 = 𝛏𝟑 ⋅ 𝐖𝛏𝟐. 

18 Given that we can express the skew tensor, 𝐖 =  𝑤(𝛏3⊗ 𝛏2 − 𝛏2⊗𝛏3). Show that the 

second Invariant is 𝑤2. Note that is has a zero eigenvalue. Show that the other two 

eigenvalues are purely imaginary with the values ±𝑤. 

 The tensor Let the three normalized, positively oriented unit vectors of 𝐖 be 𝛏1, 𝛏2, 𝛏3 

in such a way that ξ1 corresponds to the zero eigenvalue, recall that 𝐖 = 𝑤(𝛏3⊗

𝛏2 − 𝛏2⊗ 𝛏3): 

𝐼2(𝐖) = [𝐖𝛏1,𝐖𝛏2, 𝛏3] + [𝛏1,𝐖𝛏2,𝐖𝛏3] + [𝐖𝛏1, 𝛏2,𝐖𝛏3] 

= [𝛏1,𝐖𝛏2,𝐖𝛏3] = [𝛏1, 𝑤(𝛏3⊗ 𝛏2 − 𝛏2⊗ 𝛏3)𝛏2, 𝑤(𝛏3⊗ 𝛏2 − 𝛏2⊗ 𝛏3)𝛏3] 

= 𝑤2[𝛏1, (𝛏3⊗ 𝛏2 − 𝛏2⊗ 𝛏3)𝛏2, (𝛏3⊗ 𝛏2 − 𝛏2⊗ 𝛏3)𝛏3] 

= 𝑤2[𝛏1, 𝛏3, −𝛏2] = 𝑤
2[𝛏1, 𝛏2, 𝛏3] = 𝑤

2 

𝐼1(𝐖) = 𝐼3(𝐖) = 0 ⇒ Characteristic equation is, 

𝜆3 − 𝜆2𝐼1 + 𝜆𝐼2 − 𝐼3 = 𝜆
3 + 𝜆𝐼2 = 𝜆(𝜆

2 + 𝑤2) = 0 ⇒ 

𝜆 = 0,±𝑤 are the roots of the tensor’s characteristic equation. 
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19 Define the Lagrangian Stretch Ratio Λ𝐍 =
|𝑑𝒓|

|𝑑𝑹|
 where 𝑑𝑠 = |𝑑𝒓| 𝑎𝑛𝑑 𝑑𝑆 = |𝑑𝑹| the 

length of elements in the deformed and undeformed configurations respectively, show 

that Λ𝐍 =
|𝑑𝒓|

|𝑑𝑹|
= √𝐍 ⋅ 𝐂 ⋅ 𝐍 for a material element along the unit vector 𝐍 in the 

reference configuration and that Eulerian stretch Ratio 𝜆𝐧 = 
|𝑑𝒓|

|𝑑𝑹|
= √

𝟏

𝐍⋅𝐁⋅𝐍
 

 𝑑𝑆 = |𝑑𝑹| 𝐍 

Hence 

Λ𝐍
2 =

|𝑑𝒓|2

|𝑑𝑹|2
=
𝑑𝒓 ⋅ 𝑑𝒓

|𝑑𝑹|2
 

=
d𝐑 ⋅ 𝐅T𝐅d𝐑

|d𝐑|2
=
|𝑑𝑹|2𝐍 ⋅ 𝐂 ⋅ 𝐍

|𝑑𝑹|2
 

= 𝐍 ⋅ 𝐂 ⋅ 𝐍 

so that  

Λ𝐍 =
|𝑑𝒓|

|𝑑𝑹|
= √𝐍 ⋅ 𝐂 ⋅ 𝐍 = |𝐍 ⋅ 𝐔| 

Similarly, for the direction 𝐧, in the spatial configuration, 𝑑𝑠 = |𝑑𝒓| 𝐧 

(
1

𝜆𝐧
)
2

= (
|𝑑𝑹|

|𝑑𝒓|
)

2

=
𝑑𝑹 ⋅ 𝑑𝑹

|𝑑𝒓|2
 

=
𝑑𝑹 ⋅ 𝑭−𝑇 ⋅ 𝑭−1 ⋅ 𝑑𝑹

|𝑑𝒓|2
 

=
|𝑑𝒓|2𝐧 ⋅ 𝐁 ⋅ 𝐧

|𝑑𝒓|2
= 𝐧 ⋅ 𝐁 ⋅ 𝐧 = 𝐧 ⋅ 𝐕 ⋅ 𝐕 ⋅ 𝐧 

so that 𝜆𝐧 = √
𝟏

𝐍⋅𝐁⋅𝐍
=

𝟏

|𝐕⋅𝐧|
 

20 
1. When normal strains are small compared to unity, show that the shears Γ𝐞1𝐞2 =

𝛾𝐞1𝐞2  approach the lagrangian and Eulerian shear strains respectively. 

 Consider first the case Γ𝐞1𝐞2 when 

21 Find, by direct computation, the physical components of the Deformation gradient if the 

material and spatial frames are referred to spherical polar coordinates 
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22 For vector and tensor fields, 𝐟(𝐱, 𝑡) and 𝚵(𝐱, 𝑡), Given that Grad 𝐟 =

( grad 𝐟)𝐅(𝐗, 𝑡), and that Grad 𝚵 = ( grad 𝚵)𝐅(𝐗, 𝑡),show that div  𝐟 = (Grad 𝐟): 𝐅−T 

and div  𝚵 = (Grad 𝚵): 𝐅−T 

 Grad 𝐟 = ( grad 𝐟)𝐅(𝐗, 𝑡) ⇒ 

 grad 𝐟 = (Grad 𝐟)𝐅−1 

Take the trace of both sides,  

div 𝐟 = (Grad 𝐟): 𝐅−T 

The same procedure establishes the second result: 

div  𝚵 = (Grad 𝚵): 𝐅−T 

23  

  

24  

  

25  

  

26  

  

27  

  

28  
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29 Consider a deformation of the form 𝐱 = 𝛚 × 𝐗 Here 𝝎 is a vector with magnitude ≪ 1, 

which represents an infinitesimal rotation about an axis parallel to 𝛚 Show that 𝐂 =

(𝛚 ⋅ 𝛚)𝐈 −  𝛚⊗𝛚. 

