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For the uniform biaxial deformation, given that 𝑥1 = 𝜆1𝑋1, 𝑥2 = 𝜆2𝑋2 and 𝑥3 = 𝑋3.
Compute the Deformation Gradient tensor, the Lagrangian Strain Tensor as well as 
the Eulerian Strain Tensor components.

Convenient to use Cartesian Bases 𝐄1, 𝐄2, 𝐄3 , {𝐞1, 𝐞2, 𝐞3} for Referential and 

Spatial respectively. The referential reciprocal bases are the same as natural 

bases

𝐅 = 𝐞1 𝐞2 𝐞3

𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥1
𝜕𝑋3

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

𝜕𝑥2
𝜕𝑋3

𝜕𝑥3
𝜕𝑋1

𝜕𝑥3
𝜕𝑋2

𝜕𝑥3
𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

= 𝐞1 𝐞2 𝐞3
𝜆1 0 0
0 𝜆2 0
0 0 1

⊗
𝐄1
𝐄2
𝐄3

= 𝛼1𝐞1 ⊗𝐄1 + 𝛼2𝐞2 ⊗𝐄2 + 𝛼3𝐞3 ⊗𝐄3

• The Green Lagrange strain tensor is,

𝐄 = −
1

2
1 − 𝛼1

2 𝐄1 ⊗𝐄1 −
1

2
1 − 𝛼2

2 𝐄2 ⊗𝐄2

• Clearly a biaxial state of strain. The rest of the results can be seen from the 

attached code:
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Use Q2.56 to show that 𝐔 and 𝐕 in the Polar decomposition, 
𝐅 = 𝐑𝐔 = 𝐕𝐑 are similar tensors. Show that they have the same 
eigenvalues and Principal Invariants.

• From Q2.56, we see that the two 
tensors are similar if ∃ an invertible 
tensor 𝐁 such that, 𝐕 = 𝐁𝐔𝐁−1. But 
from, the equation, 𝐑𝐔 = 𝐕𝐑, it 
follows that 

𝐕 = 𝐑𝐔𝐑−1 = 𝐑𝐔𝐑T

• The rotation tensor 𝐑 is always 
invertible. Hence 𝐔 and 𝐕 are 
similar tensors.

• The characteristic equation for 𝐕 is, 
𝐕𝐯 = λ𝐯

• where 𝜆 is the eigenvalue of 𝐕 and 𝐯
its eigenvector. But 𝐕 = 𝐑𝐔𝐑−1

substituting, we have, 
𝐑𝐔𝐑−1𝐯 = λ𝐯

• so that 𝐔𝐑−1𝐯 = λ𝐑−1𝐯. If we define
𝐯1 ≡ 𝐑−1𝐯

• we obtain, 𝐔𝐯1 = 𝜆𝐯1 yielding the 
same characteristic equation as well 
as eigenvalues and principal 
invariants as 𝐕𝐯 = 𝜆𝐯
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Given that 𝐔 and 𝐕 in the Polar decomposition, 

𝐅 = 𝐑𝐔 = 𝐕𝐑 are similar tensors. Are their eigenvectors the same?.

• From TK4.2, we find that the eigenvalues of 𝐔 and 𝐕 as well as 
their Principal Invariants are equal. However, in arriving at that 
proof, we saw that if 𝜆 is the eigenvalue of 𝐕 and 𝐯 its 
eigenvector, then 𝐕 = 𝐑𝐔𝐑−1 substituting, we have, 

𝐑𝐔𝐑−1𝐯 = λ𝐯

• so that 𝐔𝐑−1𝐯 = λ𝐑−1𝐯. 

• Clearly, the eigenvector of 𝐔 is 𝐑−1𝐯 = 𝐑T𝐯. This is the 
eigenvector of 𝐕 rotated in the reverse direction by the same 
rotation tensor in their Polar Decomposition.
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Show that Right Cauchy Green Tensor, CC={{6,5,4},{5,6,4},{4,4,3}} is symmetric and 
positive definite; and that R={{.888354,-.430577,.159465},{.385919,.888354,.248782},{-
.248782,-.159465, .955341}} is a rotation tensor. Use these to find the deformation 
gradient that produced them as well as the Right and Left Stretch Tensors.

• The positive definiteness of the Cauchy Green Tensor is 
easily seen by finding its eigenvalues. They are all 
positive numbers.

• Take the inverse of 𝐑 and compare it to its transpose to 
see if it is truly a rotation tensor.

• The square root of the Right Cauchy-Green Tensor is the 
Right Stretch Tensor as shown.

• Observe that the Deformation Gradient is NOT 
Symmetrical. The Left Stretch Tensor, just like the Right 
Stretch Tensor is symmetrical. You can check to see the 
equality of the eigenvalues of the Stretch Tensors.
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Given that 
𝐅 = {{1.5056, 0.186665, 0.617242}, {1.90897, 2.41141, 1.52306}, {0.298312, 0.387629,
0.547094}} and that 𝐕 = {{1.35556, 0.900421, 0.185345}, {0.900421, 3.2578, 0.595583},
{0.185345, 0.595583, 0.386633}}, Demonstrate that 𝐔𝟐 = 𝐅𝐓𝐅 and that 𝐕𝟐 = 𝐅𝐅𝐓

• We can find the rotation tensor from the 
relationship, 𝐅 = 𝐑𝐔 ⇒ 𝐑 = 𝐅𝐔−1and, 𝐕
= 𝐑𝐔𝐑−1 = 𝐑𝐔𝐑T.

• Each of the Stretch Tensors can be squared by 
the MatrixPower[] function shown and the 
results are compared to the values obtained for 
the Right and Left Cauchy-Green Tensors.

• Mathematica gave results to five decimal places 
because they were already approximated at 
input.
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Given the set of orthogonal basis vectors, 𝐄𝑖 , 𝑖 = 1,… , 3 and another set, 𝛏𝑖 , 𝑖
= 1,… , 3, The latter is called a reciprocal bases if, 𝐄𝑖 ⊗ 𝛏𝑖 = 𝐈. Show that the 
Natural Cartesian basis vectors are self reciprocal

• Given the Cartesian position vector, 
𝐫 = 𝑥𝑖𝐞𝑖

• the natural basis vectors come from direct 
partial differentiation:

𝐄𝑗 =
𝜕𝐫

𝜕𝑥𝑗
= 𝛿𝑖𝑗𝐞𝑖 = 𝐞𝑗

• Writing 𝛏𝑖 = 𝐞𝑖 and evaluating the sum,
𝐞𝑖 ⊗ 𝛏𝑖 = 𝐈

The identity tensor. This shows clearly that 
Cartesian natural basis vectors are self 
reciprocal. All orthonormal bases vectors are 
similarly self reciprocal.
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Given the set of orthogonal basis vectors,𝐄𝑖 , 𝑖 = 1,… , 3 and another set, 𝛏𝑖 , 𝑖
= 1,… , 3, The latter is called a reciprocal bases if,𝐄𝑖 ⊗ 𝛏𝑖 = 𝐈. Show that the 
Natural Cylindrical Polar basis vectors are not self reciprocal. Find their reciprocal 
bases.

• Given the Cylindrical Polar position vector, 

𝐫 = 𝑟 cos𝜙 𝐞1 + 𝑟 sin𝜙 𝐞2 + 𝑧𝐞𝟑 = 𝑟𝐞𝑟(𝜙) + 𝑧𝐞𝑧

• where 𝐞𝑟 𝜙 = cos𝜙 𝐞1 + sin𝜙 𝐞2 is a variable unit vector as it depends on  

𝜙 while 𝐞𝑧 is a constant unit vector. The natural basis vectors come from 

direct partial differentiation:

𝐄1 =
𝜕𝐫

𝜕𝑟
= 𝐞𝑟 𝜙

𝐄2 =
𝜕𝐫

𝜕𝜙
= −𝑟 sin𝜙 𝐞1 𝜙 + 𝑟 cos𝜙 𝐞2 = 𝑟𝐞𝜙(𝜙)

Where we have defined, 𝐞𝜙 ≡ −sin𝜙 𝐞1 𝜙 + cos𝜙 𝐞2. Differentiating again, we 

find that,

𝐄3 =
𝜕𝐫

𝜕𝑧
= 𝐞𝑧

• Writing the sum, 𝐄1 ⊗𝐄1 + 𝐄2 ⊗𝐄2 + 𝐄3 ⊗𝐄3 evaluating the sum, we obtain, 

cos𝜙 𝐞1 + sin𝜙 𝐞2 ⊗ cos𝜙 𝐞1 + sin𝜙 𝐞2 + 𝑟2 −sin𝜙 𝐞1 𝜙 + cos𝜙 𝐞2
⊗ −sin𝜙 𝐞1 𝜙 + cos𝜙 𝐞2 + 𝐞𝟑 ⊗𝐞𝟑

8

• The above sum does not yield the desired identity 
tensor. The problem arises from the fact that the second 
bases is not a unit vector as the natural bases of 
curvilinear systems are not orthonormal. 

• Reciprocal  bases are obtained by dividing the second 

basis by its magnitude so that, 𝛏2 =
𝐄2

𝑟
=

𝐞𝜙 𝜙

𝑟
. We find 

therefore that the sum,

• 𝐄1 ⊗𝛏1 + 𝐄2 ⊗𝛏2 + 𝐄3 ⊗𝛏3

• = cos𝜙 𝐞1 + sin𝜙 𝐞2 ⊗ cos𝜙 𝐞1 + sin𝜙 𝐞2
+ −sin𝜙 𝐞1 𝜙 + cos𝜙 𝐞2 ⊗ −sin𝜙 𝐞1 𝜙 + cos𝜙 𝐞2 +
𝐞𝟑 ⊗𝐞𝟑

• = cos2𝜙 + sin2𝜙 𝐞1 ⊗𝐞1 + cos2𝜙 + sin2𝜙 𝐞2 ⊗𝐞2
+ 𝐞𝟑 ⊗𝐞𝟑
= 𝐈

• all other terms cancelling out.
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Given the set of orthogonal basis vectors,𝐄𝑖 , 𝑖 = 1, … , 3 and another set, 𝛏𝑖 , 𝑖 = 1,… , 3, The 
latter is called a reciprocal bases if, 𝐄𝑖 ⊗ 𝛏𝑖 = 𝐈. Show that the Natural Spherical Polar 
basis vectors are not self reciprocal. Find their reciprocal bases.

