


For the uniform biaxial deformation, given that x; = 1;X;,x, = 1,X, and x5 = Xj.
Compute the Deformation Gradient tensor, the Lagrangian Strain Tensor as well as 2
the Eulerian Strain Tensor components.

Convenient to use Cartesian Bases{E;, E,, Es}, {e;, e, 5} for Referential and

Spatial respectively. The referential reciprocal bases are the same as natural
bases File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

EQ4.1 Klnematics.nb - Wolfram Mathematica 11.3 -

nf = J:= F:={{A1, 0,0}, {©, A, O}, {0, 8, 1}}

Z;l 2;1 2;1 1= €C = Transpose[F] .F
7 1 E, . 0 0 E EE = 1/2 (CC - IdentityMatrix[3])
axz axZ axz
F=(e1 e; e3) aX. 3X. 9x Q|Ez2|=(e1 € e3)[0 1, 0| |E; BB = F.Transpose[F]
ax; axi ax: E; 0 0 1 E; ee = 1/ 2 (IdentityMatrix[3] - Inverse[BB])
0 oui - ({21, 0,0, (0,23,0],(0,8,1)

= alel ® E1 + azez ® E2 + 0.’3e3 ® E3
» The Green Lagrange strain tensor is, L
1 1

» Clearly a biaxial state of strain. The rest of the results can be seen from the
attached code:
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Use Q2.56 to show that U and V in the Polar decomposition,
F = RU = VR are similar tensors. Show that they have the same
eigenvalues and Principal Invariants.

igenvalues and principal
riants as Vv = Av
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Given that U and V in the Polar decomposition,

F = RU = VR are similar tensors. Are their eigenvectors the same?.
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Show that Right Cauchy Green Tensor, CC={{6,5,4},{5,6,4},{4,4,3}} is symmetric and

positive definite; and that R={{.888354,-.430577,.159465},{.385919,.888354,.248782},{-
.248782,-.159465, .955341}} is a rotation tensor. Use these to find the deformation 5
gradient that produced them as well as the Right and Left Stretch Tensors.

CC= ({6, 5, 4}, {5, 6, 4}, {4, 4, 3}};

» The positive definiteness of the Cauchy Green Tensor is R = {{.888354, -.430577, .159465), (.385919, .888354, .246782),
. . . . . - .248782, - .159465, .955341}};
easily seen by finding its eigenvalues. They are all { 1 %
e Eigenvalues[CC
positive numbers. O o L e
. “ , F =R.U;
» Take the inverse of R and compare it to its transpose to V = F.Transpose[R]) 3
see if it is truly a rotation tensor. (7+4V3,1,7-4V3 |
» The square root of the Right Cauchy-Green Tensor is the U // MatrixForn
Right Stretch Tensor as shown. iy gl

» Observe that the Deformation Gradient is NOT B L
Symmetrical. The Left Stretch Tensor, just like the Right Kb ;\
Stretch Tensor is symmetrical. You can check to see the
equality of the eigenvalues of the Stretch Tensors. 15056 0.186665 0.617242

1.90897 2.41141 1.52306 ’
. ©.298312 ©.387629 ©.547094

xForm=

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii © 1.35556 ©.900421 O.185345

0.900421 3.2578 0.595583’
. ©.185345 ©.595583 0.386633



Given that

F = {{1.5056,0.186665,0.617242},{1.90897,2.41141,1.52306},{0.298312,0.387629,
0.547094}} and that V = {{1.35556, 0.900421, 0.185345}, {0.900421, 3.2578, 0.595583},
{0.185345, 0.595583, 0.386633}}, Demonstrate that U? = F'F and that V? = FF!

MatrixPower [V, 2] // MatrixForm

* We can find the rotation tensor from the i it it
relat]OnSh]p, ¥ U= R = FU_land, V Transpose[F] .F // MatrixForm
= RUR™! = RUR".

 Each of the Stretch Tensors can be squared by 250263 4.26436 0.830182
the MatrixPower[] function shown and the e
results are compared to the values obtained for EE—_GI—_—G
the Right and Left Cauchy-Green Tensors. | si26a36 117788 233786

,©.859184 2.33746 ©.538558

» Mathematica gave results to five decimal places -
because they were already approximated at 56 ]
input. al b

/5.99999 4.99999 3.99999
‘ 4.99999 5.99999 4.

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii 1 3.99999 4. 3.




Given the set of orthogonal basis vectors, E;,i = 1, ...,3 and another set, &;, i
=1,...,3, The latter is called a reciprocal bases if, E; ® &; = I. Show that the
Natural Cartesian basis vectors are self reciprocal
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Given the set of orthogonal basis vectors,E;,i = 1, ..., 3 and another set, &;,i

=1, ...,3, The latter is called a reciprocal bases if,E; @ &; = I. Show that the
Natural Cylindrical Polar basis vectors are not self reciprocal. Find their reciprocal
bases.

eld the desired identity
es from the fact that the second
tor as the natural bases of
are not orthonormal.

e obtained by dividing the second

nitude so that, &, = E: _%l0) We find

r 1

fqb e; +singpe,) ® (cospe; +singpe,)
r ® sing e, (¢p) + cospe,) ® (—sing e1(¢2) + cospe,)+
€3

(cos? ¢ + sin® p)e; @ e; + (cos? ¢ +sin® ple, R e,
7 €3 ® €3
=1

all other terms cancelling out.
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Given the set of orthogonal basis vectors,E;,i = 1, ..., 3 and another set, §;,i = 1, ...,3, The
latter is called a reciprocal bases if, E; ® &; = I. Show that the Natural Spherical Polar
basis vectors are not self reciprocal. Find their reciprocal bases.

@) and ey (¢) are always orthonormal, the sum,
E1®&+E, ®&§+E; Q& =1
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Consider a deformation of the form x = w X X Here w is a vector with magnitude
« 1, which represents an infinitesimal rotation about an axis parallel to @ Show
that C = (0 - w)I — o Q w.
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A body undergoes a deformation defined by, x; = X; cosa — X, sina, X, = X; sina
+ X, cosa,and x; = X; where a is a constant. Show that C = Iand E = 0. Explain
the reason for the values of E components.
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A cylindrical bar, fixed at one end is twisted at the other as shown. Given that the
transformation equations are, r = R,0 = 0 + f(Z),Z = Z, find the deformation 1 2
gradient, Right Cauchy Green Tensor and the Euler Lagrange Strain.

F:={{1,8, 0}, {8, r /Ry rf[Z]}, {0, @, 1}}

CC = Transpose [F] .F

 In this case Referential system is Cylindrical Polar, Spatial is
also cylindrical Polar.

1 ':1JE.J-:'J'! »

[ Or 10r Or ]
OR R0O® 07 Ep
a6 r 06 a6
F=(e, €5 e i s il E
. DNr=r 736 "3z7|% -
0z 10z 0z ~
LR RO0® 07
1 0 0 ]
. ] |te
=(e € €;)|l0 — r—|Q|Ee
R 3Z| |g
0 1 | .
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In addition to twisting, if the above cylindrical bar is also subject to elongation
and expansion, Find an expression for the deformation and evaluate its
Deformation Gradient.

-mechanics-ii Friday, February 28, 2020




Curved Rod 14

» Consider the length 2L of a thin rod uniformly bent
into a semicircle as shown.

+ Referential configuration is the straight rod,
Spatial, after the bending, is the semi-circular rod.
If the rod’s length does not increase as a result of
shape change, then nR = 2L. Clearly, radius R = 2L

/T

» A point previously located at the distance x from
the origin is now at angle 8. The relationship

between the two is linear:
X 0 nx  How else can you

S = i ; ?
0 oL obtain this formula?