 Deformation Gradient, 𝐅 =  𝛚 ×. This is a skew tensor. The transpose, 𝐅T = −𝛚×, its 

negative. The Right Cauchy-Green Tensor,  

𝐂 = 𝐅T𝐅 = −( 𝛚 ×)(𝛚 ×) = −(𝑒𝑖𝑗𝑘𝜔𝑗𝐞𝑖⊗𝐞𝑘)(𝑒𝛼𝛽𝛾𝜔𝛽𝐞𝛼⊗𝐞𝛾) 

= −𝑒𝑖𝑗𝑘𝜔𝑗𝑒𝛼𝛽𝛾𝜔𝛽𝐞𝑖⊗𝐞𝛾𝛿𝑘𝛼 = −𝑒𝑖𝑗𝑘𝜔𝑗𝑒𝛽𝛾𝑘𝜔𝛽𝐞𝑖⊗𝐞𝛾 

= (𝛿𝑖𝛾𝛿𝑗𝛽 − 𝛿𝑖𝛽𝛿𝑗𝛾)𝜔𝛽𝐞𝑖⊗𝐞𝛾 

= 𝜔𝑗𝜔𝑗𝐞𝑖⊗𝐞𝑖 − 𝜔𝑖𝜔𝑗𝐞𝑖⊗𝐞𝑗 

= (𝛚 ⋅ 𝛚)𝐈 −  𝛚⊗𝛚 

30 A body undergoes a deformation defined by, 𝑥1 = 𝑋1 cos 𝛼 − 𝑋2 sin 𝛼 , 𝑋2 = 𝑋1 sin 𝛼 +

𝑋2 cos 𝛼 , and 𝑥3 = 𝑋3 where 𝛼 is a constant. Show that  𝐂 = 𝐈 and 𝐄 = 𝐎. Explain the 

reason for the values of 𝐄 components. 

 The deformation gradient here is the rotation tensor through angle 𝛼 around the 𝐞3 axis. 

Consequently, 

𝐅 = 𝐑 = 𝐑𝐈 = 𝐑𝐔 

So that 𝐔 = 𝐈. 

𝐂 = 𝐔2 = 𝐈 

And,  

𝐄 =
1

2
(𝐂 − 𝐈) = 𝐎 

31 
Show that,

𝑫

𝑫𝒕
∫ 𝐮𝒅𝒗 =
𝛀

∫ (
𝛛𝐮

𝛛𝐭
+ 𝛁(𝐮⊗ 𝐯))𝒅𝒗

𝛀
 and that

𝑫

𝑫𝒕
∫ 𝜚𝐮𝒅𝒗 =
𝛀

∫ 𝜚�̇�𝒅𝒗
𝛀

 

 The material derivative, 

𝐷

𝐷𝑡
∫𝐮𝑑𝑣 =
Ω

𝐷

𝐷𝑡
∫ 𝐮𝐽𝑑𝑉
Ω0

 

In the last equation, it is permissible to interchange the integral with the derivative since 

the material volume is invariant and therefore independent of time, so that, 

𝐷

𝐷𝑡
∫𝐮𝑑𝑣 =
Ω

𝐷

𝐷𝑡
∫ 𝐮𝐽𝑑𝑉
Ω0
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= ∫
𝐷

𝐷𝑡
(𝐮𝐽)𝑑𝑉

Ω0

= ∫ (�̇�𝐽 + 𝐮 𝐽)̇𝑑𝑉
Ω0

= ∫ (�̇�𝐽 + 𝐮 𝐽 div 𝐯)𝑑𝑉
Ω0

 

= ∫ (�̇� + 𝐮 𝑑𝑖𝑣 𝐯)𝐽𝑑𝑉
Ω0

= ∫(�̇� + 𝐮 div 𝐯)𝑑𝑣 
Ω

 

= ∫ (
∂𝐮

∂t
+ 𝐯grad 𝐮 + 𝐮 div 𝐯) 𝑑𝑣 =

Ω

∫ (
∂𝐮

∂t
+ 𝛁(𝐮⊗ 𝐯)) 𝑑𝑣

Ω

 

Finally,  

𝐷

𝐷𝑡
∫𝜚𝐮𝑑𝑣 =
Ω

𝐷

𝐷𝑡
∫𝜚0𝐮𝑑𝑉 =
Ω

∫
𝐷

𝐷𝑡
𝜚0𝐮𝑑𝑉 =

Ω0

∫ 𝜚0�̇�𝑑𝑉 =
Ω0

∫𝜚�̇�𝑑𝑣
Ω

 

The first equality because 𝜚𝑑𝑣 = 𝜚0𝑑𝑉, the second because we can interchange 

differentials and integrals in material coordinates, and the last again because 𝜚𝑑𝑣 =

𝜚0𝑑𝑉. 

32 A body is in the state of plane strain relative to the 𝑥 − 𝑦 plane. Assume all the 

components of the strain are known relative to Cartesian axes (𝑥, 𝑦, 𝑧). Find the stress 

components relative to another axes rotated along the 𝑧-axis by an angle 𝜃 

 In plane strain, 𝑒13 = 𝑒23 = 𝑒33 = 0.For a clockwise rotation around the 𝑧-axis, the 

transformation tensor is, 

𝑄 = (
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

) 

From symmetry, the stress state in plane is, 

𝐸 = (
𝑒11 𝑒12 0
𝑒12 𝑒22 0
0 0 0

) 