• We can follow the same arguments as in the above slide. Begin with 
the spherical position vector, 

𝐫 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 = 𝜌 sin 𝜃 𝐞𝑟 + 𝜌 cos𝜃
= 𝜌 sin 𝜃 cos𝜙 𝐢 + sin𝜙 𝐣 + 𝜌 cos 𝜃 𝐤
= 𝜌 sin 𝜃 cos𝜙 𝐢 +𝜌 sin 𝜃 sin𝜙 𝐣 + 𝜌 cos 𝜃 𝐤 ≡ 𝜌𝐞𝜌(𝜃, 𝜙)

• Where 𝐞𝜌(𝜃, 𝜙) ≡ sin 𝜃 cos𝜙 𝐢 + sin 𝜃 sin𝜙 𝐣 + cos 𝜃 𝐤, 𝐞𝜃 𝜃, 𝜙
= cos 𝜃 cos𝜙 𝐢 + cos 𝜃 sin𝜙 𝐣 − sin 𝜃 𝐤, and 𝐞𝜙(𝜙) = − sin𝜙 𝐢 + cos𝜙 𝐣
in terms of the Cartesian basis vectors. Two things to note: All basis 
vectors are variables. Only 𝐞𝜌(𝜃, 𝜙) appears in the definition of the 
Spherical Position Vector. The others come out as we differentiate 
as follows:

𝐫 = 𝜌𝐞𝜌 𝜃, 𝜙

𝐄1 =
𝜕𝐫

𝜕𝜌
= 𝐞𝜌 𝜃, 𝜙 ;

𝐄2 =
𝜕𝐫

𝜕𝜃
= 𝜌𝐞𝜃 𝜃, 𝜙 ;

𝐄3 =
𝜕𝐫

𝜕𝜙
= 𝜌 sin𝜃𝐞𝜙 𝜙
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• Only the first natural basis is a unit vector. 

• We can obtain the reciprocal bases by simply dividing the 

respective unit vectors by the magnitudes as follows:

𝛏1 =
𝜕𝐫

𝜕𝜌
= 𝐞𝜌 𝜃, 𝜙 ;

𝛏2 =
𝜕𝐫

𝜕𝜃
=
𝐞𝜃 𝜃, 𝜙

𝜌
;

𝛏3 =
𝜕𝐫

𝜕𝜙
=
𝐞𝜙 𝜙

𝜌sin𝜃

As 𝐞𝜌 𝜃, 𝜙 , 𝐞𝜃 𝜃, 𝜙 and 𝐞𝜙 𝜙 are always orthonormal, the sum,

𝐄1 ⊗ 𝛏1 + 𝐄2 ⊗𝛏2 + 𝐄3 ⊗ 𝛏3 = 𝐈
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Consider a deformation of the form 𝐱 = 𝛚 × 𝐗 Here 𝝎 is a vector with magnitude 
≪ 1, which represents an infinitesimal rotation about an axis parallel to 𝛚 Show 
that 𝐂 = 𝛚 ⋅ 𝛚 𝐈 − 𝛚⊗𝛚.

• Deformation Gradient, 𝐅 = 𝛚 ×. This is a skew tensor. The 
transpose, 𝐅T = −𝛚×, its negative. The Right Cauchy-Green 
Tensor, 
𝐂 = 𝐅T𝐅 = − 𝛚 × 𝛚× = − 𝑒𝑖𝑗𝑘𝜔𝑗𝐞𝑖 ⊗𝐞𝑘 𝑒𝛼𝛽𝛾𝜔𝛽𝐞𝛼 ⊗𝐞𝛾

= −𝑒𝑖𝑗𝑘𝜔𝑗𝑒𝛼𝛽𝛾𝜔𝛽𝐞𝑖 ⊗𝐞𝛾𝛿𝑘𝛼 = −𝑒𝑖𝑗𝑘𝜔𝑗𝑒𝛽𝛾𝑘𝜔𝛽𝐞𝑖 ⊗𝐞𝛾
= 𝛿𝑖𝛾𝛿𝑗𝛽 − 𝛿𝑖𝛽𝛿𝑗𝛾 𝜔𝛽𝐞𝑖 ⊗𝐞𝛾
= 𝜔𝑗𝜔𝑗𝐞𝑖 ⊗𝐞𝑖 − 𝜔𝑖𝜔𝑗𝐞𝑖 ⊗𝐞𝑗
= 𝛚 ⋅ 𝛚 𝐈 − 𝛚⊗𝛚
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A body undergoes a deformation defined by, 𝑥1 = 𝑋1 cos 𝛼 − 𝑋2 sin𝛼 , 𝑋2 = 𝑋1 sin 𝛼
+ 𝑋2 cos 𝛼 , and 𝑥3 = 𝑋3 where 𝛼 is a constant. Show that 𝐂 = 𝐈 and 𝐄 = 𝐎. Explain 
the reason for the values of 𝐄 components.

• The deformation gradient here is the rotation tensor through 
angle 𝛼 around the 𝐞3 axis. Consequently,

𝐅 = 𝐑 = 𝐑𝐈 = 𝐑𝐔

So that 𝐔 = 𝐈.
𝐂 = 𝐔2 = 𝐈

And, 

𝐄 =
1

2
𝐂 − 𝐈 = 𝐎
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A cylindrical bar, fixed at one end is twisted at the other as shown. Given that the 
transformation equations are, 𝑟 = 𝑅, 𝜃 = Θ + 𝑓 𝑍 , 𝑍 = 𝑍, find the deformation 
gradient, Right Cauchy Green Tensor and the Euler Lagrange Strain.

12

• In this case Referential system is Cylindrical Polar, Spatial is 

also cylindrical Polar.

𝐅 = 𝐞𝑟 𝐞𝜃 𝐞𝑧

𝜕𝑟

𝜕𝑅

1

𝑅

𝜕𝑟

𝜕Θ

𝜕𝑟

𝜕𝑍

𝑟
𝜕𝜃

𝜕𝑅

𝑟

𝑅

𝜕𝜃

𝜕Θ
𝑟
𝜕𝜃

𝜕𝑍
𝜕𝑧

𝜕𝑅

1

𝑅

𝜕𝑧

𝜕Θ

𝜕𝑧

𝜕𝑍

⊗
𝐄𝑹
𝐄Θ
𝐄𝑍

= 𝐞𝑟 𝐞𝜃 𝐞𝑧

1 0 0

0
𝑟

𝑅
𝑟
𝜕𝑓

𝜕Z
0 0 1

⊗
𝐄𝑹
𝐄Θ
𝐄𝑍
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In addition to twisting, if the above cylindrical bar is also subject to elongation 
and expansion, Find an expression for the deformation and evaluate its 
Deformation Gradient.

• With the inclusion of extension, it is no longer tenable that 𝑟 = 𝑅; 
Now we have, 𝑟 = 𝜒𝑟 𝑅 , 𝜃 = 𝜒𝜃 Θ, Z = Θ + 𝑓 𝑍 , 𝑍 = 𝛼𝑍

• This means that the angular deformation function is still adequate
and the z-direction is assumed to have a linear extension. More 
general deformations are possible.

• Same computation code as above can be used.

Friday, February 28, 2020

13

oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii



Curved Rod

• Consider the length 2𝐿 of a thin rod uniformly bent 
into a semicircle as shown. 

• Referential configuration is the straight rod, 
Spatial, after the bending, is the semi-circular rod. 
If the rod’s length does not increase as a result of 
shape change, then 𝜋𝑅 = 2𝐿. Clearly, radius 𝑅 = 2𝐿
/𝜋

• A point previously located at the distance 𝑥 from 
the origin is now at angle 𝜃. The relationship 
between the two is linear:

𝑥

2𝐿
=
𝜃

𝜋
⇒ 𝜃 =

𝜋𝑥

2𝐿

Friday, February 28, 2020

𝑥 0 𝐿

2

𝐿 −𝐿

𝜃 0 𝜋

4

𝜋

2
−
𝜋

2

How else can you 

obtain this formula?
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Bar to Semicircular Region

• Imagine that we bent the bar shown into a 
semicircular region. Transformation function can 
be found by the following consideration: Note 
that each horizontal filament in the original bar 
becomes a circular filament in the spatial 
configuration. The vertical undeformed sections 
become radial sections in the spatial state. Let 
the centerline be a semicircle at a distance 𝑅 and 
let the thickness contract uniformly with a factor 
𝛼

⇒ 𝑥1 = 𝑟 = 𝜒1 𝑋1, 𝑋2, 𝑋3, 𝑡 = 𝑅 + 𝛼𝑋2, and

𝑥2 = 𝜃 = 𝜒2 𝑋1, 𝑋2, 𝑋3, 𝑡 =
𝜋𝑋1
2𝐿

• If the bar contracts uniformly in 𝑋3 direction, 
𝑥3 = 𝑧 = 𝜒3 𝑋1, 𝑋2, 𝑋3, 𝑡 = 𝛽𝑋3
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Referential & Spatial Configurations

• Clearly, the referential configuration here is the bar; Spatial is the 
semicircular bar.

• Deformation is such that the spatial is in cylindrical coordinates, 
the referential is in Cartesian.

• Deformation gradient requires the reciprocal Cartesian bases 
which are the same as the Cartesian. In the spatial, we use the 
cylindrical. The full computation given in Q4.7, is repeated here:
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Deformation Gradient

𝐅 = 𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧

𝜕𝑟

𝜕𝑋1

𝜕𝑟

𝜕𝑋2

𝜕𝑟

𝜕𝑋3
𝜕𝜃

𝜕𝑋1

𝜕𝜃

𝜕𝑋2

𝜕𝜃

𝜕𝑋3
𝜕𝑧

𝜕𝑋1

𝜕𝑧

𝜕𝑋2

𝜕𝑧

𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

= 𝐞𝑟 𝐞𝜃 𝐞𝑧 𝑟

0
𝜕𝑟

𝜕𝑋2
0

𝜕𝜃

𝜕𝑋1
0 0

0 0
𝜕𝑧

𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

= 𝐞𝑟 𝐞𝜃 𝐞𝑧

0 𝛼 0
𝜋𝑟

2𝐿
0 0

0 0 𝛽

⊗
𝐄1
𝐄2
𝐄3

=
𝜋𝑟

2𝐿
𝐞𝜃 𝛼𝐞𝑟 𝛽𝐞𝑧 ⊗

𝐄1
𝐄2
𝐄3

=
𝜋𝑟

2𝐿
𝐞𝜃 ⊗𝐄1 + 𝛼𝐞𝑟 ⊗𝐄2 + 𝛽𝐞𝑧 ⊗𝐄3

Friday, February 28, 2020
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Right Cauchy-Green/Stretch Tensors

• Clearly, 

𝐂 = 𝐅T𝐅 =
𝜋𝑟

2𝐿
𝐄1 ⊗𝐞𝜃 + 𝛼𝐄2 ⊗𝐞𝑟 + 𝛽𝐄3 ⊗𝐞𝑧

𝜋𝑟

2𝐿
𝐞𝜃 ⊗𝐄1 + 𝛼𝐞𝑟 ⊗𝐄2 + 𝛽𝐞𝑧 ⊗𝐄3

=
𝜋𝑟

2𝐿
𝐄1 ⊗𝐞𝜃

𝜋𝑟

2𝐿
𝐞𝜃 ⊗𝐄1 +⋯+ 𝛽𝐄3 ⊗𝐞𝑧 𝛽𝐞𝑧 ⊗𝐄3

=
𝜋𝑟

2𝐿

2

𝐄1 ⊗𝐄1 + 𝛼2𝐄2 ⊗𝐄2 + 𝛽2𝐄3 ⊗𝐄3

• since each set of basis vectors is orthonormal, and the Right Stretch Tensor,

𝐔 =
𝜋𝑟

2𝐿
𝐄1 ⊗𝐄1 + 𝛼𝐄2 ⊗𝐄2 + 𝛽𝐄3 ⊗𝐄3

• Is the square root of the Right Cauchy Green tensor. The positive square roots are taken since 

both 𝐂 as well as 𝐔 are necessarily positive definite and can only have positive eigenvalues.