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica
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,

Bar to Semicircular Region

» Imagine that we bent the bar shown into a
semicircular region. Transformation function can
be found by the following consideration: Note
that each horizontal filament in the original bar
becomes a circular filament in the spatial
configuration. The vertical undeformed sections
become radial sections in the spatial state. Let
the centerline be a semicircle at a distance R and
let the thickness contract uniformly with a factor

= X1 =71 = XI(X1'X2!X3! t) =R+ anZ, and
A4
Xy = 9 = Xz(Xl,Xz,Xg,t) = _ZL

 If the bar contracts uniformly in X5 direction,
x3 =z = x3(X1,X3,X3,t) = BX;3
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Referential & Spatial Configurations
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Deformation Gradient




Right Cauchy-Green/Stretch Tensors

itive square roots are taken since
y have positive eigenvalues.
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Cylindrical Deformation Gradient

}, the matrix of F can be




Bar to SemiCircle:
Cartesian Solution

The same Bar to a semicircular
region may be solved using
Cartesian coordinates. In fact, the
two not only give the same results
but looking at both brings out the
salient issues of the two systems
especially the concept of the
reciprocal basis.

For this reason, we present here
the Cartesian analysis of the same
problem and obtain the
Deformation Gradient and other
relevant tensors.

X3
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Bar to SemiCircular Bar
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-

Bar to SemiCircular Bar

oafak@s2pafrica.org; oafak@unilag.edu.ng

X — gX3
Xa
an €q & J

=(e1 e, e3)

https://lms.s2pafrica.com/courses/continuum-mechanics-ii

The Coordinates of the spatial point are:

x; = x-(X3) cos(x9(X1)) = (R + aX;) s

x; = xr(X3) sin(xe (X1))

X
%{L
= (R + aX,) sin%
Y Ox, 0x|
X, 0X, 0X;
dx, 0x, O0x, 4
X | Ez
0X, 0X, 0X; E,
0xz 0x3 0x3
10X, 0X, 0X;.
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Cone to Plane Object
e

» Consider the cone with half angle 6 as shown. At a .
slant length of g, clearly, distance [ to the foot of the @ |
axial line is such that,

[l =psin®

» Selecting spherical base vectors e,, eg and eq as ‘
shown, we can find the transformation equations of
the conical lamina to the flat plane shown. Since the
total rim length of the cone 2nl = 2mp sin ® must
coincide with the curved length of the plane lamina,
included angle 8 must be such that,

0<60 <2msin0®

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii
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Transformation Equations 27

r=x(00,®) =0
0 = xp(0,0,P) = Psin,
z = x,(0,0,P) = ap tan(6, — 0)

Where «a is the shrinkage or expansion factor in
the z direction. In finding the deformation
gradient, we note that the spherical basis must be
reciprocal since it is the referential system.

Therefore,
[dr Or Or)
do 00 0® i
i -
15 6 a0 i
% % % |0 sin O]
| do 00 09

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii Friday, February 28, 2020



Deformation Gradient

oafak@s2pafrica.org; oafak@unilag.edu.ng
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dr 10r 1 or]
% 566) 0sin® 0P _
1 %4) s ' ® [egl
do 000 psin®Jd e
dz 10z 1 0z
% 568 0sin® dP|
1 0 i
0 0 7 sin O €,
=(€ €9 €p) esin® | ® [ee
e
_a(G)O o cos?(0, — 0) , .
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Cone Insulation
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Dehin Chemical Company

The metallic hemisphere is shown here. The insulation material is lying under it. It is two tone.




Dehin Chemical Company

7o g
//,;/ é "// | 2/:2,,

tima
/////
- N\

/ o
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Dehin Chemical Company

» We have a transformation from Cylindrical
Polar referential system, R,0,Z to the
Spherical Polar system, p, 6, ¢. The following
bounds on the variables apply:

0<R<1;0<0<2m0<Z<—t

* At the referential side, and,

T
pOSpSpO—aZ,ESHSn,OquSZn

For spatial. The transformation equations are as
follows: and here is where the heavy lifting lies:

= po —azZ
Z — pOnR .
7 .
¢ =0
» We can now compute the deformation

gradient.

oafak@s2pafrica.org; oafak@unilag.edu.ng :
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Deformation Gradient




Deformation Gradient in ONB




Transforming from Cylindrical to Spherical, we have

F=(e, peg psinfey) . Find its inverse.
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Write the following deformation gradient
dp 2 0
dR 06 0z Er
: 20 96 96 Eo | : :
F=(e, peg psinbey) — 36 77 X — | in terms or orthonormal basis vectors
o0p 99 99| |Ez
0 ozl




Given the deformation, p = py — aZ,0 = —g + m, ¢ = 0. Find the inverse
(0]
deformation. Find the inverse Deformation Gradient.
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Use Mathematica to confirm F~1

° He re 'iS the Math e m atica 23 Tk4.37.nb - Wolfram Mathematica 12.0

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

Code:

M= Flo_s 6 5 &) := {{0y 2re/ (o), O}, {0, @, RSin[5]}, {-1/a, 0, 0} }

 Note that it is only when you wai= Tnverse(F [0, 0, 911 // Matrixform

Out[2)//MatroxForm=

refer tensors to orthonormal T (e e

basis that you can calculate o °
values of physical properties A

such as Volume or Area 1= Det[F(p, 0, 61]

ratios.

« The components under such

Det[Inverse[F[p, 6, ¢]]]
2RSin 3| ry

Tap

mapCsc|o

basis are called “Physical

Components”.

oafak@s2pafrica.org; oafak@unilag.edu.ng
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___

Elastomer Pipe Insulator

/ » Pipe is insulated by a stretched elastomer. Take
/ Cartesian coordinates as shown on the unstretched

insulator. On the pipe, let e, be the radial vector
with ey at the rim in the counterclockwise tangential
direction. e, is the axial unit vector chosen to make
the system right-handed.

» Let the insulator be [ x b with a thickness t while
pipe width is w. Assuming uniform stretches on the
pipe surface the transformations are,

r=1y—al = x.(2),

B

0=—X= XB(X);

1o

z=—yZ = x,(Y)

oafak@s2pafrica.org; oafak@unilag.edu.ng
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Elastomer Pipe Insulator

o
Deformation gradient
[ Or or or ]
X odY 07 ey
00 06 06
F=(e, ey e e
L oy s T ®LZ]
0z 0z 0z
LgX dY 07 .
0 0 —a
rp €x
= (e, €eg e€,)|— 0 | |ey
7o e,
v )

oafak@s2pafrica.org; oafak@unilag.edu.ng
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Shrinkage under Isochoric Deformation

e — Y sl S AR LSRG R i R S i

 When deformation is isochoric, the there is no change in volume. Hence volume
ratio is unity.