In the rotated axis, the stress state becomes, 

𝐄2 = 𝐐
T𝐄𝐐 

(
cos 𝛼(cos 𝛼𝑒11 + sin𝛼𝑒12) + sin𝛼(cos 𝛼𝑒12 + sin 𝛼𝑒22) cos 𝛼(cos 𝛼𝑒12 + sin 𝛼𝑒22) − sin 𝛼(cos𝛼𝑒11 + sin 𝛼𝑒12) 0
cos 𝛼(cos 𝛼𝑒12 − sin𝛼𝑒11) + sin𝛼(cos 𝛼𝑒22 − sin 𝛼𝑒12) cos 𝛼(cos 𝛼𝑒22 − sin 𝛼𝑒12) − sin 𝛼(cos 𝛼𝑒12 − sin 𝛼𝑒11) 0

0 0 0

) 

The state of stress therefore remains in plane strain. 
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33 
A cylindrical tube undergoes the deformation given by 𝑟 = 𝑅, 𝜙 = Θ + 𝜗(𝑅), 𝑧 = 𝑍 +

𝑤(𝑅) where {𝑅,Φ, 𝑍} and  {𝑟, 𝜙, 𝑧}, are polar coordinates of a point in the tube 

before and after deformation respectively, 𝜗 and 𝑤 are scalar functions of 𝑅. (a) 

Explain the meaning of the situation where (i) 𝜗 = 0, (ii) 𝑤 = 0. (b) Compute 𝐅, 𝐂 

and 𝐄, (c) Find the Lagrangian and Eulerian strain components  

 

 

𝐅 =
∂𝐫

∂𝐑
= (

𝐹𝑟𝑅 𝐹𝑟Φ 𝐹𝑟𝑍
𝐹𝜙𝑅 𝐹𝜙Φ 𝐹𝜙𝑍
𝐹𝑧𝑅 𝐹𝑧Φ 𝐹𝑧𝑍

) =

(

 
 
 

𝜕𝑟

𝜕𝑅

1

𝑅

𝜕𝑟

𝜕Φ

𝜕𝑟

𝜕Z
𝜕𝜙

𝜕𝑅
𝑟

𝑟

𝑅

𝜕𝜙

𝜕Φ

𝜕𝜙

𝜕Z
𝑟

𝜕𝑧

𝜕𝑅

1

𝑅

𝜕𝑧

𝜕Φ

𝜕𝑧

𝜕Z )

 
 
 

= (

1 0 0

𝜗′𝑟
𝑟

𝑅
0

𝑤′ 0 1

) 

(a) When 𝜗 = 0, The deformation gradient becomes, (

1 0 0

0
𝑟

𝑅
0

𝑤′ 0 1

). This is a 

longitudinal elongation as radial and tangential displacements are nil.  

When 𝑤 = 0, The deformation gradient becomes, (

1 0 0

𝜗′𝑟
𝑟

𝑅
0

0 0 1

). This is a torsional 

rotation as there is no other deformation in the material apart from a relative rotation 

along the longitudinal axis. 

(b) The Right Cauchy Green Tensor 

𝐂 = 𝐅T𝐅 =

(

 
 
(𝑤′)2 + 𝑟2(𝜗′)2 + 1

𝑟2𝜗′

𝑅
𝑤′

𝑟2𝜗′

𝑅

𝑟2

𝑅2
0

𝑤′ 0 1 )

 
 

 

and the Lagrangian strain, 

𝐄 =
1

2
(𝐂 − 𝐈) =

(

 
 
 
 

1

2
((𝑤′)2 + 𝑟2(𝜗′)2)

𝑟2𝜗′

2𝑅

𝑤′

2
𝑟2𝜗′

2𝑅

1

2
(
𝑟2

𝑅2
− 1) 0

𝑤′

2
0 0 )

 
 
 
 

 

Finger Tensor, 𝐅 𝐅T, 
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𝐅 𝐅T = (

1 𝑟𝜗′ 𝑤′

𝑟𝜗′ (𝜗′)2𝑟2 +
𝑟2

𝑅2
𝑟𝑤′𝜗′

𝑤′ 𝑟𝑤′𝜗′ (𝑤′)2 + 1

) 

The inverse of this also called the Piola Tensor is, 

𝐁 = 𝐅−𝐓𝐅−𝟏 =

(

 
 
 
𝑅2 (

(𝑤′)2𝑟2

𝑅2
+ (𝜗′)2𝑟2 +

𝑟2

𝑅2
)

𝑟2
−
𝑅2𝜗′

𝑟
−𝑤′

−
𝑅2𝜗′

𝑟

𝑅2

𝑟2
0

−𝑤′ 0 1 )

 
 
 

 

Eulerian strain 

𝐞 =
1

2
(𝐈 − 𝐁) =

(

 
 
 
 
 
 
1

2
[1 −

𝑅2 (
(𝑤′)2𝑟2

𝑅2
+ (𝜗′)2𝑟2 +

𝑟2

𝑅2
)

𝑟2
]

𝑅2𝜗′

2𝑟

𝑤′

2

𝑅2𝜗′

2𝑟

1

2
(1 −

𝑅2

𝑟2
) 0

𝑤′

2
0 0 )

 
 
 
 
 
 

 

To complete the answer to this question, Find the representation of the displacement 

vector and its gradient in Cylindrical Polar coordinates. 

 

34 When a blood vessel is under pressure, the following deformation transformations were 

observed, 𝑟 = 𝑟(𝑅), 𝜙 = Φ + 𝜓𝑍 , 𝑧 = 𝜆𝑍  Compute the deformation gradient, Cauchy-

Green Tensor, Lagrangian. and Eulerian strain tensors for this deformation. 

