Tensor Analysis I
 Differential and Integral Calculus with Tensors

MEG 324 SSG 321 Introduction to Continuum Mechanics
Instructors: OA Fakinlede \& O Adewumi www.oafak.com eds.s2pafrica.org oafak@unilag.edu.ng

- "We do not fuss over smoothness assumptions: Functions and boundaries of regions are presumed to have continuity and differentiability properties sufficient to make meaningful underlying analysis..." Morton Gurtin, et al.

Scope of Lecture

- The issues we shall cover in today's lecture are not hard to understand. They are fundamental to all tensor analysis.
- Be careful to note any area of difficulty. If you are specific, you can be assisted.
- We introduce the Gateaux differential as the solution to our inability to divide by tensors when we want to define a derivative

	TOPIC FOR WEEK 10
1	Reminder: Limit of a Quotient Differentiation in Scalar Domains 4-9
2	Important Consequences: Three examples 10-18
3	Tensor Arguments: The Problem. You cannot divide by a vector, tensor. How can you differentiate with respect to a tensor? 19-20
4	Solution: The Gateaux Generalization of our usual directional derivative; you can now differentiate with respect to an object of any dimension! 21-26

Differentiation
 \& Large Objects

- We are already familiar with the techniques of differentiation of scalar-valued functions with respect to scalar arguments. These objects are defined in scalar domains. Here,

$$
x, h \in \mathbb{R}
$$

- The derivative, $f^{\prime}(x)$, of the function, $f: \mathbb{R} \rightarrow \mathbb{R}$, is defined as,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

pose no problems as division by scalars is welldefined.

Large Objects: Scalar Arguments

- Things become more complex when we handle tensors.
- A second-order tensor, contains nine scalars.
- A vector - a first-order tensor \rightarrow three scalar members.
- The complication does not arise from the size of the objects themselves.
- Derivation of tensor objects with respect to scalar domains, with some adjustments, basically conforms to the same rules as the above derivation of scalars:
- Division of a tensor by a scalar is accomplished by multiplying the tensor by the inverse of the scalar.
- This operation is defined in all vector spaces to which our vectors and tensors belong.
- Consequently, the derivative of the tensor $\mathbf{T}(t)$, with respect to a scalar argument, such as time, for example, can be defined as,

$$
\begin{aligned}
\frac{d}{d t} \mathbf{T}(t) & =\lim _{h \rightarrow 0} \frac{\mathbf{T}(t+h)-\mathbf{T}(t)}{h} \\
& \equiv \lim _{h \rightarrow 0} \frac{1}{h}(\mathbf{T}(t+h)-\mathbf{T}(t))
\end{aligned}
$$

- The product of the scalar, $\frac{1}{h}$ and the difference of tensors is a tensor. Hence the derivative of a vector (or tensor) with respect to a scalar is a vector (tensor).

Large (Tensor) Objects: Scalar Arguments

Large Objects: Scalar Arguments

- If $\alpha(t) \in \mathbb{R}$, and tensor, $\mathbb{T}(t) \in \mathbb{L}$ are both functions of time $t \in \mathbb{R}$, we find,

$$
\begin{aligned}
\frac{d}{d t}(\alpha \mathbf{T}) & =\lim _{h \rightarrow 0} \frac{\alpha(t+h) \mathbf{T}(t+h)-\alpha(t) \mathbf{T}(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\alpha(t+h) \mathbf{T}(t+h)-\alpha(t) \mathbf{T}(t+h)+\alpha(t) \mathbf{T}(t+h)-\alpha(t) \mathbf{T}(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\alpha(t+h) \mathbf{T}(t+h)-\alpha(t) \mathbf{T}(t+h)}{h}+\lim _{h \rightarrow 0} \frac{\alpha(t) \mathbf{T}(t+h)-\alpha(t) \mathbf{T}(t)}{h} \\
& =\left(\lim _{h \rightarrow 0} \frac{\alpha(t+h)-\alpha(t)}{h}\right)\left(\lim _{h \rightarrow 0} \mathbf{T}(t+h)\right)+\alpha(t) \lim _{h \rightarrow 0} \frac{\mathbf{T}(t+h)-\mathbf{T}(t)}{h} \\
& =\frac{d}{d t}(\alpha \mathbf{T})=\alpha \frac{d \mathbf{T}}{d t}+\frac{d \alpha}{d t} \mathbf{T}
\end{aligned}
$$