Friday, February 28, 2020
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Computing Functions in Cylindrical Systems

𝑟 = 𝑟 𝑅, 𝛩, 𝑍 = 𝜒𝑟 𝑅, 𝛩, 𝑍 ; 𝜃 = 𝜃 𝑅, 𝛩, 𝑍 = 𝜒𝜃 𝑅,𝛩, 𝑍 ; 𝑧 = 𝑧 𝑅, 𝛩, 𝑍 = 𝜒𝑧 𝑅,𝛩, 𝑍

𝑑𝐱 =
𝑑𝐱

𝑑𝐗
𝑑𝐗 =

𝑑𝛘

𝑑𝐗
𝑑𝐗 = 𝐅 𝑑𝐱

The spatial position vector, 𝐱 = 𝑟𝐞𝑟 𝑟, 𝜃 + 𝑧𝐞𝑧 ⇒

𝑑𝐱 =
𝜕𝐱

𝜕𝑟
𝑑𝑟 +

𝜕𝐱

𝜕𝜃
𝑑𝜃 +

𝜕𝐱

𝜕𝑧
𝑑𝑧 = 𝐞𝑟𝑑𝑟 + 𝑟

𝜕𝐞𝑟 𝑟, 𝜃

𝜕𝜃
𝑑𝜃 + 𝐞𝑧𝑑𝑧

= 𝐞𝑟𝑑𝑟 + 𝑟𝐞𝜃𝑑𝜃 + 𝐞𝑧𝑑𝑧

Similarly, in the Referential, 

𝑑𝐗 =
𝜕𝐗

𝜕𝑅
𝑑𝑅 +

𝜕𝐗

𝜕𝛩
𝑑𝛩 +

𝜕𝐗

𝜕𝑍
𝑑𝑍 = 𝐄𝑅𝑑𝑅 + 𝑅𝐄𝛩𝑑𝛩 + 𝐄𝑍𝑑𝑍

Friday, February 28, 2020
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Cylindrical Deformation Gradient

𝑑𝐱 =
𝑑𝛘

𝑑𝐗
𝑑𝐗 = 𝐅 𝑑𝐗 = 𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧

𝜕𝜒𝑟
𝜕𝑅

𝜕𝜒𝑟
𝜕𝛩

𝜕𝜒𝑟
𝜕𝑍

𝜕𝜒𝜃
𝜕𝑅

𝜕𝜒𝜃
𝜕𝛩

𝜕𝜒𝜃
𝜕𝑍

𝜕𝜒𝑧
𝜕𝑅

𝜕𝜒𝑧
𝜕𝛩

𝜕𝜒𝑧
𝜕𝑍

⊗

𝐄𝑅
𝐄𝛩
𝑅
𝐄𝑍

𝐄𝑅
𝑅𝐄𝛩
𝐄𝑍

So that the deformation gradient, in terms of unit vector sets {𝐞𝑟 , 𝐞𝜃 , 𝐞𝑧} and 𝐄𝑅, 𝐄𝛩 , 𝐄𝑍 , the matrix of 𝐅 can be 
written as,

[𝐅] =

𝜕𝜒𝑟
𝜕𝑅

1

𝑅

𝜕𝜒𝑟
𝜕𝛩

𝜕𝜒𝑟
𝜕𝑍

𝑟
𝜕𝜒𝜃
𝜕𝑅

𝑟

𝑅

𝜕𝜒𝜃
𝜕𝛩

𝑟
𝜕𝜒𝜃
𝜕𝑍

𝜕𝜒𝑧
𝜕𝑅

1

𝑅

𝜕𝜒𝑧
𝜕𝛩

𝜕𝜒𝑧
𝜕𝑍

Friday, February 28, 2020
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Bar to SemiCircle: 
Cartesian Solution

• The same Bar to a semicircular 
region may be solved using 
Cartesian coordinates. In fact, the 
two not only give the same results 
but looking at both brings out the 
salient issues of the two systems 
especially the concept of the 
reciprocal basis.

• For this reason, we present here 
the Cartesian analysis of the same 
problem and obtain the 
Deformation Gradient and other 
relevant tensors.
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Bar to SemiCircular Bar 23

• We are interested in how the referential point, 𝑋1, 𝑋2, 𝑋3
transformed into the spatial point, 𝑥1, 𝑥2, 𝑥3 .This time, each 

coordinate system is referred to Cartesian Base vectors. The 

radial distance of each fiber is still dependent on how far, along 

the vertical axis, it is from the midplane. It is therefore 

dependent on 𝑋2 only. We can write that the curved surface at 

each fibre is located at 𝑟 = 𝜒𝑟 𝑋2 = 𝑅 + 𝛼𝑋2

• Its angular displacement is dependent on where it is along 𝑋1-
axis. Therefore, 

𝜃 = 𝜒𝜃 𝑋1 =
𝜋𝑋1
2𝐿

As before, 𝑥3 = 𝛽𝑋3. We now proceed to express these in Spatial 

Cartesian coordinates:
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Bar to SemiCircular Bar 24

The Coordinates of the spatial point are:

𝑥1 = 𝜒𝑟 𝑋2 cos 𝜒𝜃 𝑋1 = 𝑅 + 𝛼𝑋2 cos
𝜋𝑋1
2𝐿

𝑥2 = 𝜒𝑟 𝑋2 sin 𝜒𝜃 𝑋1 = 𝑅 + 𝛼𝑋2 sin
𝜋𝑋1
2𝐿

𝑥3 = 𝛽𝑋3

𝐅 =
𝜕𝜒𝛼
𝜕𝑋𝑗

𝐞𝛼 ⊗𝐄𝑗

= 𝐞1 𝐞2 𝐞3

𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥1
𝜕𝑋3

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

𝜕𝑥2
𝜕𝑋3

𝜕𝑥3
𝜕𝑋1

𝜕𝑥3
𝜕𝑋2

𝜕𝑥3
𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

Friday, February 28, 2020oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii



Bar to SemiCircular Bar

𝐅 = 𝐞1 𝐞2 𝐞3

−
𝜋𝜒𝑟
2𝐿

sin
𝜋𝑋1
2𝐿

𝛼 cos
𝜋𝑋1
2𝐿

0

𝜋𝜒𝑟
2𝐿

cos
𝜋𝑋1
2𝐿

𝛼 sin
𝜋𝑋1
2𝐿

0

0 0 𝛽

⊗
𝐄1
𝐄2
𝐄3

From which we easily find, as before, that 

𝐂 =
𝜋𝜒𝑟
2𝐿

2

𝐄1 ⊗𝐄1 + 𝛼2𝐄2 ⊗𝐄2 + 𝛽2𝐄3 ⊗𝐄3

Remember that we had a base system that is self reciprocal here. The deformation 
gradient looked a bit different but the underlying Right Cauchy-Green Tensor is the same.

25

oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii Friday, February 28, 2020



Cone to Plane Object

• Consider the cone with half angle Θ as shown. At a 
slant length of 𝜚, clearly, distance 𝑙 to the foot of the 
axial line is such that,

𝑙 = 𝜚 sinΘ

• Selecting spherical base vectors 𝐞𝜚, 𝐞Θ and 𝐞Φ as 
shown, we can find the transformation equations of 
the conical lamina to the flat plane shown. Since the 
total rim length of the cone  2𝜋𝑙 = 2𝜋𝜚 sin Θ must 
coincide with the curved length of the plane lamina, 
included angle 𝜃 must be such that,

0 ≤ 𝜃 ≤ 2𝜋 sinΘ
Friday, February 28, 2020oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii
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Transformation Equations

𝑟 = 𝜒𝑟 𝜚, Θ,Φ = 𝜚
𝜃 = 𝜒𝜃 𝜚, Θ,Φ = ΦsinΘ0
𝑧 = 𝜒𝑧 𝜚, Θ,Φ = 𝛼𝜚 tan(Θ0 − Θ)

Where 𝛼 is the shrinkage or expansion factor in 

the 𝑧 direction. In finding the deformation 

gradient, we note that the spherical basis must be 

reciprocal since it is the referential system. 

Therefore,

𝐅 = 𝐞𝑟 𝜌𝐞𝜃 𝐞𝒛

𝜕𝑟

𝜕𝜚

𝜕𝑟

𝜕Θ

𝜕𝑟

𝜕Φ
𝜕𝜃

𝜕𝜚

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕Φ
𝜕𝑧

𝜕𝜚

𝜕𝑧

𝜕Θ

𝜕𝑧

𝜕Φ

⊗

𝐞𝜚
𝐞Θ
𝜚
𝐞Φ

𝜚 sinΘ
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Deformation Gradient
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= 𝐞𝜌 𝐞𝜃 𝐞𝜙

𝜕𝑟

𝜕𝜚

1

𝜚

𝜕𝑟

𝜕Θ

1

𝜚 sinΘ

𝜕𝑟

𝜕Φ

𝑟
𝜕𝜃

𝜕𝜚

𝑟

𝜚

𝜕𝜃

𝜕Θ

𝑟

𝜚 sinΘ

𝜕𝜃

𝜕Φ
𝜕𝑧

𝜕𝜚

1

𝜚

𝜕𝑧

𝜕Θ

1

𝜚 sinΘ

𝜕𝑧

𝜕Φ

⊗

𝐞𝜚
𝐞Θ
𝐞Φ

= 𝐞𝜌 𝐞𝜃 𝐞𝜙

1 0 0

0 0
𝑟 sinΘ0
𝜚 sinΘ

𝛼(Θ0 − Θ) −
𝛼

cos2(Θ0 − Θ)
0

⊗

𝐞𝜚
𝐞Θ
𝐞Φ



Cone Insulation 29
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Dehin Chemical Company
The metallic hemisphere is shown here. The insulation material is lying under it. It is two tone. 30
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Dehin Chemical Company

• They just acquired a large repository of hot liquid 
mixed liquids that must be kept at high temperature 
during the manufacture of a product.

• There is an elastomeric double insulating material 
that will be forced and extended to cover the outer 
surface of this hemisphere.

• The manufacturer of the insulation material has 
specifications on the  maximum allowable 
deformation on the material for optimal performance. 
It is your job to direct the cutting and fitting of this 
insulation, or they send for an expert in Germany.