 From Q33 above, it is clear that 

𝐅 =
𝜕𝐫

𝜕𝐑
= (

𝐹𝑟𝑅 𝐹𝑟Φ 𝐹𝑟𝑍
𝐹𝜙𝑅 𝐹𝜙Φ 𝐹𝜙𝑍
𝐹𝑧𝑅 𝐹𝑧Φ 𝐹𝑧𝑍

) =

(

 
 
 

𝜕𝑟

𝜕𝑅

1

𝑅

𝜕𝑟

𝜕Φ

𝜕𝑟

𝜕Z
𝜕𝜙

𝜕𝑅
𝑟

𝑟

𝑅

𝜕𝜙

𝜕Φ

𝜕𝜙

𝜕Z
𝑟

𝜕𝑧

𝜕𝑅

1

𝑅

𝜕𝑧

𝜕Φ

𝜕𝑧

𝜕Z )

 
 
 

= (

𝑟′(𝑅) 0 0

0
𝑟

𝑅
𝜓𝑟

0 0 𝜆

) 

The Right Cauchy Green Tensor 
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𝐂 = 𝐅T𝐅 =

(

  
 

(𝑟′)2 0 0

0
𝑟2

𝑅2
𝑟2𝜓

𝑅

0
𝑟2𝜓

𝑅
𝜆2 + 𝑟2𝜓2)

  
 

 

and  the Lagrangian strain, 

𝑬 =
1

2
(𝑪 − 𝑰) =

(

 
 
 
 

1

2
((
𝑑𝑟

𝑑𝑅
)
2

− 1) 0 0

0
1

2
(
𝑟2

𝑅2
− 1)

𝑟2𝜓

2𝑅

0
𝑟2𝜓

2𝑅

1

2
(𝜆2 + 𝑟2𝜓2 − 1))

 
 
 
 

 

Finger Tensor, 𝑭 𝑭𝑇, 

𝐅 𝐅T =

(

 

(𝑟′)2 0 0

0 𝜓2𝑟2 +
𝑟2

𝑅2
𝑟𝜆𝜓

0 𝑟𝜆𝜓 𝜆2 )

  

The inverse of this also called the Piola Tensor is, 

𝐁 = 𝐅−𝐓𝐅−𝟏 =

(

 
 
 
 
 

1

(𝑟′)2
0 0

0
𝑅2

𝑟2
−
𝑅2𝜓

𝑟𝜆

0 −
𝑅2𝜓

𝑟𝜆

𝑅2 (𝑟2𝜓2(𝑟′)2 +
𝑟2(𝑟′)2

𝑅2
)

𝑟2𝜆2(𝑟′)2 )

 
 
 
 
 

 

Eulerian strain 

𝒆 =
1

2
(𝑰 − 𝑩) =

(

 
 
 
 
 
 

1

2
(1 −

1

(𝑟′)2
) 0 0

0
1

2
(1 −

𝑅2

𝑟2
)

𝑅2𝜓

2𝑟𝜆

0
𝑅2𝜓

2𝑟𝜆

1

2
[1 −

𝑅2 (𝑟2𝜓2(𝑟′)2 +
𝑟2(𝑟′)2

𝑅2
)

𝑟2𝜆2(𝑟′)2
]

)
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35 Find the physical components of the Deformation gradient if the material and spatial 

frames are referred to spherical polar coordinates 
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 Let the material frame be given in the cylindrical coordinates, {𝑅,Φ, 𝑍}, the position 

vector  

𝐑 = 𝑦𝑖𝐆𝑖  

Find the physical components of the Deformation gradient if the material and spatial 

frames are referred to spherical polar coordinates=  𝑅 cosΦ 𝒊 + 𝑅 sinΦ 𝒋 + 𝑍𝒌 

≡ 𝑅𝒆𝑅 + 𝑍𝒌 

If the spatial frame is in cylindrical polar, {𝑟, 𝜙, 𝑧}, the position vector  

𝐑 = 𝑦𝑖𝐆𝑖 

=  𝑟 cos𝜙 𝒊 + 𝑟 sin 𝜙 𝒋 + 𝑧𝒌 

≡ 𝑟𝒆𝑟 + 𝑧𝒌 

Deformation gradient, upon noting that 𝐆𝑗  is the reciprocal basis while 𝐠𝑖 is the natural 

basis in their respective frames (see above Question), is 

𝑭 =
𝜕𝒓

𝜕𝑹
= (𝐆𝑗

𝜕

𝜕𝑦𝑗
) ⊗ (𝑥𝑖𝐠𝑖) = (𝒆𝑅

𝜕

𝜕𝑅
+
𝒆Φ
𝑅

𝜕

𝜕Φ
+ 𝑒𝑍

𝜕

𝜕𝑍
)⊗ (𝑟𝒆𝑟 + 𝑧𝒌) 

= 𝒆𝑅
𝜕

𝜕𝑅
⊗ (𝑟𝒆𝑟 + 𝑧𝒌) + (

𝒆Φ
𝑅

𝜕

𝜕Φ
)⊗ (𝑟𝒆𝑟 + 𝑧𝒌) + (𝑒𝑍

𝜕

𝜕𝑍
)⊗ (𝑟𝒆𝑟 + 𝑧𝒌) 

= 𝒆𝑅⊗
𝜕

𝜕𝑅
 (𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝒆Φ
𝑅
⊗ 

𝜕

𝜕Φ
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) + 𝑒𝑍⊗

𝜕

𝜕𝑍
 (𝑟𝒆𝑟 + 𝑧𝑒𝑍) 

= 𝒆𝑅⊗ (
𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑅
+
𝜕

𝜕𝜙

𝜕𝜙

𝜕𝑅
+
𝜕

𝜕𝑧

𝜕𝑧

𝜕𝑅
) (𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝒆Φ
𝑅

⊗ (
𝜕

𝜕𝑟

𝜕𝑟

𝜕Φ
+
𝜕

𝜕𝜙

𝜕𝜙

𝜕Φ
+
𝜕

𝜕𝑧

𝜕𝑧

𝜕Φ
) (𝑟𝒆𝑟 + 𝑧𝑒𝑍) + 𝑒𝑍

⊗(
𝜕

𝜕𝑟

𝜕𝑟

𝜕Z
+
𝜕

𝜕𝜙

𝜕𝜙

𝜕Z
+
𝜕

𝜕𝑧

𝜕𝑧

𝜕Z
) (𝑟𝒆𝑟 + 𝑧𝑒𝑍) 