Large Objects: Scalar Arguments

- Proceeding in a similar fashion, for $\alpha(t) \in$ $\mathbb{R}, \mathbf{u}(t), \mathbf{v}(t) \in \mathbb{E}$, and $\mathbf{S}(t), \mathbf{T}(t) \in \mathbb{L}$, all being functions of a scalar variable t, the results in the following table hold as expected.
- The Simple Rule, when obeyed, allows us to gain proficiency and transfer scalar knowledge to tensors:
- Don't be fooled by the symbols! They are overloaded. You are no longer in Real Scalar Space! You are in the Euclidean Vector Space. Rules are different!
$\frac{d}{d t}(\alpha \mathbf{u})=\alpha \frac{d \mathbf{u}}{d t}+\frac{d \alpha}{d t} \mathbf{u}$

$$
\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v})=\frac{d \mathbf{u}}{d t} \cdot \mathbf{v}+\mathbf{u} \cdot \frac{d \mathbf{v}}{d t}
$$

$$
\frac{d}{d t}(\mathbf{u} \times \mathbf{v})=\frac{d \mathbf{u}}{d t} \times \mathbf{v}+\mathbf{u} \times \frac{d \mathbf{v}}{d t}
$$

$$
\frac{d}{d t}(\mathbf{u} \otimes \mathbf{v})=\frac{d \mathbf{u}}{d t} \otimes \mathbf{v}+\mathbf{u} \otimes \frac{d \mathbf{v}}{d t}
$$

$$
\frac{d}{d t}(\mathbf{T}+\mathbf{S})=\frac{d \mathbf{T}}{d t}+\frac{d \mathbf{S}}{d t}
$$

$$
\frac{d}{d t} \mathbf{T S}=\frac{d \mathbf{T}}{d t} \mathbf{S}+\mathbf{T} \frac{d \mathbf{S}}{d t}
$$

$$
\frac{d}{d t} \mathbf{T}: \mathbf{S}=\frac{d \mathbf{T}}{d t}: \mathbf{S}+\mathbf{T}: \frac{d \mathbf{S}}{d t}
$$

$$
\frac{d}{d t}(\alpha \mathbf{T})=\alpha \frac{d \mathbf{T}}{d t}+\frac{d \alpha}{d t} \mathbf{T}
$$

Each term on the RHS retains the commutative property of multiplication by a scalar.

Slide 10.6 tells that the derivative of a vector is a vector. Each term on the RHS retains the commutative property of the scalar product
Original product order must be maintained

Original product order must be maintained

Sum of tensors

Puzzle:

Given that, $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{L} ;$ what is wrong with $\frac{d}{d t}(\mathrm{~A}: \mathrm{B}: \mathrm{C})$? Can you find, $\frac{d}{d t}(\mathrm{ABC})$? $\frac{\frac{d}{d t}}{d t}(\mathbf{A}+\mathbf{B}+\mathbf{C}) ? \frac{d}{d t}\left(\mathbf{A B}^{-1}\right)$?

Product of tensors. Not commutative! Note that we must maintain the order of the product as shown. $\mathbf{T} \frac{d \mathbf{S}}{d t} \neq \frac{d \mathbf{S}}{d t} \mathbf{T}$
Scalar Product of tensors. Commutative; Order is not important $\mathbf{T}: \frac{d \mathbf{S}}{d t}=\frac{d \mathbf{S}}{d t}: \mathbf{T}$
Order is not important in multiplication by a scalar.