Friday, February 28, 2020
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Dehin Chemical Company

• We have a transformation from Cylindrical 
Polar referential system, 𝑅, Θ, 𝑍 to the 
Spherical Polar system, 𝜌, 𝜃, 𝜙. The following 
bounds on the variables apply:

0 ≤ 𝑅 ≤ 𝑟0; 0 ≤ Θ ≤ 2𝜋; 0 ≤ 𝑍 ≤ −𝑡

• At the referential side, and,

𝜌0 ≤ 𝜌 ≤ 𝜌0 − 𝛼𝑍,
𝜋

2
≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋

For spatial. The transformation equations are as 
follows: and here is where the heavy lifting lies:

𝜌 = 𝜌0 − 𝛼𝑍

𝜃 = −
𝜋𝑅

2𝑟0
+ 𝜋

𝜙 = Θ

• We can now compute the deformation 
gradient.
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Deformation Gradient

𝐅 = 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

𝜕𝜌

𝜕𝜃

𝜕𝜌

𝜕𝑍
𝜕𝜃

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝜙

𝜕𝑅

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕𝑍

⊗

𝐄𝑅
𝐄Θ
𝑅
𝐄𝑍

= 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙 −

0 0 −𝛼
𝜋

2𝑟0
0 0

0 1 0

⊗

𝐄𝑅
𝐄Θ
𝑅
𝐄𝑍

• Volume Ratio is the determinant of the Deformation 

Gradient:

𝐽 = det 𝐅 =
𝛼𝜋𝜌2 sin 𝜃

2𝑟0𝑅
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• A word on the limiting value of the volume Ratio: 

𝐽 = det 𝐅 =
𝛼𝜋𝜌2 sin 𝜃

2𝑟0𝑅

lim
𝑅→0

𝐽 =
𝛼𝜋𝜌2

2𝑟0

• Because as 𝑅 → 0, 𝜃 → 𝜋 so that 
sin 𝜃

𝑅
→ 1 showing that 

there is no case of the value becoming indeterminate at 

the origin. 



Deformation Gradient in ONB

𝐅 = 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

𝜕𝜌

𝜕𝜃

𝜕𝜌

𝜕𝑍
𝜕𝜃

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝜙

𝜕𝑅

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕𝑍

⊗

𝐄𝑅
𝐄Θ
𝑅
𝐄𝑍

= 𝐞𝜌 𝐞𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

1

𝑅

𝜕𝜌

𝜕𝜃

𝜕𝜌

𝜕𝑍

𝜌
𝜕𝜃

𝜕𝑅

𝜌

𝑅

𝜕𝜃

𝜕Θ
𝜌
𝜕𝜃

𝜕𝑍

𝜌 sin 𝜃
𝜕𝜙

𝜕𝑅

𝜌 sin 𝜃

𝑅

𝜕𝜙

𝜕Θ
𝜌 sin 𝜃

𝜕𝜙

𝜕𝑍

⊗

𝐄𝑅
𝐄Θ
𝑅
𝐄𝑍
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= 𝐞𝜌 𝐞𝜃 𝐞𝜙 −

0 0 −𝛼
𝜌𝜋

2𝑟0
0 0

0
𝜌 sin 𝜃

𝑅
0

⊗
𝐄𝑅
𝐄Θ
𝐄𝑍

Volume Ratio is the determinant of the 

Deformation Gradient:

𝐽 = det 𝐅 =
𝛼𝜋𝜌2 sin 𝜃

2𝑟0𝑅



Transforming from Cylindrical to Spherical, we have

𝐅 = 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

𝜕𝜌

𝜕𝜃

𝜕𝜌

𝜕𝑍
𝜕𝜃

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝜙

𝜕𝑅

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕𝑍

⊗

𝐄𝑅
𝐄Θ

𝑅

𝐄𝑍

. Find its inverse.

• Clearly, in the inverse transformation, we have,

𝑅 = 𝜒𝑅 𝜌, 𝜃, 𝜙 , Θ = 𝜒Θ 𝜌, 𝜃, 𝜙 , 𝑍 = 𝜒𝑍 𝜌, 𝜃, 𝜙

The referential in this transformation is the Spherical system and we use its reciprocal base 

vectors:

𝐅 = 𝐄𝑅 𝑅𝐄Θ 𝐄𝑍

𝜕𝑅

𝜕𝜌

𝜕𝑅

𝜕𝜃

𝜕𝑅

𝜕𝜙
𝜕Θ

𝜕𝜌

𝜕Θ

𝜕𝜃

𝜕Θ

𝜕𝜙
𝜕𝑍

𝜕𝜌

𝜕𝑍

𝜕𝜃

𝜕𝑍

𝜕𝜙

⊗

𝐞𝜌
𝐞𝜃
𝜌
𝐞𝜙

𝜌 sin 𝜃

= 𝐄𝑅 𝐄Θ 𝐄𝑍

𝜕𝑅

𝜕𝜌

1

𝜌

𝜕𝑅

𝜕𝜃

1

𝜌 sin 𝜃

𝜕𝑅

𝜕𝜙

𝑅
𝜕Θ

𝜕𝜌

𝑅

𝜌

𝜕Θ

𝜕𝜃

𝑅

𝜌 sin 𝜃

𝜕Θ

𝜕𝜙
𝜕𝑍

𝜕𝜌

1

𝜌

𝜕𝑍

𝜕𝜃

1

𝜌 sin 𝜃

𝜕𝑍

𝜕𝜙

⊗

𝐞𝜌
𝐞𝜃
𝐞𝜙
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Write the following deformation gradient

𝐅 = 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

𝜕𝜌

𝜕𝜃

𝜕𝜌

𝜕𝑍
𝜕𝜃

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝜙

𝜕𝑅

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕𝑍

⊗

𝐄𝑅
𝐄Θ

𝑅

𝐄𝑍

in terms or orthonormal basis vectors

• In terms of orthonormal basis vectors, we have,

𝐅 = 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

𝜕𝜌

𝜕Θ

𝜕𝜌

𝜕𝑍
𝜕𝜃

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝜙

𝜕𝑅

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕𝑍

⊗

𝐄𝑅
𝐄Θ
𝑅
𝐄𝑍

= 𝐞𝜌 𝐞𝜃 𝐞𝜙

𝜕𝜌

𝜕𝑅

1

𝑅

𝜕𝜌

𝜕Θ

𝜕𝜌

𝜕𝑍

𝜌
𝜕𝜃

𝜕𝑅

𝜌

𝑅

𝜕𝜃

𝜕Θ
𝜌
𝜕𝜃

𝜕𝑍

𝜌 sin 𝜃
𝜕𝜙

𝜕𝑅

𝜌 sin 𝜃

𝑅

𝜕𝜙

𝜕Θ
𝜌 sin 𝜃

𝜕𝜙

𝜕𝑍

⊗
𝐄𝑅
𝐄Θ
𝐄𝑍
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Given the deformation, 𝜌 = 𝜌0 − 𝛼𝑍, 𝜃 = −
𝜋𝑅

2𝑟0
+ 𝜋, 𝜙 = Θ. Find the inverse 

deformation. Find the inverse Deformation Gradient.

• The equations here are easily done by hand. It follows that,

𝑍 = 𝜒𝑍 𝜌, 𝜃, 𝜙 =
1

𝛼
𝜌0 − 𝜌 , 𝑅 = 𝜒𝑅 𝜌, 𝜃, 𝜙 =

2𝑟0

𝜋
𝜋 − 𝜃 , Θ = 𝜒Θ 𝜌, 𝜃, 𝜙 = 𝜙

The deformation gradient, 

𝐅 = 𝐄𝑅 𝐄Θ 𝐄𝑍

𝜕𝑅

𝜕𝜌

1

𝜌

𝜕𝑅

𝜕𝜃

1

𝜌 sin 𝜃

𝜕𝑅

𝜕𝜙

𝑅
𝜕Θ

𝜕𝜌

𝑅

𝜌

𝜕Θ

𝜕𝜃

𝑅

𝜌 sin 𝜃

𝜕Θ

𝜕𝜙

𝜕𝑍

𝜕𝜌

1

𝜌

𝜕𝑍

𝜕𝜃

1

𝜌 sin 𝜃

𝜕𝑍

𝜕𝜙

⊗

𝐞𝜌
𝐞𝜃
𝐞𝜙

= 𝐄𝑅 𝐄Θ 𝐄𝑍

0 −
2𝑟0

𝜌𝜋
0

0 0
𝑅

𝜌 sin 𝜃

−
1

𝛼
0 0

⊗

𝐞𝜌
𝐞𝜃
𝐞𝜙
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Use Mathematica to confirm 𝐅−1

• Here is the Mathematica 
Code:

• Note that it is only when you 
refer tensors to orthonormal 
basis that you can calculate 
values of physical  properties 
such as Volume or Area 
ratios. 

• The components under such 
basis are called “Physical 
Components”. 
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Elastomer Pipe Insulator

• Pipe is insulated by a stretched elastomer. Take 
Cartesian coordinates as shown on the unstretched 
insulator. On the pipe, let 𝐞𝑟 be the radial vector 
with 𝐞𝜃 at the rim in the counterclockwise tangential 
direction. 𝐞𝑧 is the axial unit vector chosen to make 
the system right-handed.

• Let the insulator be 𝑙 × 𝑏 with a thickness 𝑡 while 
pipe width is 𝑤. Assuming uniform stretches on the 
pipe surface the transformations are,

𝑟 = 𝑟0 − 𝛼𝑍 = 𝜒𝑟(𝑍),

𝜃 =
𝛽

𝑟0
𝑋 = 𝜒𝜃 𝑋 ,

𝑧 = −𝛾𝑍 = 𝜒𝑧(𝑌)
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Elastomer Pipe Insulator

2𝜋𝑟0 = 𝑙𝛽 ⇒ 𝛽 =
𝑙

2𝜋𝑟0
and 𝛾𝑏 = 𝑤 ⇒ 𝛾 =

𝑤

𝑏
.

Deformation gradient

𝐅 = 𝐞𝑟 𝐞𝜃 𝐞𝑧

𝜕𝑟

𝜕𝑋

𝜕𝑟

𝜕𝑌

𝜕𝑟

𝜕𝑍

𝑟
𝜕𝜃

𝜕𝑋
𝑟
𝜕𝜃

𝜕𝑌
𝑟
𝜕𝜃

𝜕𝑍
𝜕𝑧

𝜕𝑋

𝜕𝑧

𝜕𝑌

𝜕𝑧

𝜕𝑍

⊗

𝐞𝑋
𝐞𝑌
𝐞𝑍

= 𝐞𝑟 𝐞𝜃 𝐞𝑧

0 0 −𝛼
𝑟𝛽

𝑟0
0 0

0 −𝛾 0

⊗

𝐞𝑋
𝐞𝑌
𝐞𝑍
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Shrinkage under Isochoric Deformation 41

• When deformation is isochoric, the there is no change in volume. Hence volume 
ratio is unity.

