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« “We do not fuss over smoothness assumptions: Functions and
boundaries of regions are presumed to have continuity and
differentiability properties sufficient to make meaningful
underlying analysis...” Morton Gurtin, et al.
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Scope of Lecture

» The issues we shall cover in today’s
lecture are not hard to understand.
They are fundamental to all tensor
analysis.

» Be careful to note any area of
difficulty. If you are specific, you
can be assisted.

* We introduce the Gateaux
differential as the solution to our
inability to divide by tensors when
we want to define a derivative
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» We are already familiar with the techniques of
differentiation of scalar-valued functions with
respect to scalar arguments. These objects are
defined in scalar domains. Here,

Differentiation “heR

» The derivative, f'(x), of the function, f:R - R, is

& La I‘ge defined as,
Objects Fle+ 1) = £

o = =y

pose no problems as division by scalars is well-
defined.
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Large Objects: Scalar Arguments

« Things become more complex when we handle tensors.

« A second-order tensor, contains nine scalars.
A vector - a first-order tensor — three scalar members.

« The complication does not arise from the size of the objects themselves.

» Derivation of tensor objects with respect to scalar domains, with some
adjustments, basically conforms to the same rules as the above derivation of
scalars:

» Division of a tensor by a scalar is accomplished by multiplying the tensor by the
inverse of the scalar.

» This operation is defined in all vector spaces to which our vectors and tensors
belong.
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» Consequently, the derivative of the tensor T(t), with respect to a
scalar argument, such as time, for example, can be defined as,

d v thy o R
= O I . h
— }lli_r)r(l)ﬁ WEIOIENG)

* The product of the scalar, % and the difference of tensors is a tensor.

Hence the derivative of a vector (or tensor) with respect to a scalar
is a vector (tensor).

Large (Tensor) Objects:
Scalar Arguments
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Large Objects: Scalar Arguments

» If a(t) € R, and tensor, T(t) € IL are both functions of time t € R, we find,
a(t + )T+ h) — a(t)T(t)

d
a(aT) = lim

h—0 h
_ i QAT+ R) —a@OTE+ D) + a(@OT( +h) —a(OTE)
7 h—0 .

_at+RTE+h) —a@®T(E+h)  al(®OT(+h) —a®)T(t)
= lim + lim

h—-0 h lim .
— <}li_r>% a(t + h})l — a(t)) (}li_r)% (¢ + h)) o }li_r)r(l) T(t + h})l 0
. 91 do
. d_ (C( ) aE + d_
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Large Objects: Scalar Arguments

* Proceeding in a similar fashion, for a(t) €
R,u(t),v(t) € E,and S(t), T(t) € L, all being
functions of a scalar variable t, the results in the
following table hold as expected.

« The Simple Rule, when obeyed, allows us to gain
proficiency and transfer scalar knowledge to
tensors:

* Don’t be fooled by the symbols! They are
overloaded. You are no longer in Real Scalar
Space! You are in the Euclidean Vector Space.
Rules are different!

You
Are!

Where

Remember
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Expression Note

d () = du N da Each term on the RHS retains the commutative property of multiplication by a
R TINT: scalar.
d du dv Slide 10.6 tells that the derivative of a vector is a vector. Each term on the RHS
—-v)=—-v+u-— B
dt dt dt retains the commutative property of the scalar product ‘
d du dv Original product order must be maintained
—(UXV)=—XV+uX—
dt d dt m
d ( ) = du dv Original product order must be maintained a
M@V =g @viud g Puzzle:
Given that, A, B, C € L; what is wrong with
d dT dS Sum of tensors < (A:B:C)? Can you find, - (ABC)?
—(T+8) =—+— d < (AB1
dt dt dt —(A+B+0?_(AB™)?
d dT ds Product of tensors. Not commutative! Note that we must maintain the order of m
AT as _ as
the product as shown. T—#—T E
O O o O Scalar Product of tensors. Commutative; Order is not important T:% = %:T
ac " dt’ dt m
d dT  da Order is not important in multiplication by a scalar.
— @) =a—+—
dt dt dt
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Examples: One
Constancy of the Identity Tensor

dl
ar
 From Slide 10.6, we recognize the fact that the derivative of the tensor

with respect to a scalar must give a tensor. The value here is the
annihilator or Zero tensor, O.

 This fact that the Identity Tensor does not change, and has a Zero
derivative, leads to important results.

* We look at some of these as our first example.