Examples: One Constancy of the Identity Tensor

$$
\frac{d \mathbf{I}}{d t}=\mathbf{0} .
$$

- From Slide 10.6, we recognize the fact that the derivative of the tensor with respect to a scalar must give a tensor. The value here is the annihilator or Zero tensor, $\mathbf{0}$.
- This fact that the Identity Tensor does not change, and has a Zero derivative, leads to important results.
- We look at some of these as our first example.

Constancy of the Identity: Inverses

- For any invertible tensor valued scalar function, $\mathbf{S}(t)$, we differentiate the equation, $\mathbf{S}^{-1}(t) \mathbf{S}(t)=I$ to obtain,

$$
\begin{aligned}
& \frac{d \mathbf{S}^{-\mathbf{1}}}{d t} \mathbf{S}+\mathbf{S}^{-\mathbf{1}} \frac{d \mathbf{S}}{d t}=\mathbf{0} \\
& \Rightarrow \frac{d \mathbf{S}^{-\mathbf{1}}}{d t}=-\mathbf{S}^{-\mathbf{1}} \frac{d \mathbf{S}}{d t} \mathbf{S}^{\mathbf{1}}
\end{aligned}
$$

... if we post-multiply both sides by $\mathbf{S}^{\mathbf{- 1}}$, the following important expression results for the derivative of the inverse tensor with respect to a scalar parameter, in terms of the derivative of the original tensor function:

$$
\frac{d \mathbf{S}^{-\mathbf{1}}}{d t}=-\mathbf{S}^{-1} \frac{d \mathbf{S}}{d t} \mathbf{S}^{-\mathbf{1}}
$$

Conversely,

$$
\frac{d \mathbf{S}}{d t}=-\mathbf{S} \frac{d \mathbf{S}^{-\mathbf{1}}}{d t} \mathbf{S}
$$

Constancy of the Identity: Orthogonal Tensors

- An orthogonal tensor as well as its transpose can each be functions of a scalar parameter.

$$
\mathbf{Q}(t) \mathbf{Q}^{\mathrm{T}}(t)=\mathbf{I}
$$

- One consequence of this relationship is that the tensor valued function,

$$
\boldsymbol{\Omega}(t) \equiv \frac{d \mathbf{Q}(t)}{d t} \mathbf{Q}^{\mathrm{T}}(t)
$$

of the same scalar parameter must be skew.

- This is a consequence of differentiating the identity:

Q is orthogonal, therefore,

$$
\mathbf{Q} \mathbf{Q}^{\mathrm{T}}=\mathbf{I}
$$

$$
\frac{d}{d t}\left(\mathbf{Q Q}^{\mathrm{T}}\right)=\frac{d \mathbf{Q}}{d t} \mathbf{Q}^{\mathrm{T}}+\mathbf{Q} \frac{d \mathbf{Q}^{\mathrm{T}}}{d t}=\frac{d \mathbf{I}}{d t}=\mathbf{0}
$$

Consequently,

$$
\frac{d \mathbf{Q}}{d t} \mathbf{Q}^{\mathrm{T}}=-\mathbf{Q} \frac{d \mathbf{Q}^{\mathrm{T}}}{d t}=-\left(\frac{d \mathbf{Q}}{d t} \mathbf{Q}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

So we have that the tensor $\boldsymbol{\Omega}=\frac{d \mathbf{Q}}{d t} \mathbf{Q}^{\mathbf{T}}$ is negative of its own transpose, hence it is skew.

Constancy of the Identity: Angular Velocity

- Consider a rigid body fixed at one end $\mathbf{0}$ - for example, the spinning top shown. It is given a rotation $\mathbf{R}(t)$ from rest so that each point \mathbf{P} is at a position vector $\mathbf{r}(t)$ at a time t, related to the original position \mathbf{r}_{o} by the equation,

$$
\mathbf{r}(t)=\mathbf{R}(t) \mathbf{r}_{o}
$$

- We can find the velocity by differentiating the position vector,

$$
\frac{d \mathbf{r}}{d t}=\frac{d \mathbf{R}}{d t} \mathbf{r}_{o}=\frac{d \mathbf{R}}{d t} \mathbf{R}^{-1} \mathbf{r}
$$

