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• “We do not fuss over smoothness assumptions: Functions and 
boundaries of regions are presumed to have continuity and 
differentiability properties sufficient to make meaningful 
underlying analysis…” Morton Gurtin, et al.
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Scope of Lecture

• The issues we shall cover in today’s 
lecture are not hard to understand. 
They are fundamental to all tensor 
analysis.

• Be careful to note any area of 
difficulty. If you are specific, you 
can be assisted. 

• We introduce the Gateaux 
differential as the solution to our 
inability to divide by tensors when 
we want to define a derivative 
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Differentiation 
& Large 
Objects

Sunday, October 13, 2019

• We are already familiar with the techniques of 
differentiation of scalar-valued functions with 
respect to scalar arguments. These objects are 
defined in scalar domains. Here, 

𝑥, ℎ ∈ ℝ

• The derivative, 𝑓′ 𝑥 , of the function, 𝑓:ℝ → ℝ, is 
defined as,

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ

pose no problems as division by scalars is well-
defined.
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Large Objects: Scalar Arguments

• Things become more complex when we handle tensors. 

• A second-order tensor, contains nine scalars. 

• A vector – a first-order tensor → three scalar members. 

• The complication does not arise from the size of the objects themselves. 

• Derivation of tensor objects with respect to scalar domains, with some 
adjustments, basically conforms to the same rules as the above derivation of 
scalars:

• Division of a tensor by a scalar is accomplished by multiplying the tensor by the 
inverse of the scalar. 

• This operation is defined in all vector spaces to which our vectors and tensors 
belong. 
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• Consequently, the derivative of the tensor 𝐓 𝑡 , with respect to a 
scalar argument, such as time, for example, can be defined as,

𝑑

𝑑𝑡
𝐓 𝑡 = lim

ℎ→0

𝐓 𝑡 + ℎ − 𝐓 𝑡

ℎ

≡ lim
ℎ→0

1

ℎ
𝐓 𝑡 + ℎ − 𝐓 𝑡

• The product of the scalar, 
1

ℎ
and the difference of tensors is a tensor. 

Hence the derivative of a vector (or tensor) with respect to a scalar 
is a vector (tensor).

Large (Tensor) Objects: 
Scalar Arguments 6
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Large Objects: Scalar Arguments

• If 𝛼 𝑡 ∈ ℝ, and tensor, 𝐓(𝑡) ∈ 𝕃 are both functions of time 𝑡 ∈ ℝ, we find, 

𝑑

𝑑𝑡
𝛼𝐓 = lim

ℎ→0

𝛼 𝑡 + ℎ 𝐓 𝑡 + ℎ − 𝛼 𝑡 𝐓 𝑡

ℎ

= lim
ℎ→0

𝛼 𝑡 + ℎ 𝐓 𝑡 + ℎ − 𝛼 𝑡 𝐓 𝑡 + ℎ + 𝛼 𝑡 𝐓 𝑡 + ℎ − 𝛼 𝑡 𝐓 𝑡

ℎ

= lim
ℎ→0

𝛼 𝑡 + ℎ 𝐓 𝑡 + ℎ − 𝛼 𝑡 𝐓 𝑡 + ℎ

ℎ
+ lim

ℎ→0

𝛼 𝑡 𝐓 𝑡 + ℎ − 𝛼 𝑡 𝐓 𝑡

ℎ

= lim
ℎ→0

𝛼 𝑡 + ℎ − 𝛼 𝑡

ℎ
lim
ℎ→0

𝐓 𝑡 + ℎ + 𝛼 𝑡 lim
ℎ→0

𝐓 𝑡 + ℎ − 𝐓 𝑡

ℎ

=
𝑑

𝑑𝑡
𝛼𝐓 = 𝛼

𝑑𝐓

𝑑𝑡
+
𝑑𝛼

𝑑𝑡
𝐓
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Large Objects: Scalar Arguments

• Proceeding in a similar fashion, for 𝛼(𝑡) ∈
ℝ, 𝐮(𝑡), 𝐯(𝑡) ∈ 𝔼, and 𝐒(𝑡), 𝐓(𝑡) ∈ 𝕃, all being 
functions of a scalar variable 𝑡, the results in the 
following table hold as expected.

• The Simple Rule, when obeyed, allows us to gain 
proficiency and transfer scalar knowledge to 
tensors: 

• Don’t be fooled by the symbols! They are 
overloaded. You are no longer in Real Scalar 
Space! You are in the Euclidean Vector Space. 
Rules are different!
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Expression Note

𝑑

𝑑𝑡
𝛼𝐮 = 𝛼

𝑑𝐮

𝑑𝑡
+
𝑑𝛼

𝑑𝑡
𝐮

Each term on the RHS retains the commutative property of multiplication by a

scalar.