* Volume ratio is the determinant of the deformation gradient. Note that the
deformation gradient MUST be referred to ONB system. Here,

afyr Y
detF = ﬁy = —r =1
T'O 27TT’O b

2mhrd

wir °

* |n this case, a =



163.24 346 4.2 E4
Show that the tensor C = (E; E, Ej) ( 34.6 19. —30.) & |E, | is positive definite. 42
4.2 —30. 178. E;

L] Q4.4 Kinematics.nb - Wolfram Mathematica 11.3

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

* Find the square root of the C by finding its e ste et (sae 1o, 0,
spectral decomposition from its eigenvalues (4.2, -30, 175))

CEige = Eigenvalues [CC]

and eigenvectors. (b) Use the Mathematica " Cvec - Exgenvectors cC)
funCtlon Matr]xpower[c, %] to Compare your BB = MatrixPower[CC, 1/ 2]

Eigenvalues [BB]

res u lt ° Eigenvectors[BB]

» Eigenvalues are all positive, hence itis
positive definite. The tensor C as well as its

{0.964426, 6.182197, ©8.191537;,

square root have the same eigenvectors.
Eigenvalues of the square root are the square o (125773, 3.22007, 0533000,

roots of the eigenvalues of C as the figures
ShOW. cur = {13.557, 13.8618, 2.41587}

cur - {{-8.152601, -©.207928, 8.966167,

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii 10.964426, 6.18219/, 6.191537},
(8.215859, -0.961026, -0.172727) )




Show that rotation alters neither symmetry nor
skewness in a tensor.
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For a proper orthogonal tensor Q, show that the eigenvalue
equation always yields an eigenvalue of +1. This means that 1

= 1 is always a solution for the equation, det(Q — Al)




For a vector-valued spatial field, we are given that Grad f
= (grad f)F(X, t). Show that, Divf = (grad f):F'

« We are given,
Grad f = (grad f)F

* Take the trace of both sides:
tr Grad f = tr((grad f)F)

= (grad™ f): F = (grad f): FT

= Divf



1 1
If the tensor S is positive definite, Show that det(SE) = [det(S)]z.
Why is this result important?

of 1 e Right Cauchy-
t of the former is
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Show that the stretch Tensors have the same determinant as the
Deformation Gradient. Why is this important?

f any stretch tensor.
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Given the Deformation Gradient Tensor (€1 €2 €3) 0

0
tensor, the right stretch tensor and the left stretch tensor.

oafak@s2pafrica.org; oafak@unilag.

1

F={{1.0,3/2, 4/3}, {0,1, 0}, {0, 0, 1}}
C; = Transpose[F].F

{{2., g 2}. {0, 1, 0}, {0, 0, 1}}

{{1., 1.5, 1.33333), {1.5, 3.25, 2.}, {1.33333, 2., 2.77778}}

{{1.0, g g} {0, 1, 0}, {0, 0, 1}

3 4, 3 13
(5 3G 2

3 2

U; = MatrixPower[Cy, 1/2]

{{0.705882, 0.529412, 0.470588},
{0.529412, 1.62982, 0.559838), {0.470588, 0.559838, 1.49763}}

R; = F.Inverse[U;]

{{0.705882, 0.529412, 0.470588},
{-0.529412, 0.8357, -0.146045), {-0.470588, -0.146045, 0.870183}}

V1 = F.Inverse[R,;]

[{2.12745, 0.529412, 0.470588},

{0.529412, 0.8357, -0.146045}, {0.470588, -0.146045, 0.870183}}
. . . S O UUITI-ITIE

O = DNlw
_ O Wl

Find the rotation
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A body undergoes a deformation defined by, x; = X; cosa — X, sina, X,
= X; sina + X, cos a,and x3 = X3 where a is a constant. Show that C
= I and E = 0. Explain the reason for the values of E components.
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A cylindrical tube undergoes the deformation givenby r =R, =0+ 9(R),z =7
+ w(R) where {R, ®,Z} and {r, ¢, z}, are polar coordinates of a point in the tube
before and after deformation respectively, 9 and w are scalar functions of R.
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A cylindrical tube undergoes the deformation givenby r =R, =0+ 9(R),z =7

+ w(R) where {R, ®,Z} and {r, ¢, z}, are polar coordinates of a point in the tube

before and after deformation respectively, 9 and w are scalar functions of R.
Compute F,C and E
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A cylindrical tube undergoes the deformation givenby r =R, =0+ 9(R),z =7

+ w(R) where {R, ®,Z} and {r, ¢, z}, are polar coordinates of a point in the tube
before and after deformation respectively, ¥ and w are scalar functions of R. Find
the Lagrangian and Eulerian strain components
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In the deformation, x = x(X) = (A + )X where A
independent of X, show that infinitesimal strain,
€ =symA

uum-mechanics-ii Friday, February 28, 2020




FOI‘ the deformatlon, X1 = Xl + k X3,X2 — X2 + k Xll Xg3 = X3 + kXZ F]nd the
Deformation Gradient, Lagrangian, Eulerian and Small Strain Tensors 54
when k = 0.001.

« Easy to substitute values for k = 0.001

Inf1}= XX[XI_5 X2 5 X3_] := {X1+ kX3, X2+ kX1, X3+kX2};
H=D[XX[X15 Xa5 X3] = {Xy5 Xa5 Xa}s {{X15 X25 X3}1}]5
F=D[XX[X1y X25 X3], {{X15 X2, X3}}]3;

F // MatrixForm
CG = Transpose[F] .F;

I

LI N
NCow oW
" K

N

Finger = F.Transpose[F];
Piola = Inverse[Finger];
LagrangeStr = (1/2) (CG - Identity[3]);

EulerStrain = 1/ 2 (Identity[3] - Piola);
SmallStrain = (1/2) (H+ Transpose[H]);
LagrangeStr // MatrixForm

1 x4 1
2 2\ 2
1 1/ 1
2 2\ 4
1 - ¥ 1
2 2 2

ut] 13)//MatrixFor

3

NI ® Nx I

EulerStrain // MatrixForm
SmallStrain // MatrixForml
V/MatrixForm=
1 0 k
o | 0’
(@0 k1
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In the deformatlon, X1 = Xl + ng,xz — Xz + le, X3 = X3 + kXZ at
the point {1,1,0} if kK = 0.0001. Compare the Lagrangian, Eulerian 55
and small strain tensors.

E‘] TK4.54.nb * - Wolfram Mathematica 12.0
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

° The attaChed COde Computes the Small In1)= XX[XI_, X2_, X3_] 1= {X1+k (2XI22+ X1X2), X2+ kX2~2, X3};
. ‘ . H=D[XX[X1s X25 X3] = {X15 X235 Xa}s {{X1s X2, X3}1}]3;
Strain, Lagrangian and the Eulerian Tensors F = DD Xy Xas K51, €0 Xa X))
respectively. The smallness of k shows that st ixtormsmaL1Strain) /. (ke i Hs o+ 1s o +0r k> 0,000 /
strain is very small. -,
Z Z 0.00005 ©.0002 ©
» The differences between the large strain e e o)
measures and the small strain are 0= 06 = Tromspose(F).F /- (a3 %o +1, Ko 28 K-> 0.0001);
7 Z LagrangianStr = 1/2 (CG - IdentityMatrix[3]);
predictable small also. It is customary to use B = Transpose [F].F /. (X1 +1, X: +1, X+ 0, k -> 0.0001)
o o EulerianStr = 1/ 2 (IdentityMatrix([3] - Inverse[B]);
the S]mpler formUlar for Small Stra]n tO MatrixForm[LagrangianStr]

MatrixForm[EulerianStr]

comnpute these values in such cases.

Out[10)//MatrixForm=
/9.008500125 0.000050025 0
0.000050025 0.000200025 B|
@ 2] 0

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii

Out] 11})/MatrixForm=

| ©.00049962 ©.000049955 O.

©0.000049955 @.00019994 0.‘
e. e. 8.



In the deformatlon, X1 = Xl + ng,xz — Xz + le, X3 = X3 + kXZ at
the point {1,1,0} if k = 0.1. Compare the Lagrangian, Eulerian and 56
small strain tensors.