• Volume ratio is the determinant of the deformation gradient. Note that the 
deformation gradient MUST be referred to ONB system. Here, 

det 𝐅 =
𝛼𝛽𝛾𝑟

𝑟0
= 𝛼

𝑙

2𝜋𝑟0

𝑤

𝑏
𝑟 = 1

• In this case, 𝛼 =
2𝜋𝑏𝑟0

2

𝑤𝑙𝑟
.
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Show that the tensor 𝐂 = 𝐄1 𝐄2 𝐄3

163.24 34.6 4.2
34.6 19. −30.
4.2 −30. 178.

⊗
𝐄1
𝐄2
𝐄3

is positive definite. 

• Find the square root of the 𝐂 by finding its 
spectral decomposition from its eigenvalues 
and eigenvectors. (b) Use the Mathematica 
function MatrixPower[C, ½] to compare your 
result.

• Eigenvalues are all positive, hence it is 
positive definite. The tensor 𝐂 as well as its 
square root have the same eigenvectors. 
Eigenvalues of the square root are the square 
roots of the eigenvalues of 𝐂 as the figures 
show. 
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Show that rotation alters neither symmetry nor 
skewness in a tensor.
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𝛀T = 𝐑𝐖𝐑T T

= 𝐑T T
𝐖T𝐑T = − 𝐑𝐖𝐑T

= −𝛀

• On account of the skewness of tensor 𝐖
and the fact that the transpose of a 
transpose is the original tensor.

• Consider a symmetric tensor 𝐒, and a 
rotation tensor 𝐑. We take a transpose of 
the rotated tensor 𝐓 = 𝐑𝐒𝐑T

𝐓T = 𝐑𝐒𝐑T T

= 𝐑T T
𝐒T𝐑T = 𝐑𝐒𝐑T

= 𝐓

• On account of the symmetry of tensor 𝐒
and the fact that the transpose of a 
transpose is the original tensor.

• Consider a skew tensor 𝐖, and a rotation 
tensor 𝐑. We take a transpose of the 
rotated tensor 𝛀 = 𝐑𝐖𝐑T



For a proper orthogonal tensor Q, show that the eigenvalue 
equation always yields an eigenvalue of +1. This means that 𝜆
= 1 is always a solution for the equation, det 𝐐 − λ𝐈

44

• For a proper orthogonal tensor, the cofactor,
𝐐c = det𝐐 𝐐−T = 𝐐−T = 𝐐

• Showing that it is self-cofactor. The characteristic equation is,
𝜆3 − 𝐼1𝜆

2 + 𝐼2𝜆 − 𝐼3 = 0.

• 𝐼3 = 1 for every proper orthogonal tensor; 𝐼2 = 𝐼1since it is self cofactor. 
The second invariant is the trace of the cofactor equaling the first 
which is the trace of the tensor. Consequently, the characteristic 
equation becomes,

𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 − 𝐼3 = 0

• Substitute 𝜆 = 1, the equation becomes, 1 − 𝐼1 + 𝐼1 − 1 = 0, identically. 
Hence this is an eigenvalue of the tensor.
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For a vector-valued spatial field, we are given that Grad 𝐟
= grad 𝐟 𝐅 𝐗, 𝑡 . Show that, Div 𝐟 = grad 𝐟 : 𝐅T 45

• We are given, 
Grad 𝐟 = grad 𝐟 𝐅

• Take the trace of both sides:
tr Grad 𝐟 = tr grad 𝐟 𝐅

= gradT 𝐟 : 𝐅 = grad 𝐟 : 𝐅T

= Div 𝐟
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If the tensor 𝐒 is positive definite, Show that det 𝐒
1

2 = det 𝐒
1

2. 
Why is this result important?

• Let the eigenvalues of 𝐒 be 𝜆1, 𝜆2 and 𝜆3. Then the determinant of 

𝐒 is 𝜆1𝜆2𝜆3 the square root of this is 𝜆1𝜆2𝜆3. But since 𝐒 is 

positive definite, The eigenvalues of 𝑺
1

2 are 𝜆1, 𝜆2 and 𝜆3 so 

that the determinant of 𝐒
1

2, ie det 𝐒
1

2 = 𝜆1 𝜆2 𝜆3 = 𝜆1𝜆2𝜆3

• The Right Stretch Tensor,𝐔, is the square root of the Right Cauchy-
Green Tensor. The square root of the determinant of the former is 
therefore the volume ratio since the Determinant of 𝐔 is the same 
as that of the deformation Gradient.
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Show that the stretch Tensors have the same determinant as the 
Deformation Gradient. Why is this important?

• From the Equation, 𝐅 = 𝐑𝐔 = 𝐕𝐑 we take the determinant of each side 
and recall that the determinant of a product of tensors is the product of 
the determinant of the tensors.

det 𝐅 = det 𝐑𝐔 = det 𝐕𝐑
= det 𝐑 det 𝐔
= (det 𝐕)(det 𝐑)

• The result follows upon noting that the determinant of a proper 
orthogonal tensor is unity. Therefore,

det 𝐅 = det 𝐔 = det 𝐕

• We can find volume ratio from the determinant of any stretch tensor.
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Given the Deformation Gradient Tensor 𝐞1 𝐞2 𝐞3
1

3

2

4

3

0 1 0
0 0 1

⊗
𝐄1
𝐄2
𝐄3

Find the rotation 

tensor, the right stretch tensor and the left stretch tensor.
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A body undergoes a deformation defined by, 𝑥1 = 𝑋1 cos 𝛼 − 𝑋2 sin 𝛼 , 𝑋2
= 𝑋1 sin 𝛼 + 𝑋2 cos 𝛼 , and 𝑥3 = 𝑋3 where 𝛼 is a constant. Show that 𝐂
= 𝐈 and 𝐄 = 𝐎. Explain the reason for the values of 𝐄 components.

• The deformation gradient here is the rotation tensor through 
angle 𝛼 around the 𝐞3 axis. Consequently,

𝐅 = 𝐑 = 𝐑𝐈 = 𝐑𝐔

• So that 𝐔 = 𝐈.
𝐂 = 𝐔2 = 𝐈

• And, 

𝐄 =
1

2
𝐂 − 𝐈 = 𝐎
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A cylindrical tube undergoes the deformation given by 𝑟 = 𝑅, 𝜙 = Θ + 𝜗 𝑅 , 𝑧 = 𝑍
+𝑤(𝑅) where 𝑅,Φ, 𝑍 and 𝑟, 𝜙, 𝑧 , are polar coordinates of a point in the tube 
before and after deformation respectively, 𝜗 and 𝑤 are scalar functions of 𝑅. 
Explain the meaning of the situation where (i) 𝜗 = 0, (ii) 𝑤 = 0.

• 𝐅 =
𝜕𝐫

𝜕𝐑
=

𝐹𝑟𝑅 𝐹𝑟Φ 𝐹𝑟𝑍
𝐹𝜙𝑅 𝐹𝜙Φ 𝐹𝜙𝑍
𝐹𝑧𝑅 𝐹𝑧Φ 𝐹𝑧𝑍

=

𝜕𝑟

𝜕𝑅

1

𝑅

𝜕𝑟

𝜕Φ

𝜕𝑟

𝜕Z
𝜕𝜙

𝜕𝑅
𝑟

𝑟

𝑅

𝜕𝜙

𝜕Φ

𝜕𝜙

𝜕Z
𝑟

𝜕𝑧

𝜕𝑅

1

𝑅

𝜕𝑧

𝜕Φ

𝜕𝑧

𝜕Z

=

1 0 0

𝜗′𝑟
𝑟

𝑅
0

𝑤′ 0 1

. When 𝜗 = 0, The deformation 

gradient becomes, 

1 0 0

0
𝑟

𝑅
0

𝑤′ 0 1

. This is a longitudinal elongation as radial and tangential displacements 

are nil. 

When 𝑤 = 0, The deformation gradient becomes, 

1 0 0

𝜗′𝑟
𝑟

𝑅
0

0 0 1

. This is a torsional rotation as there is no 

other deformation in the material apart from a relative rotation along the longitudinal axis.
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A cylindrical tube undergoes the deformation given by 𝑟 = 𝑅, 𝜙 = Θ + 𝜗 𝑅 , 𝑧 = 𝑍
+𝑤(𝑅) where 𝑅,Φ, 𝑍 and 𝑟, 𝜙, 𝑧 , are polar coordinates of a point in the tube 
before and after deformation respectively, 𝜗 and 𝑤 are scalar functions of 𝑅. 
Compute 𝐅, 𝐂 and 𝐄

• The Right Cauchy Green Tensor

𝐂 = 𝐅T𝐅 =

(𝑤′)2+𝑟2(𝜗′)2+1
𝑟2𝜗′

𝑅
𝑤′

𝑟2𝜗′

𝑅

𝑟2

𝑅2
0

𝑤′ 0 1

• and the Lagrangian strain,

• 𝐄 =
1

2
𝐂 − 𝐈 =

1

2
((𝑤′)2+𝑟2(𝜗′)2)

𝑟2𝜗′

2𝑅

𝑤′

2

𝑟2𝜗′

2𝑅

1

2
(
𝑟2

𝑅2
− 1) 0

𝑤′

2
0 0
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A cylindrical tube undergoes the deformation given by 𝑟 = 𝑅, 𝜙 = Θ + 𝜗 𝑅 , 𝑧 = 𝑍
+𝑤(𝑅) where 𝑅,Φ, 𝑍 and 𝑟, 𝜙, 𝑧 , are polar coordinates of a point in the tube 
before and after deformation respectively, 𝜗 and 𝑤 are scalar functions of 𝑅. Find 
the Lagrangian and Eulerian strain components 

• 𝐅 𝐅T =

1 𝑟𝜗′ 𝑤′

𝑟𝜗′ (𝜗′)2𝑟2 +
𝑟2

𝑅2
𝑟𝑤′𝜗′

𝑤′ 𝑟𝑤′𝜗′ (𝑤′)2+1

• The inverse of this also called the Piola Tensor is,

• 𝐁 = 𝐅−𝐓𝐅−𝟏 =

𝑅2
(𝑤′)2𝑟2

𝑅2
+(𝜗′)2𝑟2+

𝑟2

𝑅2

𝑟2
−

𝑅2𝜗′

𝑟
−𝑤′

−
𝑅2𝜗′

𝑟

𝑅2

𝑟2
0

−𝑤′ 0 1

• Eulerian strain

𝐞 =
1

2
𝐈 − 𝐁 =

1

2
1 −

𝑅2
(𝑤′)2𝑟2

𝑅2
+ (𝜗′)2𝑟2 +

𝑟2

𝑅2

𝑟2
𝑅2𝜗′

2𝑟

𝑤′

2
𝑅2𝜗′

2𝑟

1

2
1 −

𝑅2

𝑟2
0

𝑤′

2
0 0
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In the deformation, 𝐱 = 𝛘 𝐗 = (𝐀 + 𝐈)𝐗 where 𝐀 is 
independent of 𝐗, show that infinitesimal strain, 
𝛜 = sym 𝐀

• Recall that, 𝛜 =
1

2
(𝐇 + 𝐇T) where 𝐇 = Grad (𝛘 𝐗 − 𝐗) the 

Referential gradient of the difference between the spatial and 
referential variables. Hence,

𝐇 = Grad 𝛘 𝐗 − 𝐗
= Grad (𝐀 + 𝐈)𝐗 − 𝐈𝐗 = Grad 𝐀𝐗
= 𝐀 Grad 𝐗 = 𝐀𝐈 = 𝐀

• Consequently 𝛜 =
1

2
𝐇+ 𝐇T =

1

2
𝐀 + 𝐀T = sym 𝐀
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For the deformation, 𝑥1 = 𝑋1 + 𝑘 𝑋3, 𝑥2 = 𝑋2 + 𝑘 𝑋1, 𝑥3 = 𝑋3 + 𝑘𝑋2 Find the 
Deformation Gradient, Lagrangian, Eulerian and Small Strain Tensors 
when 𝑘 = 0.001.