= 𝒆𝑅⊗ [
𝜕𝑟

𝜕𝑅
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝜕𝜙

𝜕𝑅

𝜕

𝜕𝜙
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝜕𝑧

𝜕𝑅

𝜕

𝜕𝑧
(𝑟𝒆𝑟 + 𝑧𝑒𝑍)]  +

𝒆Φ
𝑅

⊗ [
𝜕𝑟

𝜕Φ

𝜕

𝜕𝑟
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝜕𝜙

𝜕Φ

𝜕

𝜕𝜙
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝜕𝑧

𝜕Φ

𝜕

𝜕𝑧
(𝑟𝒆𝑟 + 𝑧𝑒𝑍)]

+ 𝑒𝑍⊗ [
𝜕𝑟

𝜕Z

𝜕

𝜕𝑟
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝜕𝜙

𝜕Z

𝜕

𝜕𝜙
(𝑟𝒆𝑟 + 𝑧𝑒𝑍) +

𝜕𝑧

𝜕Z

𝜕

𝜕𝑧
(𝑟𝒆𝑟 + 𝑧𝑒𝑍)] 
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= 𝒆𝑅⊗ [
𝜕𝑟

𝜕𝑅
𝒆𝑟 +

𝜕𝜙

𝜕𝑅
𝑟𝒆𝜙 +

𝜕𝑧

𝜕𝑅
𝒆𝑧] +

𝒆Φ
𝑅
⊗ [

𝜕𝑟

𝜕Φ
𝒆𝑟 +

𝜕𝜙

𝜕Φ
𝑟𝒆𝜙 +

𝜕𝑧

𝜕Φ
𝒆𝑧] + 𝑒𝑍

⊗ [
𝜕𝑟

𝜕Z
𝒆𝑟 +

𝜕𝜙

𝜕Z
𝑟𝒆𝜙 +

𝜕𝑧

𝜕Z
𝒆𝑧] 

Consequently, in matrix notation, we can write, 

𝑭 =
𝜕𝒓

𝜕𝑹
= (

𝐹𝑟𝑅 𝐹𝑟Φ 𝐹𝑟𝑍
𝐹𝜙𝑅 𝐹𝜙Φ 𝐹𝜙𝑍
𝐹𝑧𝑅 𝐹𝑧Φ 𝐹𝑧𝑍

) =

(

 
 
 

𝜕𝑟

𝜕𝑅

1

𝑅

𝜕𝑟

𝜕Φ

𝜕𝑟

𝜕Z
𝜕𝜙

𝜕𝑅
𝑟

𝑟

𝑅

𝜕𝜙

𝜕Φ

𝜕𝜙

𝜕Z
𝑟

𝜕𝑧

𝜕𝑅

1

𝑅

𝜕𝑧

𝜕Φ

𝜕𝑧

𝜕Z )
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36 Find the natural, reciprocal and the physical bases in cylindrical polar coordinates. Also 

find their derivatives. 

 The position vector in cylindrical polar coordinates is: 

𝐑 = 𝑦𝑖𝐆𝑖 

=  𝑟 cos𝜙 𝒊 + 𝑟 sin 𝜙 𝒋 + 𝑧𝒌 

≡ 𝑟𝒆𝑟 + 𝑧𝒌 

The natural basis set consists of the derivatives of the position vector with respect to 

the coordinate variables {𝑟, 𝜙, 𝑧}.  Hence natural basis  

(

𝐠1
𝐠2
𝐠3
) =

(

 
 
 
 

𝜕𝑅

𝜕𝑦1

𝜕𝑅

𝜕𝑦2

𝜕𝑅

𝜕𝑦3)

 
 
 
 

=

(

 
 
 
 

𝜕𝑅

𝜕𝑟
𝜕𝑅

𝜕𝜙
𝜕𝑅

𝜕𝑧)

 
 
 
 

= (
cos𝜙 𝒊 + sin𝜙 𝒋

−𝑟 sin𝜙 𝒊 + 𝑟 cos𝜙 𝒋
𝒌

) ≡ (

𝒆𝑟
𝑟𝒆𝜙
𝒆𝑧
) 

The reciprocal basis, 𝐠𝑖 = 𝑔𝑖𝑗𝐠𝑗 , where 𝑔𝑖𝑗  is the inverse of the metric tensor. 

Accordingly,  the reciprocal basis is, 

(

𝐠1

𝐠2

𝐠3
) = (

1 0 0

0
1

𝑟2
0

0 0 1

)(

𝒆𝑟
𝑟𝒆𝜙
𝒆𝑧
) = (

𝒆𝜌
𝑟𝒆𝜙

𝑟2
𝒆𝑧

) = (

𝒆𝜌
𝒆𝜙

𝑟
𝒆𝑧

) 

The natural basis is the normalized natural basis: 

(

 
 
 

𝐠1
|𝐠1|
𝐠2
|𝐠2|
𝐠3
|𝐠3|)

 
 
 

= (𝑟

𝒆𝜌
𝒆𝜙

𝑟
𝒆𝑧

) = (

𝒆𝑟
𝒆𝜙
𝒆𝑧
) = (

cos𝜙 𝒊 + sin𝜙 𝒋
− sin𝜙 𝒊 + cos𝜙 𝒋

𝒌

) 

Derivatives:  

From the above matrix, a simple application of partial derivatives immediately gives, 

(

 
 
 
 

𝜕𝒆𝑟
𝜕𝑟

𝜕𝒆𝑟
𝜕𝜙

𝜕𝒆𝑟
𝜕𝑧

𝜕𝒆𝜙

𝜕𝑟

𝜕𝒆𝜙

𝜕𝜙

𝜕𝒆𝜙

𝜕𝑧
𝜕𝒆𝑧
𝜕𝑟

𝜕𝒆𝑧
𝜕𝜙

𝜕𝒆𝑧
𝜕𝑧 )

 
 
 
 

= (
0 − sin𝜙 𝒊 + cos𝜙 𝒋 0
0 − cos𝜙 𝒊 − sin𝜙 𝒋 0
0 0 0

) = (
0 𝒆𝜙 0

0 −𝒆𝑟 0
0 0 0

) 
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37 Find, by direct computation, the physical components of the Deformation gradient if the 

material and spatial frames are referred to spherical polar coordinates 

 Let the material frame be given in the coordinates, {𝜌, 𝜃, 𝜙}, the position vector  