[‘a TK4.55.nb * - Wolfram Mathematica 12.0
File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

» The attached code computes the Small e XX X2_y X3_] 5= (X1 4K (2XIA2.+ XIX2)5 X2+ kX2%2, X313
Strain, Lagrangian and the Eulerian Tensors e M
respectively. k = 0.1 creates sufficiently Snallstrain = (1/2) (H+ Transpose[H]) ;

. . . MatrixForm[SmallStrain] /. {X; »1, X; 21, X3 20, k -> 0.1}
large strains to show a disparity between the JG—_
different stain measures. Bl g’

« While the differences between small strains I
and the Lagrangian values are not too large, |EEGnsatyitiaiintidt it
the Eulerian strain are vastly different. B = Transpose[F]-F /. (X4 +1, X1 + 1, X 20, k->0.1);

EulerianStr = 1/2 (IdentityMatrix[3] - Inverse[B]);

* When strains become larger than this, only el

large strain tensors are usable. o
0.275 0.;25 g’
oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii Out]11)/MatrixForm=

( 8.276235 ©.0231481 @.

0.0231481 0.152778 O.’
0. 9. e.



In the deformation, x; = X; + k X3,x, = X, + k X1, x3 23 Tk4.56.nb - Wolfram Mathematica 12.0

= X3 + kX; at the point {1,1,0} i_f ke =0.1. Cqmpute File Edit Inset Format Cell Graphics Evaluation Palettes Window Help
the angle between the perpendicular coordinate

fibres at this point as a result of the deformation. Inf22)= XX[XI_, X2 5 X3 ) := {X1+k (2X1724+ X1X2), X2+ kX222, X3};
Discuss

H=D[XX[X1, Xa5 X3] = {X15 X2, X3}, {{X15 X2, X3}}]5;
F=D[XX[X1y X25 X3]» {{X15 X2, X3}}1];
SmallStrain = (1/2) (H+ Transpose[H]);

« Remember that the orientation between MatrixForm(F] /. {X; 1, X; +1, X; 0, k->0.1}
two fibres is governed by the Right Out{28)/MatrixForm=
stretch tensor. These fibres are 1.5 0.1 @,
originally at right angles to each other. & 1.2 0 |
Using small strain formula, the Tangent e o 1,
of the change in this angle is ¢;,.
. The cosine Of the new angu[ar G = Transpose[F] F/o{Xg =21, X; 921, X3 20, k -> 0.1};
orientation is RightStretch = MatrixPower [(G, .5];
1 dX; - dX, ) © = ArcCos [Dot [RightStretch . {1, 0, 0}, RightStretch.{0, 1, 0}] /
ldx ||| dx; || (Norm[RightStretch .{1, @, 8}] - Norm[RightStretch .{1, @, 0}])]
_ COS_1< dX, - UdX, ) smallStrain( [1]]1[[2]] /- (k= .1, X; +1, X; = 1)
10dX, [[[[UdX, || LargeStrain = N[Pi/2] -6

1.504e8

8.0e5

0.0667161

oafak@s2pafrica.org; oafak@unilag.edu.ng
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Continued from Previous Slide 58

TK4.56.nb - Wolfram Mathematica 12.0

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help 7 From this CompL‘Itation) the Spatial flbres
n22k= XK[XI_ 5 X2_, X3_] := {X1+k (2X1°2 4+ X1X2), X2+ kX272, X3}; are inclined to each other at an angle

H=D[XX[X1, X25 X3] = {X15 X25 X3}, {{X15 X25 X3}}]5; Z 7 Z 7
F = DIXX[Xe5 Xa5 Xals {{Xe5 X25 Xa}}]5 1.50408 radians. The original orientation

SmallStrain = (1/2) (H+ Transpose[H]);

MatrixForm(E] /. {Xs - 1, X » 1, X + @, k -> 0.1) was m radians. The change in the angle is
v Y 0667161 radians.

' e 1.2 0 I
e e * In contrast, this was computed to .05
n[43)= CG = Transpose[F].F /. {X; -1, X; -1, X3 -0, k->0.1}; -
RightStretch = MatrixPower [(G, .5]; rad]ans
6 = ArcCos [Dot [RightStretch . {1, 0, 0}, RightStretch.{0, 1, 0}] / Z Z
(Norm[RightStretch . {1, 0, 0}] - Norm[RightStretch .{1, 0, 0}]) ] * Note that the Right stretch can provide the

SmallStrain[[1]]1[[2]] /- (k- .1, X; 1, X; » 1)

LargeStrain = N[Pi/2] - 0 orientation change between any two fibres.

[45= 1.50408

[45= ©.85

- B.8667161 courses/continuum-mechanics-ii Friday, February 28, 2020



In the deformation, x; = X; + k X3, x, = X, + k X{, x5 = X3 + kX,
at the point {1,1,0} if k = 0. 1. Compute the change in length of a 50
line originally oriented at the direction {1,2,1}

TK4.58.nb * - Wolfram Mathematica 12.0

» Change in length is governed by the

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

R]ght StretCh Tensor- n[1}= XK[X1_, X2_, X3_] := {X1+k (2X1°2+ X1X2), X2+ kX22, X3};
Xm / Xm — UXm . del F=D[XX[Xy, X25 X3), {{Xss Xa5 Xa}}];
SmallStrain = (1/2) (H+ Transpose[H]);
” dx” i ”UdX” CG = Transpose[F].F /. {X; +1, X; 1, X3 0, k -> 0.1};
RightStretch = MatrixPower [CG, .5];
* |In the attached code, the unit vector T

along the direction chosen is obtained v 1:2660
from the normalization of the vector.

« Absolute value of the result is provided
by taking the norm.

* Change in length is 1.2682 — 1 = 0.2682.
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Show that the strain systems, {{5.,3,03},{3,4,-1},{0,-1,2}} and
{{7.61704,0,0},{0,2.48475,03,{0,0,0.898215}} represent the same
strain system. Find the rotation tensor that rotates the one to the
other.

* One easy way is to compute [E3 k4 59,0 * - Wolfram Mathermatia 120
theu’ e]genvalues These are File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
equal. They therefore provide - Strstat s {15, 3 €1, (3, 45 <33, (8 -3 23
the same principal values at 0 - Eigenvectors (straini]

Chop[Q.Strainl.Transpose[Q]]

the same point.

» Take the eigenvectors of the
one; the tensor formed by
these normalized eigenvectors
can rotate it to its canonical
form as shown in the attached
code:

ouiel= [ (7.61704, @, @), (@, 2.48475, @), (@, @, 0.898215) |

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii Friday, February 28, 2020
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In the deformation, x; = X; + k X3,x, = X, +

k X1,x3 = X5 + kX, at the point {1,2,.3} if k = 0.1.
Find the volume ratio and the new value of an area
0.02mm? oriented at the direction of {1,1,.2}.

E TK4.61.nb - Wolfram Mathematica 12.0

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

InfT}= XK[X1_5 X2 5 X3 ) := {X1+k (2XI122+ X1X2), X2+ kX272, X3};
F=D[XX[X15 X25 X35 {{X15 X25 X3}}] /- (X1 21, X3 22, X3+ .3, k= .1};
VolRatio = Det[F];

CoFactor[X_] := VolRatio Transpose[Inverse[X]]
NewArea = 0.02 CoFactor[F] .Normalize[{1, 1, .2}]
+ Mathematica does not define a function AreaRatio = Norm[NewArea]
for the cofactor tensor. We write the
code for that in two statements as

shown. out[12)= ©.0294082

» Volume ratio is determined by the
determinant of the Deformation
gradient at the point in question. Area
is a vector.