• Easy to substitute values for 𝑘 = 0.001

Friday, February 28, 2020oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii

54



In the deformation, 𝑥1 = 𝑋1 + 𝑘 𝑋3, 𝑥2 = 𝑋2 + 𝑘 𝑋1, 𝑥3 = 𝑋3 + 𝑘𝑋2 at 
the point 1,1,0 if 𝑘 = 0.0001. Compare the Lagrangian, Eulerian 
and small strain tensors. 

• The attached code computes the Small 
Strain, Lagrangian and the Eulerian Tensors
respectively. The smallness of 𝑘 shows that 
strain is very small. 

• The differences between the large strain 
measures and the small strain are 
predictable small also. It is customary to use 
the simpler formular for small strain to 
comnpute these values in such cases.
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In the deformation, 𝑥1 = 𝑋1 + 𝑘 𝑋3, 𝑥2 = 𝑋2 + 𝑘 𝑋1, 𝑥3 = 𝑋3 + 𝑘𝑋2 at 
the point 1,1,0 if 𝑘 = 0. 1. Compare the Lagrangian, Eulerian and 
small strain tensors. 

• The attached code computes the Small 
Strain, Lagrangian and the Eulerian Tensors
respectively. 𝑘 = 0.1 creates sufficiently 
large strains to show a disparity between the 
different stain measures.  

• While the differences between small strains 
and the Lagrangian values are not too large, 
the Eulerian strain are vastly different.

• When strains become larger than this, only 
large strain tensors are usable.
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In the deformation, 𝑥1 = 𝑋1 + 𝑘 𝑋3, 𝑥2 = 𝑋2 + 𝑘 𝑋1, 𝑥3
= 𝑋3 + 𝑘𝑋2 at the point 1,1,0 if 𝑘 = 0. 1. Compute 
the angle between the perpendicular coordinate 
fibres at this point as a result of the deformation. 
Discuss

• Remember that the orientation between 
two fibres is governed by the Right 
stretch tensor. These fibres are 
originally at right angles to each other. 
Using small strain formula, the Tangent 
of the change in this angle is 𝜖12.

• The cosine of the new angular 
orientation is 

𝜃 = cos−1
𝑑𝐱1 ⋅ 𝑑𝐱2
𝑑𝐱1 𝑑𝐱2

= cos−1
𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗2
𝐔𝑑𝐗1 𝐔𝑑𝐗2
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Continued from Previous Slide

• From this computation, the spatial fibres

are inclined to each other at an angle 

1.50408 radians. The original orientation 

was 𝜋 radians. The change in the angle is 

.0667161 radians.

• In contrast, this was computed to .05

radians

• Note that the Right stretch can provide the 

orientation change between any two fibres.
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In the deformation, 𝑥1 = 𝑋1 + 𝑘 𝑋3, 𝑥2 = 𝑋2 + 𝑘 𝑋1, 𝑥3 = 𝑋3 + 𝑘𝑋2
at the point 1,1,0 if 𝑘 = 0. 1. Compute the change in length of a 
line originally oriented at the direction {1,2,1}

• Change in length is governed by the 
Right Stretch Tensor. 

𝑑𝐱1 ⋅ 𝑑𝐱1 = 𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗1
𝑑𝐱 = 𝐔𝑑𝐗

• In the attached code, the unit vector 
along the direction chosen is obtained 
from the normalization of the vector. 

• Absolute value of the result is provided 
by taking the norm.

• Change in length is 1.2682 − 1 = 0.2682.
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Show that the strain systems, {{5.,3,0},{3,4,-1},{0,-1,2}} and  
{{7.61704,0,0},{0,2.48475,0},{0,0,0.898215}} represent the same 
strain system. Find the rotation tensor that rotates the one to the 
other.

• One easy way is to compute 
their eigenvalues. These are 
equal. They therefore provide 
the same principal values at 
the same point. 

• Take the eigenvectors of the 
one; the tensor formed by 
these normalized eigenvectors 
can rotate it to its canonical 
form as shown in the attached 
code:
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In the deformation, 𝑥1 = 𝑋1 + 𝑘 𝑋3, 𝑥2 = 𝑋2 +
𝑘 𝑋1, 𝑥3 = 𝑋3 + 𝑘𝑋2 at the point 1,2, . 3 if 𝑘 = 0.1.
Find the volume ratio and the new value of an area 
0.02𝑚𝑚2 oriented at the direction of {1,1,.2}.

• Volume ratio is determined by the 
determinant of the Deformation 
gradient at the point in question. Area 
is a vector. 

• Mathematica does not define a function 
for the cofactor tensor. We write the 
code for that in two statements as 
shown. 

• We can get the value of area by 
obtaining the Norm of the vector area 
after transforming the original area by 
the cofactor. Note that the original area 
is a vector obtained by the normalized 
direction vector and the scalar value of 
area.
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Show that the 𝐄1 − 𝐄2 − 𝐄3 is a vector on 
the plane 𝑋1 + 2𝑋2 − 𝑋3 = 10. Find the 
unit vector along the same direction.

• The unit normal to the plane can be 
found by normalizing 𝐄1 + 2𝐄2 − 𝐄3. The 
vector we are given will lie on the plane 
if it is at right angles to the normal.

• The attached code shows that this is the 
case from the dot product of the unit 
normal and the vector.

• Clearly, 
1

3
𝐄1 − 𝐄2 − 𝐄3 is a unit vector 

in this direction, lying on the plane.
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The deformation, 𝐱 = 𝐈 + 𝛾𝐬⊗ 𝐧 𝐗 where 𝐧 is the unit normal to 
a surface and 𝐬, a unit vector in shear direction, is a case of 
simple shear. Find the deformation gradient for in the direction, 
𝐄1 − 𝐄2 − 𝐄3 with 𝑋1 + 2𝑋2 − 𝑋3 = 10 as the shear plane. 

• The figure here depicts simple shear. The attached 
code computes the general deformation gradient by 
normalizing 𝐄1 − 𝐄2 − 𝐄3 as 𝐬 and normalizing the 
perpendicular vector to the shear plane, 𝐄1 + 2𝐄2
− 𝐄3.
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The deformation, 𝐱 = 𝐈 + 𝛾𝐬⊗ 𝐧 𝐗 where 𝐧 is the unit normal to a surface and 𝐬, a 
unit vector in shear direction, is a case of simple shear. Find the deformation gradient 
of simple shear with 𝐬 as the 𝑋1 −axis on the shear plane being the  𝑋2 −plane.

• In this case, 𝐬 = 𝐄1 or {1,0,0}, 
and 𝐧 = 𝐄2 or 0,1,0 .
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Use a simple example to demonstrate that the deformations, 𝐱 = (
)

𝐈 + 𝛾𝐬
⊗𝐧 𝐗 and 𝐱 = 𝐈 + 𝛾𝐧⊗ 𝐬 𝐗 yield the same infinitesimal strain system.

• Set 𝐬 = 𝐄1 or {1,0,0}, and 𝐧 = 𝐄2 or 0,1,0 .

𝐂 = 𝐅T𝐅 =
1 0 0
𝛾 1 0
0 0 1

1 𝛾 0
0 1 0
0 0 1

=
1 𝛾 0

𝛾 1 + 𝛾2 0
0 0 1

• Set 𝐬 = 𝐄2 or 0,1,0 , and 𝐧 = 𝐄2 or {1,0,0}.

𝐂 = 𝐅T𝐅 =
1 𝛾 0
0 1 0
0 0 1

1 0 0
𝛾 1 0
0 0 1

=
1 + 𝛾2 𝛾 0
𝛾 1 0
0 0 1
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Ignoring second order terms, in 
both cases, we have,

𝐂 =
1 𝛾 0
𝛾 1 0
0 0 1



For the motion 𝐱 = 𝛘 𝐗, 𝑡 = 1 + 𝑡2 𝑋1𝐄1 + 𝑡𝑋2𝐄2 + 𝑋3𝐄3 find the velocity in 
terms of (i) Referential variables, and (ii) in Spatial variables.

• The deformation function is completely decoupled. It therefore 
requires no programming to invert the equation. Clearly,

𝑥1 = 1 + 𝑡2 𝑋1 ⇒ 𝑋1 =
𝑥1

1+𝑡2
; 𝑥2 = 𝑡𝑋2 ⇒ 𝑋2 =

𝑥2

𝑡
and 𝑋3 = 𝑥3. Velocity is 

the time derivative of the deformation. Hence, 

𝐯 =
𝜕

𝜕𝑡
𝛘 𝐗, 𝑡 = 2𝑡𝑋1𝐄1 + 𝑋2𝐄2

= 2𝑡
𝑥1

1 + 𝑡2
𝐄1 +

𝑥2
𝑡
𝐄2

=
2𝑡𝑥1
1 + 𝑡2

𝐞1 +
𝑥2
𝑡
𝐞2

As we have chosen the same ONB as coordinates for spatial and
referential configurations. 
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For the motion 𝐱 = 𝛘 𝐗, 𝑡 = (
)

1
+ 𝑡2 𝑋1𝐄1 + 𝑡𝑋2𝐄2 + 𝑋3𝐄3 find the 
substantial acceleration by working 
only in spatial terms

• Substantial acceleration is the 
material time derivative of velocity. In 
spatial terms, the velocity for this 
motion is 

𝐯(𝐱, 𝑡) =
2𝑡𝑥1
1 + 𝑡2

𝐞1 +
𝑥2
𝑡
𝐞2

• This velocity is the መ𝐟 term as well as
the 𝐯 term in the equation,

grad መ𝐟 𝐯 +
𝜕 መ𝐟

𝜕𝑡

• The first term being the convective
term, and the second, the local
acceleration. The computation here is
in the attached notebook
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For the motion 𝐱 = 𝛘 𝐗, 𝑡 = 1 + 𝑡2 𝑋1𝐄1 + 𝑡𝑋2𝐄2 + 𝑋3𝐄3 find the substantial 
acceleration by working only in referential terms. Show that this result 
coincides with the computation with spatial variables. 68

• Substantial acceleration is the material time derivative of velocity. In 
referential terms, the velocity for this motion is 

𝐕(𝐗, 𝑡) = 2𝑡𝑋1𝐄1 + 𝑋2𝐄2

• Material time derivative of this is simple and does not require 
programming. 