𝐑 = 𝑦𝑖𝐆𝑖  

=  𝜌 sin 𝜃 cos𝜙 𝒊 +𝜌 sin 𝜃 sin 𝜙 𝒋 + 𝜌 cos 𝜃 𝒌 

≡ 𝜌𝒆𝜌 

If the spatial frame is in spherical polar, {𝜚, 𝜗 , 𝜑}, the position vector  

𝐫 = 𝑥𝑖𝐠𝑖 

=  𝜚 sin 𝜗 cos𝜑 𝒊 +𝜚 sin 𝜗 sin𝜑 𝒋 + 𝜚 cos 𝜗 𝒌 ≡ 𝜚𝒆𝜚 

Deformation gradient, upon noting that 𝐆𝑗  is the reciprocal basis while 𝐠𝑖 is the natural 

basis in their respective frames (see above Question), is 

𝑭 =
𝜕𝒓

𝜕𝑹
= (𝐆𝑗

𝜕

𝜕𝑦𝑗
)⊗ (𝑥𝑖𝐠𝑖) = (𝒆𝜌

𝜕

𝜕𝜌
+
𝒆𝜃
𝜌

𝜕

𝜕𝜃
+

𝑒𝜙

𝜌 sin 𝜃

𝜕

𝜕𝜙
)⊗ (𝜚𝒆𝜚)

= (𝒆𝜌
𝜕

𝜕𝜌
)⊗ (𝜚𝒆𝜚) + (

𝒆𝜃
𝜌

𝜕

𝜕𝜃
)⊗ (𝜚𝒆𝜚) + (

𝑒𝜙

𝜌 sin 𝜃

𝜕

𝜕𝜙
)⊗ (𝜚𝒆𝜚)

= 𝒆𝜌⊗ 
𝜕

𝜕𝜌
(𝜚𝒆𝜚) +

𝒆𝜃
𝜌
⊗

𝜕

𝜕𝜃
 (𝜚𝒆𝜚) +

𝑒𝜙

𝜌 sin 𝜃
⊗

𝜕

𝜕𝜙
 (𝜚𝒆𝜚) 
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= 𝒆𝜌⊗ (
𝜕

𝜕𝜚

𝜕𝜚

𝜕𝜌
+
𝜕

𝜕𝜗

𝜕𝜗

𝜕𝜌
+
𝜕

𝜕𝜑

𝜕𝜑

𝜕𝜌
) (𝜚𝒆𝜚) +

𝒆𝜃
𝜌
⊗ (

𝜕

𝜕𝜚

𝜕𝜚

𝜕𝜃
+
𝜕

𝜕𝜗

𝜕𝜗

𝜕𝜃
+
𝜕

𝜕𝜑

𝜕𝜑

𝜕𝜃
) (𝜚𝒆𝜚)

+
𝑒𝜙

𝜌 sin 𝜃
⊗ (

𝜕

𝜕𝜚

𝜕𝜚

𝜕𝜙
+
𝜕

𝜕𝜗

𝜕𝜗

𝜕𝜙
+
𝜕

𝜕𝜑

𝜕𝜑

𝜕𝜙
) (𝜚𝒆𝜚)

= 𝒆𝜌⊗ [
𝜕𝜚

𝜕𝜌

𝜕

𝜕𝜚
(𝜚𝒆𝜚) +

𝜕𝜗

𝜕𝜌

𝜕

𝜕𝜗
(𝜚𝒆𝜚) +

𝜕𝜑

𝜕𝜌

𝜕

𝜕𝜑
(𝜚𝒆𝜚)] +

𝒆𝜃
𝜌

⊗ [
𝜕𝜚

𝜕𝜃

𝜕

𝜕𝜚
(𝜚𝒆𝜚) +

𝜕𝜗

𝜕𝜃

𝜕

𝜕𝜗
(𝜚𝒆𝜚) +

𝜕𝜑

𝜕𝜃

𝜕

𝜕𝜑
(𝜚𝒆𝜚)] +

𝑒𝜙

𝜌 sin 𝜃

⊗ [
𝜕𝜚

𝜕𝜙

𝜕

𝜕𝜚
(𝜚𝒆𝜚) +

𝜕𝜗

𝜕𝜙

𝜕

𝜕𝜗
(𝜚𝒆𝜚) +

𝜕𝜑

𝜕𝜙

𝜕

𝜕𝜑
(𝜚𝒆𝜚)]

= 𝒆𝜌⊗ [
𝜕𝜚

𝜕𝜌
𝒆𝜚 +

𝜕𝜗

𝜕𝜌
(𝜚𝒆𝜗) +

𝜕𝜑

𝜕𝜌
(𝜚 sin 𝜗 𝒆𝜑)] +

𝒆𝜃
𝜌

⊗ [
𝜕𝜚

𝜕𝜃
𝒆𝜚 +

𝜕𝜗

𝜕𝜃
(𝜚𝒆𝜗) +

𝜕𝜑

𝜕𝜃
(𝜚 sin 𝜗 𝒆𝜑)] +

𝑒𝜙

𝜌 sin 𝜃

⊗ [
𝜕𝜚

𝜕𝜙
𝒆𝜚 +

𝜕𝜗

𝜕𝜙
(𝜚𝒆𝜗) +

𝜕𝜑

𝜕𝜙
(𝜚 sin 𝜗 𝒆𝜑)] 

Consequently, in matrix notation, we can write, 

𝑭 =
𝜕𝒓

𝜕𝑹
= (

𝐹𝜚𝜌 𝐹𝜚𝜃 𝐹𝜚𝜙
𝐹𝜗𝜌 𝐹𝜗𝜃 𝐹𝜗𝜙
𝐹𝜑𝜌 𝐹𝜑𝜃 𝐹𝜑𝜙

) =

(

 
 
 
 