Out[11= (0.0196039, ©.0210042, 0.00627325)

+ We can get the value of area by show all digits '~ scientific form nthdigit... digits more.. © f &
obtaining the Norm of the vector area

after transforming the original area by
the cofactor. Note that the original area
is a vector obtained by the normalized
direction vector and the scalar value of
area.

oafak@s2pafrica.org; oafak@unilag.edu.ng :
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Show that the E; — E, — E; is a vector on
the plane X; + 2X, — X; = 10. Find the
unit vector along the same direction.

E’ TK402.01.nb * - Wolfram Mathematica 12.0

» The unit normal to the plane can be
found by normalizing E; + 2E, — E;. The
vector we are given will lie on the plane i Unltiorml = Sorwetizel t3s & <2310
if it is at right angles to the normal. e rnacug [ ~OU8 TN

Normalize[{1, -1, -1}]
 The attached code shows that this is the
case from the dot product of the unit
normal and the vector.

File Edit Inset Format Cell Graphics Evaluatio

» Clearly, \/—15 (E; — E, — E3) is a unit vector
in this direction, lying on the plane.
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The deformation, x = (I + ys @ n)X where n is the unit normal to
a surface and s, a unit vector in shear direction, is a case of
simple shear. Find the deformation gradient for in the direction,
E, — E, — E; with X; + 2X, — X5 = 10 as the shear plane.

» The figure here depicts simple shear. The attached
code computes the general deformation gradient by
normalizing E; — E, — E; as s and normalizing the

perpendicular vector to the shear plane, E; + 2E,
B

oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafrica.com/courses/continuum-mechanics-ii

E TK402.03.nb * - Wolfram Mathematica 12.0
File Edit Inset Format Cell Graphics Evaluation Palettes Window He

In[1}= X[X1_, X2_, X3_] := (IdentityMatrix([3] +
¥ TensorProduct [Normalize[ {1, -1, -1}],
Normalize[{1, 2, -1}]]) . {X1, X2, X3};
DefGrad = D[x[Xyy X2, X315 {{X15 Xa5 Xa}}13;
DefGrad // MatrixForm

Out{3)/MatrcForm=
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The deformation, x = (I + ys ® n)X where n is the unit nhormal to a surface and s, a
unit vector in shear direction, is a case of simple shear. Find the deformation gradient 64
of simple shear with s as the X; —axis on the shear plane being the X, —plane.

e In this case, s = E; or {1,0,0}, [XI_, X2 , X3 ] := (IdentityMatrix[3]
U X[X1 5 X2 4 X3 ] := enti rix +
and n = E2 or {01110} ly TensorProduct [Normalize[ {1, 0, 0} ],

Normalize[ {0, 1, 0}]]) .{X1, X2, X3};

DefGrad = D[x[Xy, Xz, X3], {{X1, X2, X3}}1]5;

DefGrad // MatrixForm
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Use a simple example to demonstrate that the deformations, x = (I + ys
@ n)X and x = (I+ yn ® s)X yield the same infinitesimal strain system.

Friday, February 28, 2020




» The deformation function is completely decoupled. It therefore
requires no programming to invert the equation. Clearly,

x) =1 +e2)X =X = (ﬁltz); X, =tX, = X, = x—tz and X; = x5. Velocity is

the time derivative of the deformation. Hence, [ E

d
V = %X(X, t) — 2tX1E1 + XzEz

X2

X1
_EZ

=2t————E
Aten) 1T

As we have chosen the same ONB as coordinates for spatial and
referential configurations.




For the motion x = x(X,t) = (1

+ t2)X,E, + tX,E, + X5E; find the
substantial acceleration by working
only in spatial terms

2 7K4.67.nb - Wolfram Mathematica 12.0

/ Substantial acceleration .is the File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

material time derivative of velocity. In e "f—’G";’[ = ‘“"“]‘1;“2” xz}’tf.f”t N— .
7 % Z convAccel = Grad[Vv[Xy, X35 X3l {X15 X325 X3}, “Cartesian™].v[xy, X2, X
spatial terms, the velocity for this o e PR
o o . Xy X, 1
motion 1s . . ouz {23 @ O
V(X, t) - —2 el . _ez
(1 + t ) t Inj47= localAccel = D[v[xy, X325 X3], t]
7 7 4 = - 4t 2
* This velocity is the f term as well as ower {-——5 ¢ =15, -7, 0]
the v term in the equation, o
( d f) . Bf Inj51= SubstAccel = convAccel + localAccel
ra \"4 = . .
5 ot out[5}= | % ,0,0

» The first term being the convective
term, and the second, the local
acceleration. The computation here is
in the attached notebook

oafak@s2pafrica.org; oafak@unilag.edu.ng :
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For the motion x = x(X,t) = (1 + t?)X,E; + tX,E, + X3E; find the substantial
acceleration by working only in referential terms. Show that this result
coincides with the computation with spatial variables.

» Substantial acceleration is the material time derivative of velocity. In
referential terms, the velocity for this motion is

V(X, t) — ZtXlEl + X2E2
» Material time derivative of this is simple and does not require
programming.
le

1+t2) "
The last equality arising from the fact that, X; = (1122)' This shows that the

substantial acceleration, no matter which configuration is used, returns the
same value.

D
AX, 1) = V(X,t) = 2X,E; =




A note on the Mathematica code

es. | spatial system had
s the same convective




A note on the Mathematica code, cont’d

e mastered by practice. | have no
no alternative to understanding what you

rses/continuum-mechanics-ii Friday, February 28, 2020




For the motion x = x(X,t) = (1 + t>)X,E; + (Bt?X? + X,)E,
+ X3E; find the velocity and substantial acceleration using
both referential and spatial terms. Show equivalency.

 |Inverting the motion, using Solve, the reference map

hereis, X = x '(x,t) =

- (1+t?)?%x, — Bt?x?

___ ¢
(1+¢t2) 1

< oy E; + X3E;

» Using this transformation, we obtain the spatial form
of velocity and compute the convective term as,

4t2x?

8pt%x?

= +
e TR
Local acceleration is obtained by direct differentiation

as shown. Addition yields

the substantive acceleration

which is easily obtained directly by differentiating the

motion twice.

oafak@s2pafrica.org; oafak@unilag.edu.ng
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E TK4.71.nb - Wolfram Mathematica 12.0
File Edit Inset Format Cell Graphics Evaluation Palettes Window Help
In[1]= Solve[{x1 = (1+ t~2) X1, x2 == B X122t~2 + X2, x3 = X3}, {X1, X2, X3}]
VX1 _, X2 , X3_] :=D[{(1+t"2) X1, B XI1”~2t~2 + X2, X3}, t]
x1 x2+2t2x2+t4x2-t2x128

X2 ———————————— X3 5x3}}

EAT e (1+t2)2

x1 x2 4+ 212 x2 4+ t% x
VixI_, x2_5 x3_] = V[X1, X2, X3] /. {x1-. — X2
1+t

(1+t%)

convAccel = Grad[v[xy, X25 X3]s {X15 X25 X3}, "Cartesian"].v[xy, X2, X3]
- 412 x, s8t2pxd
Tl @) @ery* !

ni51= localAccel = D[v[xy, X35 X3], t]
4t x, 2%, 8t 8 x} 28}
1.8 e 1ee)) qeey’

1= SubstAccel = convAccel + localAccel
- 2% 28x}

F a2 e

[71= SubstAccel /. {x3 => (1 +t22) X3, X3 => BX;22t"*2 + X3, X3 => X3}

ouf7= {2Xy, 28X}, @)}



» This is more coupled than the previous problem. The solution is essentially the same and
the code we used previously applied here. Inverting the motion, using Solve, the
reference map hereis, X = x 1(x,t) =

X 1+ t?)?%x, — Bt?x?
; (At % —ptixf o

— _E, +
(1+¢t2) ! t2(1 + t2)?