- And the rotation is an orthogonal tensor, hence its inverse is its transpose, so that,

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}=\frac{d \mathbf{R}}{d t} \mathbf{R}^{\mathrm{T}} \mathbf{r}=\mathbf{\Omega} \mathbf{r}
$$

- And, Ω as we have seen above, is a skew tensor hence it is associated with an axial vector such that $(\boldsymbol{\omega} \times)=\boldsymbol{\Omega}$. From this fact we can see that every point in the body has an angular velocity, $\boldsymbol{\omega}$, such that,

$$
\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}
$$

- $\boldsymbol{\omega}$, defined by this expression, the axial vector of the $\frac{d \mathbf{R}}{d t} \mathbf{R}^{\mathrm{T}}$ where $\mathbf{R}(t)$ is the rotation function, is called the angular velocity.

Constancy of the Identity: Angular Velocity

Examples: Two Magnitude, Other Scalars

- We saw in the previous chapter that the tensor belongs to its own Euclidean vector space which is equipped with a scalar product
- consequently, \exists a scalar magnitude: $\forall \mathbf{A} \in \mathbb{L}$, $\|\mathbf{A}\| \equiv \sqrt{\mathbf{A}: \mathbf{A}}=\sqrt{\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{\mathrm{T}}\right)}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)}$
- Consider the magnitude of a scalar (time, for example) dependent tensor,

$$
\phi(t)=\sqrt{\mathbf{A}(t): \mathbf{A}(t)}=\|\mathbf{A}(t)\|
$$

- so that, $\phi^{2}=\mathrm{A}: \mathbf{A}$.

Differentiating this scalar equation, and remembering that the scalar operand here is just a product, we have,

$$
\frac{d}{d t} \phi^{2}=2 \phi \frac{d \phi}{d t}=\frac{d \mathbf{A}}{d t}: \mathbf{A}+\mathbf{A}: \frac{d \mathbf{A}}{d t}=2 \frac{d \mathbf{A}}{d t}: \mathbf{A} .
$$

This simplifies to

$$
\begin{aligned}
& \frac{d \phi}{d t}=\frac{d}{d t}\|\mathbf{A}(t)\| \\
&=\left(\frac{1}{\|\mathbf{A}(t)\|}\right) \frac{d \mathbf{A}(t)}{d t}: \mathbf{A}(t) \\
&=\frac{d \mathbf{A}(t)}{d t}: \frac{\mathbf{A}(t)}{\|\mathbf{A}(t)\|} \\
& \text { sunday, october 13, } 2019
\end{aligned}
$$

Examples: Three Tensor Invariants, The Trace

To obtain the derivative of the trace of a tensor, take the trace of the differentiated tensor.

- Trace is a linear operator. It follows immediately that

$$
\frac{d}{d t} \operatorname{tr} \mathbf{A}=\operatorname{tr} \frac{d \mathbf{A}}{d t}
$$

- To differentiate the trace of $\mathbf{A}(t), t \in \mathbb{R}$, we select three linearly independent, constant a, b, c $\in \mathbb{E}$, we can write,

$$
\begin{aligned}
\frac{d}{d t} I_{1}(\mathbf{A}) & =\frac{d}{d t} \operatorname{tr} \mathbf{A} \\
& =\frac{d}{d t}\left(\frac{[\mathbf{A}, \mathbf{b}, \mathbf{c}]+[\mathbf{a}, \mathbf{A b}, \mathbf{c}]+[\mathbf{a}, \mathbf{b}, \mathbf{A} \mathbf{c}]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}\right) \\
& =\frac{\left[\frac{d \mathbf{A}}{d t} \mathbf{a}, \mathbf{b}, \mathbf{c}\right]+\left[\mathbf{a}, \frac{d \mathbf{A}}{d t} \mathbf{b}, \mathbf{c}\right]+\left[\mathbf{a}, \mathbf{b}, \frac{d \mathbf{A}}{d t} \mathbf{c}\right]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} \\
& =\operatorname{tr} \frac{d \mathbf{A}}{d t}
\end{aligned}
$$

Posers:

- Is addition a linear operation? Derivative of a sum equals sum of derivatives?
- Is multiplication a linear operation? Derivative of a product, product of derivatives?