𝐀 𝐗, 𝑡 =
𝐷

𝐷𝑡
𝐕 𝐗, 𝑡 = 2𝑋1𝐄1 =

2𝑥1
1 + 𝑡2

𝐞1

The last equality arising from the fact that, 𝑋1 =
𝑥1

1+𝑡2
. This shows that the 

substantial acceleration, no matter which configuration is used, returns the 
same value.
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A note on the Mathematica code

• In computing the convective acceleration, we needed to take the spatial gradient of the 

velocity. You will recall that this produces a tensor term. The expression in the attached code 

is,

grad መ𝐟 𝐯

• Which we have computed, at this time, in Cartesian coordinates. If the spatial system had

been referred to any other coordinate system, the above code computes the same convective

acceleration.

• All you need change are the coordinate variable set and the “Cartesian” specification. For 

example, 

Grad[v 𝜌, 𝜃, 𝜙 , 𝜌, 𝜃, 𝜙 , "Spherical"]

• will execute the same computation in spherical coordinates!
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A note on the Mathematica code, cont’d

• Furthermore, notice also that there could easily be a confusion on the use of capitalization for gradient. In 

our course, the capitalized gradient, Grad, is a referential gradient while the lower-case gradient, grad, is 

for spatial. In Mathematica, EVERY function must be capitalized. You distinguish between the two 

configurations by the arguments you pass to the gradient function. In this example, the gradient we are 

computing is the spatial gradient even though for compatibility with Mathematica, we HAD TO capitalize 

it. 

grad መ𝐟 𝐯

• Also remember that we will not ordinarily dot a tensor with a vector. However, Mathematica uses matrix 

notation rather than tensor notation. Moving between the conventions and knowing what you are doing is 

the rite of passage to maturity as a modern engineer. It can only be mastered by practice. I have no 

consolation to offer to those who memorize everything. There is no alternative to understanding what you

are doing!
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For the motion 𝐱 = 𝛘 𝐗, 𝑡 = 1 + 𝑡2 𝑋1𝐄1 + (𝛽𝑡2𝑋1
2 + 𝑋2)𝐄2

+ 𝑋3𝐄3 find the velocity and substantial acceleration using 
both referential and spatial terms. Show equivalency.

• Inverting the motion, using Solve, the reference map 
here is, 𝐗 = 𝛘−1 𝐱, 𝑡 =

𝑥1
1 + 𝑡2

𝐄1 +
1 + 𝑡2 2𝑥2 − 𝛽𝑡2𝑥1

2

1 + 𝑡2 2
𝐄2 + 𝑋3𝐄3

• Using this transformation, we obtain the spatial form 
of velocity and compute the convective term as, 

𝐯 =
4𝑡2𝑥1

2

1 + 𝑡2 2
𝐞1 +

8𝛽𝑡2𝑥1
2

1 + 𝑡2 2
𝐞2

Local acceleration is obtained by direct differentiation 
as shown. Addition yields the substantive acceleration 
which is easily obtained directly by differentiating the 
motion twice.
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For the motion 𝐱 = 𝛘 𝐗, 𝑡 = 1 + 𝑡2 𝑋1𝐄1 + (𝛽𝑋1
2 + 𝑋2)𝑡

2𝐄2 + 𝑋3𝐄3 find the reference map, 
velocity and substantial acceleration using both referential and spatial terms. Show 
equivalency.

• This is more coupled than the previous problem. The solution is essentially the same and 
the code we used previously applied here. Inverting the motion, using Solve, the 
reference map here is, 𝐗 = 𝛘−1 𝐱, 𝑡 =

𝑥1
1 + 𝑡2

𝐄1 +
1 + 𝑡2 2𝑥2 − 𝛽𝑡2𝑥1

2

𝑡2 1 + 𝑡2 2
𝐄2 + 𝑋3𝐄3

• Using this transformation, we obtain the spatial form of velocity and compute the 
convective term as, 

grad 𝐯 𝐯 =
4𝑡2𝑥1

2

1 + 𝑡2 2
𝐞1 +

4𝑥2
𝑡2

𝐞2

Local acceleration is obtained by direct differentiation as shown. Addition yields the 
substantive acceleration which is easily obtained directly by differentiating the motion 
twice.
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Coupled Motion

• Note that the local acceleration, after 
simplification, yields, 

𝜕𝐯

𝜕𝑡
=
2(1 − 𝑡2)𝑥1

2

1 + 𝑡2 2
𝐞1 −

2𝑥2
𝑡2

𝐞2

• Adding the two and transforming back to the 

referential configuration, we obtain, 
𝐷𝐯

𝐷𝑡
=

2𝑥1
1 + 𝑡2

𝐞1 +
2𝑥2
𝑡2

𝐞2 = 2𝑋1𝐄1 + 2 𝛽𝑋1
2 + 𝑋2 𝐄2

• Which, as before, could have been obtained by 

direct differentiation of the motion in 

referential form.
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For the motion 𝐱 = 𝛘 𝐗, 𝑡 = (𝛼𝑋2
2𝑡2 + 𝑋1)𝐄1 + (𝛽𝑋2𝑡 + 𝑋2)𝐄2 + 𝑋3𝐄3 find the reference map, 

velocity and substantial acceleration using both referential and spatial terms. Show 
equivalency.

• The solution is essentially the same as before, using essentially the same code 
Inverting the motion, using Solve, the reference map here is, 𝐗 = 𝛘−1 𝐱, 𝑡 =

𝑥1 1 + 𝑡𝛽 2 − 𝛼𝑥2
2𝑡2

1 + 𝑡𝛽 2 𝐄1 +
𝑥2

1 + 𝑡𝛽
𝐄2 + 𝑋3𝐄3

• Using this transformation, we obtain the spatial form of velocity and compute 
the convective acceleration term as, 

grad 𝐯 𝐯 =
4𝑡𝛼𝛽𝑥2

2

1 + 𝑡𝛽 3 𝐞1 +
𝛽2𝑥2
1 + 𝑡𝛽 2 𝐞2

Local acceleration is obtained by direct differentiation as shown. Addition yields 
the substantive acceleration which is easily obtained directly by differentiating 
the motion twice.
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Cont’d

• Note that the local acceleration, after 
simplification, yields, 

𝜕𝐯

𝜕𝑡
=
2𝛼(𝑡𝛽 − 1)𝑥2

2

1 + 𝑡𝛽 3
𝐞1 −

𝛽2𝑥2
1 + 𝑡𝛽 2

𝐞2

• Adding the two and transforming back to the 

referential configuration, we obtain, 

𝐷𝐯

𝐷𝑡
=

2𝛼𝑥2
2

1 + 𝑡𝛽 2
𝐞1 =

2𝛼 𝑋2 + 𝑡𝛽𝑋2
2

1 + 𝑡𝛽 2
𝐄1

• Which, as before, could have been obtained by 

direct differentiation of the motion in 

referential form.
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For the motion 𝐱 = 𝛘 𝐗, 𝑡 = (𝛼𝑋2
2𝑡2 + 𝑋1)𝐄1 + (𝛽𝑋2𝑡 + 𝑋2)𝐄2 + 𝑋3𝐄3 find the reference map, 

velocity and substantial acceleration using both referential and spatial terms. Show 
equivalency.

• The solution is essentially the same as before, using essentially the same code 
Inverting the motion, using Solve, the reference map here is, 𝐗 = 𝛘−1 𝐱, 𝑡 =

𝑥1 1 + 𝑡𝛽 2 − 𝛼𝑥2
2𝑡2

1 + 𝑡𝛽 2 𝐄1 +
𝑥2

1 + 𝑡𝛽
𝐄2 + 𝑋3𝐄3

• Using this transformation, we obtain the spatial form of velocity and compute 
the convective acceleration term as, 

grad 𝐯 𝐯 =
4𝑡𝛼𝛽𝑥2

2

1 + 𝑡𝛽 3 𝐞1 +
𝛽2𝑥2
1 + 𝑡𝛽 2 𝐞2

Local acceleration is obtained by direct differentiation as shown. Addition yields 
the substantive acceleration which is easily obtained directly by differentiating 
the motion twice.
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Cont’d

• Note that the local acceleration, after 
simplification, yields, 

𝜕𝐯

𝜕𝑡
=
2𝛼(𝑡𝛽 − 1)𝑥2

2

1 + 𝑡𝛽 3
𝐞1 −

𝛽2𝑥2
1 + 𝑡𝛽 2

𝐞2

• Adding the two and transforming back to the 

referential configuration, we obtain, 

𝐷𝐯

𝐷𝑡
=

2𝛼𝑥2
2

1 + 𝑡𝛽 2
𝐞1 =

2𝛼 𝑋2 + 𝑡𝛽𝑋2
2

1 + 𝑡𝛽 2
𝐄1

• Which, as before, could have been obtained by 

direct differentiation of the motion in 

referential form.
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Source & Sink 78

• Sources and Sinks are useful idealizations 
in Flow Analyses. The idea that a fluid 
flows radially out of nothingness or flows 
inwads and vanishes may be too difficult 
ti imagine. Look at the magnetic analog 
of the lines of force near the poles of the 
magnet. The relevant equations and 
descriptions are similar.

• We are going to describe a source flow in
terms of the velocity field,

𝐯 𝐱, 𝑡 =
𝛼 −

𝛽
𝑡

𝑟
𝐞𝑟
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For Source Flow, Find Velocity Gradient, Convective 
Acceleration, Substantial Acceleration, and the Divergence of 
the Flow. Show that the local acceleration vanishes at steady 
state. Use Cylindrical Polar Coordinates 

• From the attached code, we can see that both 
convective as well as local accelerations are in 
the radial direction. 

𝐷𝐯

𝐷𝑡
= −

𝛼 −
𝛽
𝑡

2

𝑟3
+

𝛽

𝑟𝑡2
𝐞𝑟

At steady state, the term containing 𝑡 vanishes.
We can simply set 𝛽 = 0, and find that

𝐷𝐯

𝐷𝑡
= −

𝛼2

𝑟3
𝐞𝑟

Which is the substantive acceleration in steady 
flow. 
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Find the Stretching as well as Spin Tensors for the 
above flow field. Also find the dimensions of the 
two parameters in the flow terms. 

[𝐋] =

−𝑡𝛼 + 𝛽

𝑟2𝑡
0 0

0
𝑡𝛼 − 𝛽

𝑟2𝑡
0

0 0 0
It is symmetric and must therefore equal the stretching tensor. The
spin tensor is the Annihilator (Zero) tensor here because of the 
symmetry of the velocity gradient.