𝑑

𝑑𝑡
𝐮 ⋅ 𝐯 =

𝑑𝐮

𝑑𝑡
⋅ 𝐯 + 𝐮 ⋅

𝑑𝐯

𝑑𝑡

Slide 10.6 tells that the derivative of a vector is a vector. Each term on the RHS

retains the commutative property of the scalar product

𝑑

𝑑𝑡
𝐮 × 𝐯 =

𝑑𝐮

𝑑𝑡
× 𝐯 + 𝐮 ×

𝑑𝐯

𝑑𝑡

Original product order must be maintained

𝑑

𝑑𝑡
𝐮⊗ 𝐯 =

𝑑𝐮

𝑑𝑡
⊗ 𝐯 + 𝐮⊗

𝑑𝐯

𝑑𝑡

Original product order must be maintained

𝑑

𝑑𝑡
𝐓 + 𝐒 =

𝑑𝐓

𝑑𝑡
+
𝑑𝐒

𝑑𝑡

Sum of tensors

𝑑

𝑑𝑡
𝐓𝐒 =

𝑑𝐓

𝑑𝑡
𝐒 + 𝐓

𝑑𝐒

𝑑𝑡

Product of tensors. Not commutative! Note that we must maintain the order of

the product as shown. 𝐓
𝑑𝐒

𝑑𝑡
≠

𝑑𝐒

𝑑𝑡
𝐓

𝑑

𝑑𝑡
𝐓: 𝐒 =

𝑑𝐓

𝑑𝑡
: 𝐒 + 𝐓:

𝑑𝐒

𝑑𝑡

Scalar Product of tensors. Commutative; Order is not important 𝐓:
𝑑𝐒

𝑑𝑡
=

𝑑𝐒

𝑑𝑡
: 𝐓

𝑑

𝑑𝑡
𝛼𝐓 = 𝛼

𝑑𝐓

𝑑𝑡
+
𝑑𝛼

𝑑𝑡
𝐓

Order is not important in multiplication by a scalar.
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Puzzle: 
Given that, 𝐀, 𝐁, 𝐂 ∈ 𝕃; what is wrong with 
𝑑

𝑑𝑡
𝐀:𝐁: 𝐂 ? Can you find, 

𝑑

𝑑𝑡
𝐀𝐁𝐂 ? 

𝑑

𝑑𝑡
𝐀 + 𝐁 + 𝐂 ?

𝑑

𝑑𝑡
𝐀𝐁−1 ?

R
e
m
e
m
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Examples: One 
Constancy of the Identity Tensor

𝑑𝐈

𝑑𝑡
= 𝐎.

• From Slide 10.6, we recognize the fact that the derivative of the tensor 
with respect to a scalar must give a tensor. The value here is the 
annihilator or Zero tensor, 𝐎.

• This fact that the Identity Tensor does not change, and has a Zero 
derivative, leads to important results. 

• We look at some of these as our first example.
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Constancy of the Identity: Inverses

• For any invertible tensor valued scalar 
function, 𝐒 𝑡 , we differentiate the 
equation, 𝐒−𝟏 𝑡 𝐒 𝑡 = 𝐈 to obtain,

𝑑𝐒−𝟏

𝑑𝑡
𝐒 + 𝐒−𝟏

𝑑𝐒

𝑑𝑡
= 𝐎

⇒
𝑑𝐒−𝟏

𝑑𝑡
= −𝐒−𝟏

𝑑𝐒

𝑑𝑡
𝐒−𝟏
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… if we post-multiply both sides by 𝐒−𝟏, the 

following important expression results for the 

derivative of the inverse tensor with respect to a 

scalar parameter, in terms of the derivative of the 

original tensor function:

𝑑𝐒−𝟏

𝑑𝑡
= −𝐒−𝟏

𝑑𝐒

𝑑𝑡
𝐒−𝟏

Conversely,

𝑑𝐒

𝑑𝑡
= −𝐒

𝑑𝐒−𝟏

𝑑𝑡
𝐒



Constancy of the Identity: Orthogonal Tensors

• An orthogonal tensor as well as its transpose 
can each be functions of a scalar parameter.

𝐐 𝑡 𝐐T 𝑡 = 𝐈

• One consequence of this relationship is that 
the tensor valued function,

𝛀 𝑡 ≡
𝑑𝐐 𝑡

𝑑𝑡
𝐐T 𝑡

of the same scalar parameter must be skew. 