Examples: Three Tensor Invariants, Trace of the Cofactor

- The second invariant is NOT a linear scalar valued function of its tensor argument. However, we have the expression,

$$
\begin{aligned}
\mathbf{A}^{\mathrm{C}} & =\mathbf{A}^{-\mathrm{T}} \operatorname{det} \mathbf{A} \\
\Rightarrow \operatorname{tr} \mathbf{A}^{\mathrm{c}} & =\operatorname{tr}\left(\mathbf{A}^{-\mathrm{T}} \operatorname{det} \mathbf{A}\right)
\end{aligned}
$$

- Differentiating with respect to t,

$$
\frac{d}{d t} \operatorname{tr} \mathbf{A}^{\mathrm{c}}=\operatorname{tr} \frac{d}{d t}\left(\mathbf{A}^{-\mathrm{T}} \operatorname{det} \mathbf{A}\right)
$$

- Not a very useful quantity.
- The derivative of the third invariant with respect to a scalar argument is of momentous importance.
- It is the basis of Liouville's theorem and is fundamental to the study of continuum flow in general.

Examples: Three Tensor Invariants, The Determinant

- The third invariant is not a linear function of its tensor argument.

$$
I_{3}(\mathbf{A})=\frac{[\mathbf{A a}, \mathbf{A b}, \mathbf{A c}]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}=\operatorname{det} \mathbf{A}
$$

- so that, $[\mathbf{a}, \mathbf{b}, \mathbf{c}] \operatorname{det} \mathbf{A}=[\mathbf{A a}, \mathbf{A b}, \mathbf{A c}]$. Differentiating, we have,
$[\mathbf{a}, \mathbf{b}, \mathbf{c}] \frac{d}{d t} \operatorname{det} \mathbf{A}$
$=\left[\frac{d \mathbf{A}}{d t} \mathbf{a}, \mathbf{A} \mathbf{b}, \mathbf{A c}\right]+\left[\mathbf{A} \mathbf{a}, \frac{d \mathbf{A}}{d t} \mathbf{b}, \mathbf{A} \mathbf{c}\right]+\left[\mathbf{A} \mathbf{a}, \mathbf{A} \mathbf{b}, \frac{d \mathbf{A}}{d t} \mathbf{c}\right]$
www.oafak.com; eds.s2pafrica.org; oafak@unilag.edu.ng
$=\left[\frac{d \mathbf{A}}{d t} \mathbf{A}^{-1} \mathbf{A} \mathbf{a}, \mathbf{A} \mathbf{b}, \mathbf{A c}\right]+\left[\mathbf{A} \mathbf{a}, \frac{d \mathbf{A}}{d t} \mathbf{A}^{-1} \mathbf{A} \mathbf{b}, \mathbf{A} \mathbf{c}\right]$
$+\left[\mathbf{A a}, \mathbf{A b}, \frac{d \mathbf{A}}{d t} \mathbf{A}^{-1} \mathbf{A c}\right]$
$=\operatorname{tr}\left(\frac{d \mathbf{A}}{d t} \mathbf{A}^{-1}\right)[\mathbf{A a}, \mathbf{A b}, \mathbf{A c}]$
So that, $\frac{d}{d t} \operatorname{det} \mathbf{A}=\operatorname{tr}\left(\frac{d \mathbf{A}}{d t} \mathbf{A}^{-1}\right) \operatorname{det} \mathbf{A} . \quad \mathbf{A}$ momentous theorem - Liouville's Theorem

Vector \& Tensor Arguments

- When the domain of differentiation itself is a made up of large objects, the task of differentiation becomes more demanding. Such problems are standard in Continuum Mechanics. Examples:
- Strain Energy function is a scalar, yet we can obtain the strains from it by differentiating with respect to the stress.
- We are dealing there with the differentiation of a scalar function of a tensor: stress.
- Velocity Gradient. Here, we are differentiating a vector field defined on the Euclidean point space, \mathcal{E}, with respect to the position vector of the points in \mathcal{E}.
- In these and several other derivatives of interest, the domains are no longer in the real scalar space.