0.
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Constancy of the ldentity: Inverses 11

* For any invertible tensor valued scalar
function, S(t), we differentiate the
equation, S~1(t)S(t) = I to obtain,

ot Joid
dt dt
as—1 ds

= — 5 gl
dt dt
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... if we post-multiply both sides by S~1, the
following important expression results for the
derivative of the inverse tensor with respect to a
scalar parameter, in terms of the derivative of the
original tensor function:

—1
ds _ —1@5—1
dt dt
Conversely,
a5  ds
ar dt
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Constancy of the ldentity: Orthogonal Tensors 12

« An orthogonal tensor as well as its transpose Q is orthogonal, therefore,

can each be functions of a scalar parameter. QQT =1
d dQ dQT dl
QOQT(®) =1 RE 00 -
 One consequence of this relationship is that Consequently,
the tensor valued function, T
Q 7 A dQ T
@ e
Q( ) T What is a skew tensor?
Q) =——Q (t)

So we have that the tensor Q = EQT is negative

of the same scalar parameter must be skew. of its own transpose, hence it is skew.

» This is a consequence of differentiating the
identity:
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Constancy of the Identity:
Angular Velocity

—

e Consider arigid body fixed at one end O — for example,
the spinning top shown. It is given a rotation R(t) from
rest so that each point P is at a position vector r(t) at a
time t, related to the original position r, by the equation,

r(t) = R(t)r,

* We can find the velocity by differentiating the position
vector,

dr dR dR
= = 7
= = i

spin,
precession,
nutation
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* And the rotation is an orthogonal tensor, hence its inverse is its transpose,

so that,
. dr _ dR g
-
* And,  as we have seen above, is a skew tensor hence it is associated with
an axial vector such that (@w X) = Q. From this fact we can see that every
point in the body has an angular velocity, w, such that,

V= o Xr
. . . . dR .
* w, defined by this expression, the axial vector of the i RT where R(t) is
the rotation function, is called the angular velocity.

Constancy of the ldentity:
Angular Velocity 14
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Examples: Two
Magnitude, Other Scalars

« We saw in the previous chapter that the
tensor belongs to its own Euclidean
vector space which is equipped with a
scalar product

» consequently, 3 a scalar magnitude: V A € L,

IA|l = VA:A = \/tr (AAT) = /tr (ATA)

« Consider the magnitude of a scalar
(time, for example) dependent tensor,

b(t) = JAD:AQ = ||AQD)||
* so that, 2 = A:A.
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Differentiating this scalar equation, and
remembering that the scalar operand here
is just a product, we have,
£¢2 =2 d¢_dA.A+A.d_A_2d_A.A
a ¢dt_‘dt' a4 dt
This simplifies to |

dd) . d Why could we do this?
o Ilt‘l\(t)ll s
t
- <||A(t)||) o
. dA(t)_ A(t)
0
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Examples: Three

Tensor Invariants, The Trace

To obtain the derivative of the trace of a

tensor, take the trace of the differentiated

tensor.

e Trace is a linear operator. It follows
immediately that

th—tdA
7

» To differentiate the trace of A(t), t € R, we
select three linearly independent, constant
a,b, c € E, we can write,
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dI(A) th
a0

T dt [a,b, ]

b o

abc]

d ([Aa, b,c] + [a,Ab, c] + [a, b, Ac])

_ i
-

Posers:

Is addition a linear operation? Derivative of a sum equals sum of
derivatives?
Is multiplication a linear operation? Derivative of a product,

product of derivatives? Sunday, October 13, 2019



Examples: Three
Tensor Invariants, Trace of the Cofactor

« The second invariant is NOT a * Not a very useful quantity.

linear scalar valued function of
its tensor argument. However, we * The derivative of the third

have the expression, invariant with respect to a
A® = A TdetA scalar argument is of
= oA — (A decA) momentous importance.
 Differentiating with respect to t,
d d |t is the basis of Liouville’s

. C . =T
tr A tr T (A detA)

dt theorem and is fundamental to

the study of continuum flow in
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Examples: Three

Tensor Invariants, The Determinant 18

e The third invariant is not a linear function of

an ] dA .
its tensor argument. = EA Aa,Ab,Ac| + Aa'EA Ab, Ac
o maag ' '
. +-A ab,“2 a-1ac
a, Ab,— C
* sothat, [a,b,c]detA = [Aa, Ab, Ac]. _ dt |

Differentiating, we have,
dA
=tr |— A~ |[Aa, Ab, Ac]

d
[a, b, c] i detA dt
d dA . _
Z d_Aa,Ab,Ac 1 Aa,d_Ab,Ac i Aa,Ab,d_Ac So that, —detA = tr (—A 1) detA . A momentous
dt dt dt dt dt

theorem — Liouville’s Theorem
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Vector & Tensor Arguments
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 When the domain of differentiation itself is a made up of large objects, the task of
differentiation becomes more demanding. Such problems are standard in Continuum
Mechanics. Examples:

» Strain Energy function is a scalar, yet we can obtain the strains from it by
differentiating with respect to the stress.

» We are dealing there with the differentiation of a scalar function of a
Why is this a tensor? tensor: stress.