» Using this transformation, we obtain the spatial form of velocity and compute the
convective term as,

4t2x2 4x,
(1 +t2)? t2
Local acceleration is obtained by direct differentiation as shown. Addition yields the

substantive acceleration which is easily obtained directly by differentiating the motion
twice.

(grad v)v = e,




Coupled Motion

Note that the local acceleration, after
simplification, yields,

v 7 tz)xl 7
. v el
« Adding the two and transforming back to the

referential configuration, we obtain,
Dv  2x 2X

L 1gaar t_ez = 2X,E; + 2(BX? + X,)E,

» Which, as before, could have been obtained by
direct differentiation of the motion in
referential form.

oafak@s2pafrica.org; oafak@unilag.edu.ng https: //lms.s2pafrica.com/courses/continuum-mechanics-ii

ETKZLTZ.nb - Wolfram Mathematica 12.0
File Edit Inset Format Cell Graphics Evaluation Palettes Window Help
in[1}= Solve[{x1 = (14+t"2) X1, x2 = (f X172 + X2) t72, x3 = X3}, {X1, X2, X3}]
VX1, X2_, X3_] :=D[{(1+t~2) XI, (f XI*2 4 X2) t*2, X3}, t]
e x1 X2+ 2t2x2+ P2 -2 X123
1+ {{x1-

e £ (1.th)2 2333330}

x1 X242t x2+t4 x2-t2 x12 8
1= VXL, x2_, x3_] = V[X1, X2, X3] /. {x1-. o) , X3 -.x3}
+

convAccel = Grad[v[Xy, X2y X3]y {X1y X235 X3}, "Cartesian™].v[xy, X2, X3]

Z,XZ-.

. 2, 44, ( E:Z . 1% 2t x5t xy
2{1+20+17) 212 2 0.02)2

R 4t2xl | (2o t (1.t

Cast?’ (14432

5= localAccel = D[v[xy, X2, %3], t]
417 x, 2%,
1w 1)

a4taxd

2t 2t8x] +A4tx c 4t x, 4 (-tPAX ex 2t x tixy) 2 (-tTEX] X2t % ¢ tH )
‘ Lt t1e)? t(1.th)? teel)?
2(‘ axt taxd ixy 2t x o tix,

1+t8)2 2 (14 8%)2 !

Z1= SubstAccel = convAccel + localAccel
Fo2xy

4tax 2tAx] At 4t X, 4

(~t28x] e+ 203y ¢ tox,) 2
(1. 423 2 (1.4t3)2

(~E28x] +x; + 210, + t22,)
t(1.th)? 2 1.th?
401282 ¢4 sxd . 2axdig2dg it

[ Bxi tAxg exy e 2t % + tix, ) ‘u“ 2 (12)2
l:‘1.t2:2' 2 (1.t4)2 (1122

1= SubstAccel /. {x; -> (1 +1t%2) X3, X = (X172 4+ %) t72, x3 -> X3}

(atax; -2t (1eth2axd At (axaXy) 4t (XX
- »2)(, 2t .
’ ' 2 £ (14 42)2
4 (-t 1+ tl_.l.’ifotz (BXI+Xy) +2¢% (BX +X;) + 8 (X} +Xy))
tt?)?
2 (-t (1t 2Bx o2 (BXE 4 X;) « 2% (BXE 4 X;) «tf (BXE 4 Xy))
t1+th? '

21t aX 2 (BX] e Xy) + 2t (BX] + Xy)

(142
2‘-'3’(" £ (1. ¢2)2

6 2 Y
ctfaxd e x) |

2 axdoe? (axdoxg)o2e® (exdoxg| B (xd oz
2 (1.42)2 l

(1. 422 ,0.-

i 2 2 2
412824 t% |Bx

Ing]:= Simplify[%]

oulel= (2Xy, 2 [EX] + X2}, @)



» The solution is essentially the same as before, using essentially the same code
Inverting the motion, using Solve, the reference map here is, X = x 1(x,t) =

x;(1+tp)? — 7%
1+ 8

» Using this transformation, we obtain the spatial form of velocity and compute
the convective acceleration term as,

E, + X3E3

4tafxs N £2x,
T +tp)3 LT (1 +eB)2 2
Local acceleration is obtained by direct differentiation as shown. Addition yields

the substantive acceleration which is easily obtained directly by differentiating
the motion twice.

(grad v)v =




Cont’d

E TK4.74.nb * - Wolfram Mathematica 12.0

(] Note that the local acceleration, after File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

In[10)= Solve[{x1=a X2A2t"2+X1, x2 = X2 t + X2, x3 = X3}, {X1, X2, X3}]

simplification, yields, . 2 VIS , &2 5 33 ] smBEps E3Te2, 8 K2 T 32, X3} 4
aV 0 Za(tﬁ T 1)x2 ﬁ xz — ) x1-t2x22a+2tx18+tix1? . x2 % x3

= e, — e (1+t53)2 ’ 1+t8
at T G

» Adding the two and transforming back to the e Sttty te s
referential Conf-igurat-ion, We Obtain’ convAccel = Simplify[Grad[v[Xyy X2y Xa]s {X1s X25 X3}, "Cartesian"].v[xy, X2y %3] ]

- 2tax; Bx, .
DV Zax% Za(Xz + tﬁXZ)Z M U te 2 1eep

2

= e, = E Atafx A% x !
Dt (1+tB)2 * (1 + tB)? 1

« Which, as before, could have been obtained by 1 ocaliceel - St I D0y e, 20 1)

- 2o (-1+t8) X3 3% x,

direct differentiation of the motion in T e e
refe rential fo rm “ n[1¢:= SubstAccel = Simplify[convAccel + localAccel]

xI1-t2x2a+2tx1p+t? x1p?

a[12)= w[x1_, x2_, x3_] := V[X1, X2, X3] /. {x1-. YT
+

» X2 =

- 2.&){% -

Out18}= { , 0,8}
L(1etg)?
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n[17)= SubstAccel /. {x; -> @ Xa”2t*2 4+ X3, % =8 Xo t X, 5 -> X3}

20 (X s t8X;)?

(1+t8)2

0,0




» The solution is essentially the same as before, using essentially the same code
Inverting the motion, using Solve, the reference map here is, X = x 1(x,t) =

x;(1+tp)? — 7%
1+ 8

» Using this transformation, we obtain the spatial form of velocity and compute
the convective acceleration term as,

E, + X3E3

4tafxs N £2x,
T +tp)3 LT (1 +eB)2 2
Local acceleration is obtained by direct differentiation as shown. Addition yields

the substantive acceleration which is easily obtained directly by differentiating
the motion twice.

(grad v)v =




Cont’d

E TK4.74.nb * - Wolfram Mathematica 12.0

(] Note that the local acceleration, after File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

In[10)= Solve[{x1=a X2A2t"2+X1, x2 = X2 t + X2, x3 = X3}, {X1, X2, X3}]

simplification, yields, . 2 VIS , &2 5 33 ] smBEps E3Te2, 8 K2 T 32, X3} 4
aV 0 Za(tﬁ T 1)x2 ﬁ xz — ) x1-t2x22a+2tx18+tix1? . x2 % x3

= e, — e (1+t53)2 ’ 1+t8
at T G

» Adding the two and transforming back to the e Sttty te s
referential Conf-igurat-ion, We Obtain’ convAccel = Simplify[Grad[v[Xyy X2y Xa]s {X1s X25 X3}, "Cartesian"].v[xy, X2y %3] ]

- 2tax; Bx, .
DV Zax% Za(Xz + tﬁXZ)Z M U te 2 1eep

2

= e, = E Atafx A% x !
Dt (1+tB)2 * (1 + tB)? 1

« Which, as before, could have been obtained by 1 ocaliceel - St I D0y e, 20 1)

- 2o (-1+t8) X3 3% x,

direct differentiation of the motion in T e e
refe rential fo rm “ n[1¢:= SubstAccel = Simplify[convAccel + localAccel]

xI1-t2x2a+2tx1p+t? x1p?

a[12)= w[x1_, x2_, x3_] := V[X1, X2, X3] /. {x1-. YT
+

» X2 =

- 2.&){% -

Out18}= { , 0,8}
L(1etg)?
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n[17)= SubstAccel /. {x; -> @ Xa”2t*2 4+ X3, % =8 Xo t X, 5 -> X3}

20 (X s t8X;)?