Vector \& Tensor Arguments !ERROR!

- When we are in a vector domain,

$$
\mathbf{x}, \mathbf{h} \in \mathbb{E}
$$

- The derivative, $\mathbf{F}^{\prime}(\mathbf{x})$, of the function, $\mathbf{F}: \mathbb{E} \rightarrow \mathbb{E}$, is not properly defined as,

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
$$

creates several problems. For example, (1) division by vectors is not defined, and (2) there are many ways $\mathbf{h} \rightarrow \mathbf{0}$ can be achieved. Similar problems arise when the argument is a tensor: $\mathbf{H} \rightarrow \mathbf{0}$.

Vector \& Tensor Arguments

The approach to this challenge is twofold:
21

- Recognize that the vectors and tensors live in their respective Euclidean VECTOR spaces where the concept of length is already defined.
- Use the above to extend the concept of directional derivative to include the derivative of any object from a given Euclidean space with respect to objects from another.
- Such a generalization is in the Gateaux differential. Consider a map,

$$
\mathrm{F}: \mathbb{V} \rightarrow \mathbb{W}
$$

- This maps from the domain \mathbb{V} to \mathbb{W} both of which are Euclidean vector spaces. The concepts of limit and continuity carries naturally from the real space to any Euclidean vector space.

Vector \& Tensor Arguments

- Let $\mathbf{v}_{0} \in \mathbb{V}$ and $w_{0} \in \mathbb{W}$, as usual we can say that the limit

$$
\lim _{v \rightarrow v_{0}} F(v)=w_{0}
$$

- if for any pre-assigned real number $\epsilon>0$, no matter how small, we can always find a real number $\delta>0$ such that $\left|\mathbf{F}(\mathrm{v})-\mathbf{w}_{0}\right| \leq \epsilon$ whenever $\left|\mathrm{v}-\mathrm{v}_{0}\right|<\delta$. The function is said to be continuous at v_{0} if $\mathbf{F}\left(\mathbf{v}_{0}\right)$ exists and $\mathbf{F}\left(\mathbf{v}_{0}\right)=\mathbf{w}_{0}$
- Specifically, for $\alpha \in \mathbb{R}$ let this map be:

$$
D \mathbf{F}(\mathbf{x}, \mathbf{h}) \equiv \lim _{\alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+\alpha \mathbf{h})-\mathbf{F}(\mathbf{x})}{\alpha}=\left.\frac{d}{d \alpha} \mathbf{F}(\mathbf{x}+\alpha \mathbf{h})\right|_{\alpha=0}
$$

- We focus attention on the second variable h while we allow the dependency on x to be as general as possible. We shall show that while the above function can be any given function of x (linear or nonlinear), the above map is always linear in \mathbf{h} irrespective of what kind of Euclidean space we are mapping from or into. It is called the Gateaux Differential.

The Gateaux Differential

Proof of Second Equation Term

- The second equation above is not obvious. It can be shown by remembering the scalar formula for derivative and treat

$$
\phi(\alpha) \equiv \mathbf{F}(\mathbf{x}+\alpha \mathbf{h})
$$

as a scalar function. We do that here as follows:

$$
\frac{d \phi(\alpha)}{d \alpha}=\lim _{\Delta \alpha \rightarrow 0} \frac{\phi(\alpha+\Delta \alpha)-\phi(\alpha)}{\Delta \alpha}
$$