For dimensional consistency, 𝛼 must have the unit of 𝐿2, 𝛽 the unit 
of 𝐿2𝑇 .
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For Source Flow, Find Velocity Gradient, Convective 
Acceleration, Substantial Acceleration, and the 
Divergence of the Flow. Use Cartesian Coordinates 

• From the attached code, we can see 
that both convective as well as local 
accelerations are in the radial direction. 

𝐷𝐯

𝐷𝑡
= −

𝛼 −
𝛽
𝑡

2

𝑟3
+

𝛽

𝑟𝑡2
𝐞𝑟

oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii Friday, February 28, 2020 81



Convert the flow 𝐯 𝐱, 𝑡 =
𝛼−

𝛽

𝑡

𝑟
𝐞𝑟 to Cartesian Coordinates and obtain 

the acceleration in that system of coordinates.
82

• Beginning with the fact that the radial basis vector, 

𝐞𝑟 = cos 𝜃 𝐞1 + sin𝜃 𝐞2 =
𝑥1𝐞1

𝑥1
2 + 𝑥2

2
+

𝑥2𝐞2

𝑥1
2 + 𝑥2

2

• It follows that the velocity, 

𝐯 𝐱, 𝑡 =
𝛼 −

𝛽
𝑡

𝑟
𝐞𝑟 =

𝑥1 𝛼 −
𝛽
𝑡

𝐞1

𝑥1
2 + 𝑥2

2 +
𝑥2 𝛼 −

𝛽
𝑡

𝐞2

𝑥1
2 + 𝑥2

2

• With this Cartesian description, we can redo the 
code as shown. Note that the gradient is now 
invoked with Cartesian variables. 
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Planar Vortex Flow

• In the ideal planar vortex, velocity is directed along 
𝐞𝜃 . Here we model a simple vortex with a small 
temporally variable velocity:

𝐯 𝐱, 𝑡 = −
𝑥2𝐞1

𝑥1
2 + 𝑥2

2 +
𝑥1𝐞2

𝑥1
2 + 𝑥2

2

= −sin 𝜃
𝑟 𝐞1 +

cos 𝜃
𝑟 𝐞1

=
𝐞𝜃
𝑟

• We can compute the flow parameters as before.
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For Planar Vortex Flow, find the Velocity 
Gradient, Stretching and Spin Tensors 
and Convective acceleration in both 
Cylindrical and Cartesian coordinates

• The attached code calculates the 
Velocity Gradient and Convective 
acceleration in both Cylindrical 
and Cartesian coordinates. 

• The equivalency of these is not 
obvious.

• Note here that the Velocity 
gradient is a symmetric tensor in 
both cases and therefore, the spin 
tensor must vanish.
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Demonstrate the equivalency of the Velocity 
gradients computed in the two coordinate systems 
above.

• In cylindrical and Cartesian coordinates we have,

𝐋 𝐶𝑦𝑙 =

0 −
1

𝑟2
0

−
1

𝑟2
0 0

0 0 0

𝐋 𝐶𝑎𝑟𝑡 =

2𝑥1𝑥2

𝑥1
2 + 𝑥2

2 2

−𝑥1
2 + 𝑥2

2

𝑥1
2 + 𝑥2

2 2
0

−𝑥1
2 + 𝑥2

2

𝑥1
2 + 𝑥2

2 2

−2𝑥1𝑥2

𝑥1
2 + 𝑥2

2 2
0

0 0 0

We proceed to find the eigenvalues of the two Velocity Gradients as shown in
the attached code. It is now easy to see the equivalency!

From the symmetry of the Velocity gradient, we see that the spin is zero. The 
stretching tensor is equal to the velocity gradient.
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For Couette flow, the velocity field is 
𝐯 𝐱, 𝑡 = 𝜔𝑟𝐞𝜃. Compute the convective 
and substantial acceleration. Also 
compute the stretching and spin rates.

• From the attached code, we can see 
that both convective as well as local 
accelerations are in the radial direction. 

𝐷𝐯

𝐷𝑡
= −𝑟𝜔2𝐞𝑟

• Local acceleration is zero. Note that the
velocity, 𝜔𝑟𝐞𝜃, is tangential, but 
convective acceleration is radial.

• The stretching rate tensor zero, the spin 
tensor is the same as the velocity 
gradient since the latter is 
antisymmetric. Remember that the 
former is the symmetric part of the 
velocity gradient, the latter is the skew 
part of it.
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For Couette flow, the velocity field is 𝐯 𝐱, 𝑡 = 𝜔𝑟𝐞𝜃. Compute the 
convective and substantial acceleration. Also compute the stretching 
and spin rates. Work in Cartesian system

• Beginning with the fact that the radial basis vector, 
𝐞𝜃 = −sin 𝜃 𝐞1 + cos𝜃 𝐞2

= −
𝑥2𝐞1

𝑥1
2 + 𝑥2

2
+

𝑥1𝐞2

𝑥1
2 + 𝑥2

2

𝐯 𝐱, 𝑡 = 𝜔𝑟𝐞𝜃 = −𝑥2𝐞1 + 𝑥1𝐞2
𝐷𝐯

𝐷𝑡
= −𝑥1𝜔𝐞1 + 𝑥2𝜔𝐞2

• Local acceleration is zero. Note that the velocity, 𝜔𝑟𝐞𝜃, is 
tangential, but convective acceleration is radial.

• The stretching rate tensor zero, the spin tensor is the same 
as the velocity gradient since the latter is antisymmetric. 
Remember that the former is the symmetric part of the 
velocity gradient, the latter is the skew part of it.
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Show that the directions of vectors 𝐯1 = 𝐄1 − 𝐄2 − 𝐄3 and 𝐯2 = 𝐄1 + 2𝐄2 − 𝐄3 are 

orthogonal. If the strain tensor at a point in a material is 
4 0 −1
0 2 1
−1 1 1

× 10−4. Find the 

linear strains in the directions of 𝐯1 and 𝐯2 What is the decrease in right angle of elements 
with unit vectors along 𝐯1and 𝐯2.

• Orthogonality is shown by the vanishing 
of the dot products. The code here 
shows that 𝐯1 ⋅ 𝐯2 = 0.

• The rest of the computation is as shown 
in the attached code. Given that ො𝐯1 and 
ො𝐯2 are the normalized vectors in the 
directions 𝐯1 and 𝐯2 respectively, note 
that the same answer will be obtained 
for 

𝜖12 = ො𝐯1 ⋅ 𝐄ො𝐯2 = ො𝐯2 ⋅ 𝐄ො𝐯1

Since 𝐄 is symmetrical.
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Find the principal strains and dilatation of the strain tensor 𝐄 =
4 0 −1
0 2 1
−1 1 1

× 10−4. 

Find the sum of the principal strains and explain why it equals the dilatation. 

• The dilatation is the trace of the strain 
tensor. In this case, dilatation, 

Θ = 4 + 2 + 1 × 10−4 = 7 × 10−4

• The sum of the eigenvalues is 
Θ = 4.34 + 2.47 + 0.186 × 10−4

≈ 7 × 10−4

• The two values must be equal because
when a tensor is diagonalized by similarity 
transformations, only diagonal terms 
remain. The trace is therefore the same as 
the sum of its eigenvalues. Similarity 
transformations do not alter traces nor 
eigenvalues.
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Show that the velocity field, 𝑣1 = 𝑥2 − 𝑥3, 𝑣2 = 𝑥3
− 𝑥1, and 𝑣3 = 𝑥1 − 𝑥2 constitutes a rigid flow field.

• In a rigid flow field, the stretching tensor will be 
the annihilator:No stretches. Recall that the 
stretching tensor is the symmetrical part of the 
velocity gradient. The attached code computes the 
velocity gradient.

• Observe that the velocity gradient we obtained is 
here antisymmetric. Its symmetrical part is the zero 
tensor. This field therefore is a rigid spinning field.
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The strain fields 
4 0 −1
0 2 1
−1 1 1

× 10−4 and 
4 0 −1
0 1 1
−1 1 2

× 10−4 look similar. Show what they 

have in common and show that the strain tensors cannot represent the same strain field
91

• The two strain tensors given possess the same 
traces. They also have the same off-diagonal 
elements. Consequently, at the point in question, 
they will produce the same dilatation because 
dilatation is simply the trace of a tensor. 

• Next we take the eigenvalues of these tensors as
shown in the attached code. The eigenvalues are 
different. 

• Consequently they are for different strain situations. 
They cannot be converted one to another by 
similarity transformations.
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Components of Grads, Divs & Curls

• Slides 11:29-32 of Kinematics 1 show how to obtain the 
components of grads in Cartesian coordinates.

• The components of divs and curls follow naturally in such 
coordinate systems. 

• Curvilinear systems in general require the use of general tensor 
coordinates and the introduction of covariant derivatives. We 
avoid these complications by resorting to Mathematica coding.
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Small Strains

• Again, in Cartesian, the transpose is simply the reversal of the indices. Hence, 
we can write,

𝐄 =
1

2
𝐅T𝐅 − 𝐈 =

1

2
𝐇 + 𝐈 T 𝐇+ 𝐈 − 𝐈

=
1

2
𝐇 + 𝐇T + 𝐇T𝐇

• In component form as,

𝐸𝑖𝑗 =
1

2
𝐻𝑖𝑗 + 𝐻𝑗𝑖 + 𝐻𝑘𝑖𝐻𝑘𝑗

=
1

2

𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖
+
𝜕𝑢𝑘
𝜕𝑋𝑖

𝜕𝑢𝑘
𝜕𝑋𝑗
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Lagrangian 
Strain

Can easily be expanded as shown here. YOU 

ARE EXPECTED to be able to do this 

manually by simply interpreting the indices 
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Lagrangian Strain in 
Curvilinear systems

Can easily be expanded as shown here. 
YOU ARE NOT EXPECTED to be able to do 
this manually by simply interpreting the 
indices. Instead, you are expected to use 
software such as Mathematica to do this. 
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The coding is straightforward.

• 𝐄 =
1

2
[grad 𝐮 + gradT𝐮 + gradT𝐮 grad 𝐮 ]

• Mathematica allows you to compute the grad, div, curl or
Laplacian operators of any defined function, scalar, vector or
tensor of any order in Cartesian, Cylindrical, Spherical, Oblate or
Prolate Spheroida, Conical or any other coordinate system you can
invent.

• It is for this reason that we did not need, as many textbooks do, to 
go into the component forms and derive them. It is sufficient for 
us to stay in the parsimonious tensor forms.
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Familiarity is Important

• While you are going to rely on Finite Element simulations for 
solutions to most design problems you will encounter. Familiarity 
with the component forms of the equations you are dealing with is 
important.

• We will therefore test this. We will allow you to program during 
your exams. We can therefore ask questions on other coordinate 
systems apart from the Cartesian that you can find manually 
directly from the component representations.
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