(1+t8)2

0,0




Source & Sink

» Sources and Sinks are useful idealizations
in Flow Analyses. The idea that a fluid
flows radially out of nothingness or flows
inwads and vanishes may be too difficult
ti imagine. Look at the magnetic analog
of the lines of force near the poles of the
magnet. The relevant equations and
descriptions are similar.

» We are going to describe a source flow in
terms of the velocit( fieléi,

t
v(x, t) = e
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For Source Flow, Find Velocity Gradient, Convective
Acceleration, Substantial Acceleration, and the Divergence of
the Flow. Show that the local acceleration vanishes at steady
state. Use Cylindrical Polar Coordinates

E’ Source Flow.nb * - Wolfram Mathematica 12.0

File Edit Inset Format Cell Graphics Evaluation Palettes Windi

Infz8)= v= {(a-B/t) /ry, 0, 0};
VelGrad = Grad[v, {ry 6, z}, "Cylindrical™];

* From the attached code, we can see that both Simplify [MatrixForm[VelGrad] )
convective as well as local accelerations are in ConvAccel = VelGrad.v
the radial direction. LocalAccel = D[v, t]
2 Out{2T}/MatrixForm=
B  tas
Dv (0‘ 7 ?> B 2t
Dt r3 / rt2 7

At steady state, the term containing t vanishes.
We can simply set f = 0, and find that

Dv a?

Dt~ e
Which is the substantive acceleration in steady
flow.
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Find the Stretching as well as Spin Tensors for the
above flow field. Also find the dimensions of the |




For Source Flow, Find Velocity Gradient, Convective
Acceleration, Substantial Acceleration, and the
Divergence of the Flow. Use Cartesian Coordinates ] Source Flownnb * - Wolfram Mathematica 12.0

File Edit Inset Format Cell Graphics Evaluation Palettes Windi

Infz8)= v= {(a-B/t) /ry, 0, 0};
VelGrad = Grad[v, {ry 6, z}, "Cylindrical™];

» From the attached code, we can see Simplify [MatrixForm[VelGrad]]
Z ConvAccel = VelGrad.v
that both convective as well as local LocalAccel = D[v, t]
accelerations are in the radial direction. 2T} MatixFoamre
y ~ta8
2 2o
_ b
Dv t . p
—_— T — e ..
Dt r3 rt2) 7

Out[28= |
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()

Convert the flow v(x,t) = —e to Cartesian Coordinates and obtain 82
the acceleration in that system of coordinates.

» Beginning with the fact that the radial basis vector,
X1€4 X2€7

e. =cosfe; +sinfe, =

u= {(a-B/7€) X1/ (X1*2+ x2™2), (- B 1E) x2] (X1*2 +%272) 5.0}
ConvAccel = Simplify[Grad[u, {x1, x2, x3}, "Cartesian"].u]
LocalAccel = Simplify([D[u, t]]

* |t follows that the velocit(,

h

p B X (a-f) x2(a-F)
——]e X>la——|e 1 a2 t2 T t2 > 9
t 1 /) t 2 « 215 3 2D 1% + 22 J

vix,t) =——e, = 2 2
/ 2 2 2 2 ¢ x1(-ta+pB) x2 (-ta+p -
r X] + X5 Xyt X U2 s m22)2” m |

» With this Cartesian description, we can redo the s o |

code as shown. Note that the gradient is now L (a? u52?) * & (e )" )

invoked with Cartesian variables.
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E Planar Vortex.nb * - Wolfram Mathematica 12.0

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

njfil=v={0,1/r, 0};

VelGrad = Grad[v, {r, 6, 2z}, "Cylindrical™];
Simplify[MatrixForm[VelGrad] ]

ConvAccel = VelGrad.v

For Planar Vortex Flow, find the Velocity
Gradient, Stretching and Spin Tensors
and Convective acceleration in both
Cylindrical and Cartesian coordinates

V/MatrxForm=
) r—ll @)
L 9 o
 The attached code calculates the - o o
Velocity Gradient and Convective ‘ '
acceleration in both Cylindrical -1 _
and Cartesian coordinates. ouldE {540, 8]

The equivalency of these is not
obvious. nEl= u= {=x2/ (X172 + X272), x1/ (x1°2 + x2°2), 0} ;

VelGradl = Grad[u, {x1, x2, x3}, "Cartesian”];
Simplify[MatrixForm[VelGradl]]
ConvAccel = VelGradl.u

Note here that the Velocity
gradient is a symmetric tensor in
both cases and therefore, the spin

1 TV Ms =
tensor must vanish. Out[T}//MatrocForm
[ 2xix2 x1% x22 .
::tl2 122,2 :Jul2 le,I
!11 112 2xlx2 Py
5111 xlz,l [x1? xzz,’-
\ @ e e
oafak@s2pafrica.org; oafak@unilag.edu.ng https://lms.s2pafri - 222 ) . - . 22 4 .
2 x1 x2? | atae?)|? alia? | 2 %12 %2 ot ol
DI..'I:[E:= { = & - » - . L
C(x1? 4 x2%)3 x1? + x22 (x12 + x22)3 x1? + x2?

)



Demonstrate the equivalency of the Velocity
gradients computed in the two coordinate systems
above.

Eigenvalues[VelGrad]

Eigenvalues[VelGradi]

x1¢ - x2¢




For Couette flow, the velocity field is
v(x,t) = wreyg. Compute the convective
and substantial acceleration. Also
compute the stretching and spin rates.

E‘] Couette Flow.nb * - Wolfram Mathematica 12.0

File Edit Insert Format Cell Graphics Evaluation Palettes Windo

In[1}= v= {0, wry, 0};
* From the attached code, we can see VelGrad = Grad[v, {r, 8, z}, "Cylindrical”];

that both convective as well as local . g .
accelerations are in the radial direction. Simplify [MatrixForm[VelGrad] ]

Dv 2 ConvAccel = VelGrad.v
i i
Dt / LocalAccel = D[v, t]
» Local acceleration is zero. Note that the Out{3)/MatrixForm=
velocity, wrey, is tangential, but '@ = B
convective acceleration is radial. - |
» The stretching rate tensor zero, the spin e 0 0
tensor is the same as the velocity
gradient since the latter is ouir {-rw?, 0, 0}
antisymmetric. Remember that the ' '
former is the symmetric part of the ‘ :
velocity gradient, the latter is the skew Outfs= (@, 0, 0]
part of it.
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For Couette flow, the velocity field is v(x,t) = wreg. Compute the
convective and substantial acceleration. Also compute the stretching
and spin rates. Work in Cartesian system

u= {-xlw, x2w, 0}

» Beginning with the fact that the radial basis vector, VelGradl = Grad[u, {x1, x2, x3}, "Cartesian"];
eg = —sinfe; + cosf eé Simplify[MatrixForm[VelGrad] )
i i ConvAccel = VelGradl.u

\/xf + x% \/xf + xzz LocalAccel = D[u, t]

V(X»f))v= Wwreg = —Xxz€;1 + x1€, (-x1w, X2w, 0)
E 7 _xlwel + xzwez AstroxForm=
) . . (@ -w 0
» Local acceleration is zero. Note that the velocity, wreg, is s l
tangential, but convective acceleration is radial. ———

» The stretching rate tensor zero, the spin tensor is the same
as the velocity gradient since the latter is antisymmetric.
Remember that the former is the symmetric part of the
velocity gradient, the latter is the skew part of it.