Let $\phi(\alpha) \equiv \mathbf{F}(\mathbf{x}+\alpha \mathbf{h})$. Substituting, we have, $\frac{d \phi(\alpha)}{d \alpha}=\lim _{\Delta \alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+(\alpha+\Delta \alpha) \mathbf{h})-\mathbf{F}(\mathbf{x}+\alpha \mathbf{h})}{\Delta \alpha}$ so that,

$$
\begin{aligned}
\left.\frac{d}{d \alpha} \mathbf{F}(\mathbf{x}+\alpha \mathbf{h})\right|_{\alpha=0} & =\lim _{\Delta \alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+\Delta \alpha \mathbf{h})-\mathbf{F}(\mathbf{x})}{\Delta \alpha} \\
& =\lim _{\beta \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+\beta \mathbf{h})-\mathbf{F}(\mathbf{x})}{\beta} \\
& =D \mathbf{F}(\mathbf{x}, \mathbf{h}) .
\end{aligned}
$$

Real functions in Real Domains.

- Let us make the Gateaux differential a little more familiar in real space in two steps: First, we move to the real space and allow $h \rightarrow d x$ and we obtain,

$$
D F(x, d x)=\lim _{\alpha \rightarrow 0} \frac{F(x+\alpha d x)-F(x)}{\alpha}=\left.\frac{d}{d \alpha} F(x+\alpha d x)\right|_{\alpha=0}
$$

- And let $\alpha d x \rightarrow \Delta x$, the middle term becomes,

$$
\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x} d x=\frac{d F}{d x} d x
$$

- from which it is obvious that the Gateaux derivative is a generalization of the wellknown differential from elementary calculus. The Gateaux differential helps to compute a local linear approximation of any function (linear or nonlinear).

Linearity

- Gateaux differential is linear in its second argument, i.e., for $a \in \mathbb{R}$,

$$
D \mathbf{F}(\mathbf{x}, a \mathbf{h})=a D \mathrm{~F}(\mathbf{x}, \mathbf{h})
$$

- Furthermore,

$$
\begin{aligned}
D \mathbf{F}(\mathbf{x}, \mathbf{g}+\mathbf{h}) & =\lim _{\alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+\alpha(\mathbf{g}+\mathbf{h}))-\mathbf{F}(\mathbf{x})}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+\alpha(\mathbf{g}+\mathbf{h}))-\mathbf{F}(\mathbf{x}+\alpha \mathbf{g})+\mathbf{F}(\mathbf{x}+\alpha \mathbf{g})-\mathbf{F}(\mathbf{x})}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{y}+\alpha \mathbf{h})-\mathbf{F}(\mathbf{y})}{\alpha}+\lim _{\alpha \rightarrow 0} \frac{\mathbf{F}(\mathbf{x}+\alpha \mathbf{g})-\mathbf{F}(\mathbf{x})}{\alpha} \\
& =D \mathbf{F}(\mathbf{x}, \mathbf{h})+D \mathbf{F}(\mathbf{x}, \mathbf{g})
\end{aligned}
$$

as the variable $\mathbf{y} \equiv \mathbf{x}+\alpha \mathbf{g} \rightarrow \mathbf{x}$ as $\alpha \rightarrow 0$; For $a, b \in \mathbb{R}$, using similar arguments, we can also show that,

$$
D \mathbf{F}(\mathbf{x}, a \mathbf{g}+b \mathbf{h})=a D \mathbf{F}(\mathbf{x}, \mathbf{g})+b D \mathbf{F}(\mathbf{x}, \mathbf{h})
$$

Points to Note:

- The Gateaux differential is not unique to the point of evaluation.
- Rather, at each point \mathbf{x} there is a Gateaux differential for each "vector" h. If the domain is a vector space, then we have a Gateaux differential for each of the infinitely many directions at each point. In two of more dimensions, there are infinitely many Gateaux differentials at each point!
- h may not even be a vector, but second- or higher-order tensor.
- It does not matter, as the tensors themselves are in a Euclidean space that define magnitude and direction as a result of the embedded inner product.
- The Gateaux differential is a one-dimensional calculation along a specified direction \mathbf{h}. Because it's one-dimensional, you can use ordinary one-dimensional calculus to compute it. Product rules and other constructs for the differentiation in real domains apply.