𝜕𝜚

𝜕𝜌

1

𝜌

𝜕𝜚

𝜕𝜃

1

𝜌 sin 𝜃

𝜕𝜚

𝜕𝜙

𝜚
𝜕𝜗

𝜕𝜌

𝜚

𝜌

𝜕𝜗

𝜕𝜃

𝜚

𝜌 sin 𝜃

𝜕𝜗

𝜕𝜙

𝜚 sin 𝜗
𝜕𝜑

𝜕𝜌

𝜚 sin 𝜗

𝜌

𝜕𝜑

𝜕𝜃

𝜚 sin 𝜗

𝜌 sin 𝜃

𝜕𝜑

𝜕𝜙)

 
 
 
 

 

38 Use the formula, 𝑭 = 𝐹 .𝑗
𝑖 𝐠𝑖⊗𝑮𝑗  to find the tensor as well as physical components of 

the deformation gradient if the material and spatial frames are referred to spherical 

polar coordinates 

 

𝑭 = 𝐹 .𝑗
𝑖 𝐠𝑖⊗𝑮𝑗 = (

𝐹1
1 𝐹2

1 𝐹3
1

𝐹1
2 𝐹2

2 𝐹3
2

𝐹1
3 𝐹2

3 𝐹3
3

) =

(

 
 
 
 

𝜕𝜚

𝜕𝜌

𝜕𝜚

𝜕𝜃

𝜕𝜚

𝜕𝜙
𝜕𝜗

𝜕𝜌

𝜕𝜗

𝜕𝜃

𝜕𝜗

𝜕𝜙
𝜕𝜑

𝜕𝜌

𝜕𝜑

𝜕𝜃

𝜕𝜑

𝜕𝜙)

 
 
 
 

 

To obtain physical components we note that the contravariant component is spatial 

while the covariant is material. If the magnitudes of the material vectors are 𝜂𝑖and that 
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of the spatial are ℎ𝑖then, the physical component, 𝐹(𝑖𝑗) =
𝐹𝑗
𝑖𝜂𝑖

ℎ𝑗
. The vector {ℎ𝑖} =

{1, 𝜌, 𝜌 sin 𝜃}, and {𝜂𝑖} = {1, 𝜚, 𝜚 sin 𝜗}. Accordingly,  

[𝐹(𝑖𝑗)] = [
𝐹𝑗
𝑖𝜂𝑖

ℎ𝑗
] = (

𝐹𝜚𝜌 𝐹𝜚𝜃 𝐹𝜚𝜙
𝐹𝜗𝜌 𝐹𝜗𝜃 𝐹𝜗𝜙
𝐹𝜑𝜌 𝐹𝜑𝜃 𝐹𝜑𝜙

) =

(

 
 
 
 

𝜕𝜚

𝜕𝜌

1

𝜌

𝜕𝜚

𝜕𝜃

1

𝜌 sin 𝜃

𝜕𝜚

𝜕𝜙

𝜚
𝜕𝜗

𝜕𝜌

𝜚

𝜌

𝜕𝜗

𝜕𝜃

𝜚

𝜌 sin 𝜃

𝜕𝜗

𝜕𝜙

𝜚 sin 𝜗
𝜕𝜑

𝜕𝜌

𝜚 sin 𝜗

𝜌

𝜕𝜑

𝜕𝜃

𝜚 sin 𝜗

𝜌 sin 𝜃

𝜕𝜑

𝜕𝜙)

 
 
 
 

 

39 Find the natural, reciprocal and the physical bases in spherical polar coordinates. Also 

find their derivatives. 

 The position vector in spherical polar coordinates is: 

𝐑 = 𝑦𝑖𝐆𝑖  

=  𝜌 sin 𝜃 cos𝜙 𝒊 +𝜌 sin 𝜃 sin 𝜙 𝒋 + 𝜌 cos 𝜃 𝒌 

≡ 𝜌𝒆𝜌 

The natural basis are the derivatives of the position vector with respect to the 

coordinate variables {𝜌, 𝜃, 𝜙}.  Hence natural basis  

(

𝐠1
𝐠2
𝐠3
) =

(

 
 
 
 

𝜕𝑅

𝜕𝑦1

𝜕𝑅

𝜕𝑦2

𝜕𝑅

𝜕𝑦3)

 
 
 
 

=

(

 
 
 
 

𝜕𝑅

𝜕𝜌
𝜕𝑅

𝜕𝜃
𝜕𝑅

𝜕𝜙)

 
 
 
 

= (
cos𝜙 sin𝜃 sin 𝜃sin 𝜙 cos 𝜃
𝜌cos 𝜃cos 𝜙 𝜌cos 𝜃sin 𝜙 −𝜌sin 𝜃
−𝜌sin 𝜃sin 𝜙 𝜌cos 𝜙sin 𝜃 0

)

= (

𝒆𝜌
𝜌𝒆𝜃

𝜌 sin 𝜃 𝒆𝜙
) 

The reciprocal basis, 𝐠𝑖 = 𝑔𝑖𝑗𝐠𝑗, where 𝑔𝑖𝑗 is the inverse of the me6tric tensor. 

Accordingly, the reciprocal basis is, 

(

𝐠1

𝐠2

𝐠3
) =

(

 
 

1 0 0

0
1

𝜌2
0

0 0
1

𝜌2 sin2 𝜃  )

 
 
(

𝒆𝜌
𝜌𝒆𝜃

𝜌 sin 𝜃 𝒆𝜙
) =

(

 
 

𝒆𝜌
𝜌𝒆𝜃
𝜌2

𝜌 sin 𝜃 𝒆𝜙

𝜌2 sin2 𝜃 )

 
 
=

(

 
 

𝒆𝜌
𝒆𝜃
𝜌
𝒆𝜙

𝜌 sin 𝜃)

 
 

 

The natural basis is the normalized natural basis: 
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(

 
 
 

𝐠1
|𝐠1|
𝐠2
|𝐠2|
𝐠3
|𝐠3|)

 
 
 

=

(

 
 

𝒆𝜌
𝜌𝒆𝜃
𝜌

𝜌 sin 𝜃 𝒆𝜙

𝜌 sin 𝜃 )

 
 