{1 w?, x2w?, 0}
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Show that the directions of vectors v; = E; — E, — E5 and v24: %1 + 21E2 — E; are

orthogonal. If the strain tensor at a point in a materialis[ 0 2 1 |x 107%. Find the
-1 1 1

linear strains in the directions of v, and v, What is the decrease in right angle of elements

with unit vectors along v,and v,.

E Normal Shear.nb * - Wolfram Mathematica 12.0

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

s Orthogonality is shown by the Vanishing 1= EE = {{45 @, =1}, {0, 2, 1}, {-1, 1, 1}};
of the dot products. The code here g
shows that v, - v, = 0. o]
* The rest of the computation is as shown o
in the attached code. Given that ¥, and SRR IR T RN
7 Z 7 €11 = 10~-4 N[Normalize[v; ].(EE.Normalize([v;]), 4]
Vv, are the normalized vectors in the €12 = 10-4 N[Normalize(v; ]. (EE.Normalize[v;]), 4]
directions v, and v, respectively, note ous 0.0003667
that the same answer will be obtained e e
for . . . A OuEl- ©.00004714
612 7 V1 . Evz 7 VZ . EV1 In[7}= Eigenvalues [EE]
Since E is symmetrical. ourr {(©4.34...), (©2.47..), (@0.186.. |
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4 0 -1
Find the principal strains and dilatation of the straintensor [E] = 0 2 1 ) x 1074,

1 1 1
Find the sum of the principal strains and explain why it equals the dilatation.

E Normal Shear.nb * - Wolfram Mathematica 12.0

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

- The dilatation is the trace of the strain bl B e
tensor. In this case, dilatation, vi = {1,2, -1);
O=(“4+2+1)x107*=7x10""* Dot (v, va]
[
» The sum of the eigenvalues is g ]
o —4 €31 = 102 -4 N[Normalize[v; ].(EE.Normalize[vy]), 4]
@ e (4.34 + 2.47 + 0.186) X 10 €41 = 10~ -4 N[Normalize[v; ). (EE.Normalize[v;]), 4]
~ 7 X 10_4 €12 = 10~-4 N[Normalize[v; ].(EE.Normalize[v:]), 4]
« The two values must be equal because g
when a tensor is diagonalized by similarity 0.0001533
transformations, only diagonal terms LTI
remain. The trace is therefore the same as _
the sum of its eigenvalues. Similarity N —_ |
transformations do not alter traces nor oure {(@4.34. |, (©2.47.), (@ 0.186..|)
eigenvalues.
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Show that the velocity field, v; = x, — x3, v, = x5
— x4, and v; = x; — x, constitutes a rigid flow field.

E Rigid Motion.nb * - Wolfram Mathematica 12.0

* In a rigid flow field, the stretching tensor will be
the annihilator:No stretches. Recall that the

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

InfBl= V4 = X3 = X33 V2 = X3 =X1j3 V3 =X1 -X33

stretching tensor is the symmetrical part of the VelGrad = Grad [ (vi, v3, va)» x> X2, %), "Cartesian®]
velocity gradient. The attached code computes the o.q.o-,.,a,,":,:m"""’m'“’
velocity gradient. e 1 1

» Observe that the velocity gradient we obtained is 3 -8 8 '
here antisymmetric. Its symmetrical part is the zero

tensor. This field therefore is a rigid spinning field.
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.

-

4 0 -1 4 0 -1
The strain fields ( 2 1 > x 10~* and ( 1 1 ) x 10™* look similar. Show what they 91

-1 1 1 1 2
have in common and show that the strain tensors cannot represent the same strain field

* The two strain tensors given possess the same
traces. They also have the same off-diagonal

B s e g i) | elements. Consequently, at the point in question,
e E:“:':::“f”‘e'leGj"’l")“ (ff‘“:""l"”_"""“‘“ 4 they will produce the same dilatation because
* EEE= (4,0, 1), (8,1, 1), (-1, 1, 2})3 dilatation is simply the trace of a tensor.
o= Eigenvalues (EE] * Next we take the eigenvalues of these tensors as

Eigenvalues [EEE]

shown in the attached code. The eigenvalues are
different.

» Consequently they are for different strain situations.
They cannot be converted one to another by
similarity transformations.

Outjdf= { ©4.34...|, | ©2.47... ),

ouisi {{@4.46...|, | @2.24.._|,
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Components of Grads, Divs & Curls
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Small Strains

» Again, in Cartesian, the transpose is simply the reversal of the indices. Hence,
we can write,
1

1
e o T .
E—%(F F 1)_2((H+1) (H+1) 1)
=E(H+HT+HTH)
 In component form as,
1
Eij =§(Hl] +Hji +Hkinj)

1 (aui au] auk Buk)

)

+— +
dX;  AX; 0X; X
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auz)z
0x
auz)?‘
ady
auz)z
0z

Lagrangian o e s s
Strain Py Oy

1|0u, du, Ou,du, Ju,du,
e ] e P e e
_l_a& +1 0u, 0u, +a&%+au26u2
0z 210y 0z 0dy dz 0y 0z
Can easily be expanded as shown here. YOU

ARE EXPECTED to be able to do this

manually by simply interpreting the indices
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Lagrangian Strain in
Curvilinear systems

Cylindrical Coordinates
Can easily be expanded as shown here.

YOU ARE NOT EXPECTED to be able to do 2
this manually by simply interpreting the E, = 0uy + 1 [(au’") (6ug) + (auz
indices. Instead, you are expected to use or  2|\or

software such as Mathematica to do this.

90 )2]

a& B @) ) N % (u Bug) N du, Buz]
or 00 dr 060

aug) laur ) dug ( Bug) N du, auzl
oz \"“" T30 ) " 3z 90

du, du, du, Jdugdug Ju,du,

+W)+z or 9z " or 9z " or le
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Spherical Coordinates
du, 1|/0ugy g du, 2 duy, ?
%9—3;+5k3;)+(3; "\

aug 2 au(b 2
1%+55)+(35)

2 2 2
+(8u9 9) + 6+, sing + it
6¢) uqb COS Ug COS up Sin a¢

1 [du, [0u dug (Ou duy ou
(B, 2o (D ) Oy
2p| dp \ 060 dp \ 06 a6 dp

1 du, 10uy
+ : + =
2psinf d¢p 2 dp

+1 du,( 1 0du, +6u9( 1 Jduy t9)+6u¢, (Ot + 1 OJuy
2p| dp \sinf 0¢ Yo dp \sin@ d¢ e €O ap He €0 Yo T sing 310

1 Odug ugpcotd 1 du, 1 |(6u,p )(

E = — R
60 = 2psin0 06 2o 2p 00 202\ 90 ¢ )\Sino a¢

+ 1 (6u9+ )( 1 Jdug t9)+6u¢ O+ u + 1 Jduy
202|\a0 " ")\sing ap ¢ a6 \ "¢ T TG00 99
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The coding is straightforward.
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