• This is a consequence of differentiating the 
identity:
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𝐐 is orthogonal, therefore, 

𝐐𝐐T = 𝐈
𝑑

𝑑𝑡
𝐐𝐐T =

𝑑𝐐

𝑑𝑡
𝐐T + 𝐐

𝑑𝐐T

𝑑𝑡
=
𝑑𝐈

𝑑𝑡
= 𝐎

Consequently,

𝑑𝐐

𝑑𝑡
𝐐T = −𝐐

𝑑𝐐T

𝑑𝑡
= −

𝑑𝐐

𝑑𝑡
𝐐T

T

So we have that the tensor 𝛀 =
𝑑𝐐

𝑑𝑡
𝐐T is negative 

of its own transpose, hence it is skew.

What is a skew tensor?



Constancy of the Identity: 
Angular Velocity

• Consider a rigid body fixed at one end 𝐎 – for example, 
the spinning top shown. It is given a rotation 𝐑 𝑡 from 
rest so that each point 𝐏 is at a position vector 𝐫(𝑡) at a 
time 𝑡, related to the original position 𝐫𝑜 by the equation,

𝐫 𝑡 = 𝐑 𝑡 𝐫𝑜

• We can find the velocity by differentiating the position 
vector,

𝑑𝐫

𝑑𝑡
=
𝑑𝐑
𝑑𝑡

𝐫𝑜 =
𝑑𝐑
𝑑𝑡
𝐑−1𝐫
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nutation



• And the rotation is an orthogonal tensor, hence its inverse is its transpose, 
so that,

𝐯 =
𝑑𝐫

𝑑𝑡
=
𝑑𝐑

𝑑𝑡
𝐑T𝐫 = 𝛀𝐫

• And, 𝛀 as we have seen above, is a skew tensor hence it is associated with 
an axial vector such that 𝛚× = 𝛀. From this fact we can see that every 
point in the body has an angular velocity, 𝛚, such that,

𝐯 = 𝛚 × 𝐫

• 𝛚, defined by this expression, the axial vector of the 
𝑑𝐑

𝑑𝑡
𝐑T where 𝐑 𝑡 is 

the rotation function, is called the angular velocity.

Constancy of the Identity: 
Angular Velocity 14
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Examples: Two 
Magnitude, Other Scalars

• We saw in the previous chapter that the 
tensor belongs to its own Euclidean 
vector space which is equipped with a 
scalar product

• consequently, ∃ a scalar magnitude: ∀ 𝐀 ∈ 𝕃,

𝐀 ≡ 𝐀:𝐀 = tr 𝐀𝐀T = tr 𝐀T𝐀

• Consider the magnitude of a scalar 
(time, for example) dependent tensor,

𝜙 𝑡 = 𝐀 𝑡 :𝐀 𝑡 = 𝐀 𝑡

• so that, 𝜙2 = 𝐀:𝐀. 
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Differentiating this scalar equation, and 

remembering that the scalar operand here 

is just a product, we have,
𝑑

𝑑𝑡
𝜙2 = 2𝜙

𝑑𝜙

𝑑𝑡
=
𝑑𝐀

𝑑𝑡
: 𝐀 + 𝐀:

𝑑𝐀

𝑑𝑡
= 2

𝑑𝐀

𝑑𝑡
: 𝐀.

This simplifies to
𝑑𝜙

𝑑𝑡
=

𝑑

𝑑𝑡
𝐀 𝑡

=
1

𝐀 𝑡

𝑑𝐀 𝑡

𝑑𝑡
: 𝐀 𝑡

=
𝑑𝐀 𝑡

𝑑𝑡
:
𝐀 𝑡

𝐀 𝑡

Why could we do this?



Examples: Three 
Tensor Invariants, The Trace

To obtain the derivative of the trace of a 

tensor, take the trace of the differentiated 
tensor.

• Trace is a linear operator. It follows 
immediately that

𝑑

𝑑𝑡
tr 𝐀 = tr

𝑑𝐀

𝑑𝑡
• To differentiate the trace of 𝐀(𝑡), 𝑡 ∈ ℝ, we 

select three linearly independent, constant  
𝐚, 𝐛, 𝐜 ∈ 𝔼, we can write,
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𝑑

𝑑𝑡
𝐼1 𝐀 =

𝑑

𝑑𝑡
tr 𝐀

=
𝑑

𝑑𝑡

𝐀𝐚, 𝐛, 𝐜 + 𝐚, 𝐀𝐛, 𝐜 + 𝐚, 𝐛, 𝐀𝐜

𝐚, 𝐛, 𝐜

=

𝑑𝐀
𝑑𝑡

𝐚, 𝐛, 𝐜 + 𝐚,
𝑑𝐀
𝑑𝑡

𝐛, 𝐜 + 𝐚, 𝐛,
𝑑𝐀
𝑑𝑡

𝐜

𝐚, 𝐛, 𝐜

= tr
𝑑𝐀

𝑑𝑡
Posers:
• Is addition a linear operation? Derivative of a sum equals sum of 

derivatives? 