= (

𝒆𝜌
𝒆𝜃
𝒆𝜙
) = (

cos𝜙 sin𝜃 sin 𝜃sin 𝜙 cos 𝜃
cos 𝜃cos 𝜙 cos 𝜃sin 𝜙 −sin 𝜃
−sin 𝜙 cos 𝜙 0

) 

Derivatives:  

From the above matrix, a simple application of partial derivatives immediately gives, 

(

 
 
 
 

𝜕𝒆𝜌

𝜕𝜌

𝜕𝒆𝜌

𝜕𝜃

𝜕𝒆𝜌

𝜕𝜙
𝜕𝒆𝜃
𝜕𝜌

𝜕𝒆𝜃
𝜕𝜃

𝜕𝒆𝜃
𝜕𝜙

𝜕𝒆𝜙

𝜕𝜌

𝜕𝒆𝜙

𝜕𝜃

𝜕𝒆𝜙

𝜕𝜙 )

 
 
 
 

= 

= (

0 cos 𝜃 cos𝜙𝒊 + cos 𝜃 sin𝜙 𝒋 − sin 𝜃𝒌 −sin𝜙 sin𝜃𝒊 + cos𝜙 sin𝜃𝒋
0 − cos𝜙 sin𝜃𝒊 − sin 𝜃 sin𝜙𝒋 − cos 𝜃𝒌 −cos 𝜃 sin𝜙𝒊 + cos 𝜃 cos𝜙𝒋
0 0 − cos𝜙𝒊 + sin 𝜙𝒋

) 

= (

0 𝒆𝜃 𝒆𝜙 sin 𝜃

0 −𝒆𝜌 𝒆𝜙 cos 𝜃

0 0 − cos𝜙𝒊 + sin 𝜙𝒋

) 

40  

  

41  

  

42  

  

43  

  

44  

  

45  

  

46  
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47  

  

48  

  

49  

  

50  

  

51  

  

52  

  

53  

  

54  

  

55 Relative to Cartesian coordinates, the state of strain at a point in a body is given by, 

𝐄 = [𝐄1 𝐄2 𝐄3] (
0.5 0.3 0
0.3 0.4 −0.2
0 −0.2 0.2

)⊗ [
𝐄1
𝐄2
𝐄3

] 

Determine the change in angle between the two lines emanating from the point in the 

direction of the lines 2𝐄1 + 2𝐄2 + 𝐄3 and 3𝐄1 − 4𝐄2 in the undeformed body. 

 The Right Stretch Tensor 𝐔 is related to Lagrange Strain 𝐄 by: 

𝐄 =
1

2
(𝐔2 − 𝐈), so that 

𝐔 = √2𝐄 + 𝐈 

𝜃 = cos−1 (
𝑑𝐱1 ⋅ 𝑑𝐱2
‖𝑑𝐱1‖‖𝑑𝐱2‖

) = cos−1 (
𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗2
‖𝐔𝑑𝐗1‖‖𝐔𝑑𝐗2‖

) 
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56 In the two dimensional deformation defined by the deformation  

𝑦1 = 0.1 𝑥1(1 + 2 𝑥1 + 𝑥2) 

𝑦2 = 0.2𝑥2(1 + 𝑥2) 

where 𝑥𝑖  and 𝑦𝑖 are Cartesian coordinates of a particle in the reference and deformed 

configurations respectively. Determine the deformation on a line element 𝐚0 = 𝐞1 +

2𝐞2passing through the point (2,-2) in the reference configuration. 

  

57 Given the transformation of points from {𝑋1, 𝑋2} to {𝑥1, 𝑥2} by the data in the table, 

Point 𝑋1 𝑋2 𝑥1 𝑥2 

𝑃1 0 0 0 0 

𝑃2 1 0 0.8 0.2 

𝑃3 1 1 1.3 1.2 

𝑃4 0 1 0.5 0.9 
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58 
The vector function, 𝐱 = 𝛘(𝐗) = (

𝜆1 𝑘1 0
𝑘1 𝜆2 0
0 0 𝜆3

)(
𝑋1
𝑋2
𝑋3

).  

(a) Compute the tensors 𝐅, 𝐂, 𝐄 𝐔 𝐚𝐧𝐝 𝐑 

(b) For 𝜆1 = 1.1, 𝜆2 = 1.25, 𝜆3 = 1, 𝑘1 = 0.15, 𝑘2 = −0.2, Determine the principal 

values and directions of 𝐄. Verify their mutual orthogonality.  

(c) Compute Strain Invariants 
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(a) The full solution is in the attached Notebook.  

 

59  

  

60  

  

61  

  

62  

  

63  

  

64  

  

65  

  



75 
 

66  

  

67  

  

68  

  

69  

  

References 

Allen, MB, Continuum Mechanics: The Birthplace of Mathematical Models, John Wiley, Inc., 
New Jersey 2016 

Bertram, A, Elasticity and Plasticity of Large Deformations, An Introduction, Springer, 2008  
Dill, EH, Continuum Mechanics, Elasticity, Plasticity, Viscoelasticity, CRC Press, 2007 
Gurtin, ME, Fried, E & Anand, L, The Mechanics and Thermodynamics of Continua, Cambridge 

University Press, 2010 
Holzapfel, GA, Nonlinear Solid Mechanics, Wiley NY, 2007 
Jog, CS, Fluid Mechanics: Foundations and Applications of Mechanics, Volume II, Cambridge 

IISc Series, 2015 
Negahban, M, The Mechanical and Thermodynamical Theory of Plasticity,CRC Press, Taylor 

and Francis Group, Boca Raton, Fl, 2012 
Ogden, RW, Nonlinear Elastic Deformations, Dover Publications, Inc. NY, 1997 
Romano, A, Lancellotta, R, Marasco, A, Continuum Mechanics using Mathematica, Birkhauser, 

2006  
Taber, LA, Nonlinear Theory of Elasticity, World Scientific, 2008  
Wegner, JL & Haddow, JB, Elements of Continuum Mechanics and Thermodynamics, 

Cambridge University Press, 2009. 