» Velocity Gradient. Here, we are differentiating a vector field defined on the
Euclidean point space, &, with respect to the position vector of the points in £.

"

>

"

* In these and several other derivatives of interest, the domains are no longer in the
real scalar space.
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Vector & Tensor Arguments !ERROR!

« When we are in a vector domain,
X, h eE

* The derivative, F'(x), of the function, F:E — E, is not properly
defined as,

F(x+h) — F(x)

h

creates several problems. For example, (1) division by vectors is not
defined, and (2) there are many ways h — o can be achieved.
Similar problems arise when the argument is a tensor: H - O .

F'(x) = llll_r)r(l)
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Vector & Tensor Arguments

» The approach to this challenge is twofold:

» Recognize that the vectors and tensors live in their respective Euclidean
VECTOR spaces where the concept of length is already defined.

» Use the above to extend the concept of directional derivative to include the
derivative of any object from a given Euclidean space with respect to objects
from another.

» Such a generalization is in the Gateaux differential. Consider a map,
F.V-W

* This maps from the domain V to W both of which are Euclidean vector spaces. The
concepts of limit and continuity carries naturally from the real space to any
Euclidean vector space.

www.oafak.com; eds.s2pafrica.org; oafak@unilag.edu.ng Sunday, October 13, 2019

21



Vector & Tensor Arguments

 letvy €V and w, € W, as usual we can say that the limit
lim F(v) = w,
V- Vo
« if for any pre-assigned real number ¢ > 0, no matter how small,
we can always find a real number § > 0 such that |F(v) —wy| < ¢
whenever |v — vy| < §. The function is said to be continuous at v,
if F(v,) exists and F(v,) = wy
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» Specifically, for a € R let this map be:
 Fx+ah)—-F(x) d
DF(x,h) = lim = —F(x + ah)
a—0 (04 da

a=0
» We focus attention on the second variable h while we allow the
dependency on x to be as general as possible. We shall show that
while the above function can be any given function of x (linear or
nonlinear), the above map is always linear in h irrespective of what
kind of Euclidean space we are mapping from or into. It is called the
Gateaux Differential.

The -ate ux Differential 23
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Proof of Second Equation Term

» The second equation above is not
obvious. It can be shown by
remembering the scalar formula for

derivative and treat
¢(a) = F(x + ah)

as a scalar function. We do that here as
follows:
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dp(a) o ¢(a + Aa) — ¢p(a)
da  Aa—0 Aa

Let ¢p(a) = F(x + ah). Substituting, we have,
dp(a) . F(x+ (¢ + Aa)h) — F(x + ah)

da 7 ACIZII}O Aa
so that,
d F(x + Aah) — F
—F(x + ah) = lim o Y &)
da | a Aa
F(x + fh) — F(x)
= lim
p-0 I
= DF(x,h).
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Real functions in Real Domains.

» Let us make the Gateaux differential a little more familiar in real space in two
steps: First, we move to the real space and allow h —» dx and we obtain,
F(x + adx) — F(x)  d

DF (x,dx) = lir% " 7 F(x + adx)
a—

a=0
 And let adx —» Ax, the middle term becomes,

 F(x+ Ax) — F(x) dF
lim dx = —dx
Ax—0 Ax dx

« from which it is obvious that the Gateaux derivative is a generalization of the well-
known differential from elementary calculus. The Gateaux differential helps to
compute a local linear approximation of any function (linear or nonlinear).
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Linearity

» Gateaux differential is linear in its second argument, i.e., fora € R,
DF(x,ah) = aDF(x,h)

e Furthermore,
F(x + a(g + h)) — F(x)

DF(x,g+ h) = (lxirr(l)

a
. F(x + a(g + h)) —Fx+ ag) + Fx+ ag) — F(x)
o a
F(y+ah)—F(y) = F(x+ag) —FX)
= lim + lim
a—0 (04 a—0 (04

= DF(x,h) + DF(x,g)

as the variabley = x+ ag - xas a — 0; For a, b € R, using similar arguments, we can

also show that,
DF(x,ag + bh) = aDF(x,g) + bDF(x, h)
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Points to Note:

« The Gateaux differential is not unique to the point of evaluation.

» Rather, at each point x there is a Gateaux differential for each “vector” h. If the domain
is a vector space, then we have a Gateaux differential for each of the infinitely many
directions at each point. In two of more dimensions, there are infinitely many Gateaux
differentials at each point!

* h may not even be a vector, but second- or higher-order tensor.

» It does not matter, as the tensors themselves are in a Euclidean space that define
magnitude and direction as a result of the embedded inner product.

« The Gateaux differential is a one-dimensional calculation along a specified
direction h. Because it’s one-dimensional, you can use ordinary one-dimensional
calculus to compute it. Product rules and other constructs for the
differentiation in real domains apply.
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