• Is multiplication a linear operation? Derivative of a product, 

product of derivatives? 



Examples: Three 
Tensor Invariants, Trace of the Cofactor

• The second invariant is NOT a 
linear scalar valued function of 
its tensor argument. However, we 
have the expression,

𝐀c = 𝐀−T det 𝐀
⇒ tr 𝐀c = tr 𝐀−T det 𝐀

• Differentiating with respect to 𝑡, 
𝑑

𝑑𝑡
tr 𝐀c = tr

𝑑

𝑑𝑡
𝐀−T det 𝐀
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• Not a very useful quantity. 

• The derivative of the third 

invariant with respect to a 

scalar argument is of 

momentous importance.

• It is the basis of Liouville’s

theorem and is fundamental to 

the study of continuum flow in 

general.



Examples: Three 
Tensor Invariants, The Determinant

• The third invariant is not a linear function of 

its tensor argument. 

𝐼3 𝐀 =
𝐀𝐚, 𝐀𝐛, 𝐀𝐜

𝐚, 𝐛, 𝐜
= det𝐀

• so that, 𝐚, 𝐛, 𝐜 det 𝐀 = 𝐀𝐚, 𝐀𝐛, 𝐀𝐜 . 

Differentiating, we have,

𝐚, 𝐛, 𝐜
𝑑

𝑑𝑡
det 𝐀

=
𝑑𝐀

𝑑𝑡
𝐚, 𝐀𝐛, 𝐀𝐜 + 𝐀𝐚,

𝑑𝐀

𝑑𝑡
𝐛, 𝐀𝐜 + 𝐀𝐚, 𝐀𝐛,

𝑑𝐀

𝑑𝑡
𝐜
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=
𝑑𝐀

𝑑𝑡
𝐀−1𝐀𝐚,𝐀𝐛, 𝐀𝐜 + 𝐀𝐚,

𝑑𝐀

𝑑𝑡
𝐀−1𝐀𝐛,𝐀𝐜

+ 𝐀𝐚, 𝐀𝐛,
𝑑𝐀

𝑑𝑡
𝐀−1𝐀𝐜

= tr
𝑑𝐀

𝑑𝑡
𝐀−1 𝐀𝐚, 𝐀𝐛, 𝐀𝐜

So that,
𝑑

𝑑𝑡
det 𝐀 = tr

𝑑𝐀

𝑑𝑡
𝐀−1 det 𝐀 . A momentous

theorem – Liouville’s Theorem



Vector & Tensor Arguments 19

• When the domain of differentiation itself is a made up of large objects, the task of 
differentiation becomes more demanding. Such problems are standard in Continuum 
Mechanics. Examples:

• Strain Energy function is a scalar, yet we can obtain the strains from it by 
differentiating with respect to the stress. 

• We are dealing there with the differentiation of a scalar function of a 
tensor: stress. 

• Velocity Gradient. Here, we are differentiating a vector field defined on the 
Euclidean point space, ℰ, with respect to the position vector of the points in ℰ. 

• In these and several other derivatives of interest, the domains are no longer in the 
real scalar space. 
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Vector & Tensor Arguments !ERROR!

• When we are in a vector domain,  
𝐱, 𝐡 ∈ 𝔼

• The derivative, 𝐅′ 𝐱 , of the function, 𝐅: 𝔼 → 𝔼, is not properly 
defined as,

𝐅′ 𝐱 = lim
𝐡→𝐨

𝐅 𝐱 + 𝐡 − 𝐅 𝐱

𝐡
creates several problems. For example, (1) division by vectors is not 
defined, and (2) there are many ways 𝐡 → 𝐨 can be achieved. 
Similar problems arise when the argument is a tensor: 𝐇 → 𝐎 .
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Vector & Tensor Arguments

• The approach to this challenge is twofold:

• Recognize that the vectors and tensors live in their respective Euclidean 
VECTOR spaces where the concept of length is already defined.

• Use the above to extend the concept of directional derivative to include the 
derivative of any object from a given Euclidean space with respect to objects 
from another. 

• Such a generalization is in the Gateaux differential. Consider a map,
𝐅:𝕍 →𝕎

• This maps from the domain 𝕍 to 𝕎 both of which are Euclidean vector spaces. The 
concepts of limit and continuity carries naturally from the real space to any 
Euclidean vector space. 

21
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Vector & Tensor Arguments

• Let 𝐯0 ∈ 𝕍 and 𝐰0 ∈ 𝕎, as usual we can say that the limit
lim
𝐯→ 𝐯𝟎

𝐅 𝐯 = 𝐰0

• if for any pre-assigned real number 𝜖 > 0, no matter how small, 
we can always find a real number 𝛿 > 0 such that 𝐅 𝐯 −𝐰0 ≤ 𝜖
whenever 𝐯 − 𝐯0 < 𝛿. The function is said to be continuous at 𝐯0
if 𝐅 𝐯0 exists and 𝐅 𝐯0 = 𝐰0
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• Specifically, for 𝛼 ∈ ℝ let this map be:

𝐷𝐅 𝐱, 𝐡 ≡ lim
𝛼→0

𝐅 𝐱 + 𝛼𝐡 − 𝐅 𝐱

𝛼
= ቤ

𝑑

𝑑𝛼
𝐅 𝐱 + 𝛼𝐡

𝛼=0

• We focus attention on the second variable 𝐡 while we allow the 
dependency on 𝐱 to be as general as possible. We shall show that 
while the above function can be any given function of 𝐱 (linear or 
nonlinear), the above map is always linear in 𝐡 irrespective of what 
kind of Euclidean space we are mapping from or into. It is called the 
Gateaux Differential. 

The Gateaux Differential 23
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Proof of Second Equation Term

• The second equation above is not 

obvious. It can be shown by 

remembering the scalar formula for 

derivative and treat 
𝜙 𝛼 ≡ 𝐅 𝐱 + 𝛼𝐡

as a scalar function. We do that here as 

follows:

𝑑𝜙 𝛼

𝑑𝛼
= lim

Δ𝛼→0

𝜙 𝛼 + Δ𝛼 − 𝜙 𝛼

Δ𝛼

Let 𝜙 𝛼 ≡ 𝐅 𝐱 + 𝛼𝐡 . Substituting, we have,
𝑑𝜙 𝛼

𝑑𝛼
= lim

Δ𝛼→0

𝐅 𝐱 + 𝛼 + Δ𝛼 𝐡 − 𝐅 𝐱 + 𝛼𝐡

Δ𝛼

so that,

ቤ
𝑑

𝑑𝛼
𝐅 𝐱 + 𝛼𝐡

𝛼=0

= lim
Δ𝛼→0

𝐅 𝐱 + Δ𝛼𝐡 − 𝐅 𝐱

Δ𝛼

= lim
𝛽→0

𝐅 𝐱 + 𝛽𝐡 − 𝐅 𝐱

𝛽
= 𝐷𝐅 𝐱, 𝐡 .
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Real functions in Real Domains.

• Let us make the Gateaux differential a little more familiar in real space in two 

steps: First, we move to the real space and allow ℎ → 𝑑𝑥 and we obtain,

𝐷𝐹(𝑥, 𝑑𝑥) = lim
𝛼→0

𝐹 𝑥 + 𝛼𝑑𝑥 − 𝐹 𝑥

𝛼
= ቤ

𝑑

𝑑𝛼
𝐹 𝑥 + 𝛼𝑑𝑥

𝛼=0

• And let 𝛼𝑑𝑥 → Δ𝑥, the middle term becomes,

lim
Δ𝑥→0

𝐹 𝑥 + Δ𝑥 − 𝐹 𝑥

Δ𝑥
𝑑𝑥 =

𝑑𝐹

𝑑𝑥
𝑑𝑥

• from which it is obvious that the Gateaux derivative is a generalization of the well-

known differential from elementary calculus. The Gateaux differential helps to 

compute a local linear approximation of any function (linear or nonlinear). 
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Linearity

• Gateaux differential is linear in its second argument, i.e., for 𝑎 ∈ ℝ, 
𝐷𝐅 𝐱, 𝑎𝐡 = 𝑎𝐷𝐅 𝐱, 𝐡

• Furthermore, 

𝐷𝐅 𝐱, 𝐠 + 𝐡 = lim
𝛼→0

𝐅 𝐱 + 𝛼 𝐠 + 𝐡 − 𝐅 𝐱

𝛼

= lim
𝛼→0

𝐅 𝐱 + 𝛼 𝐠 + 𝐡 − 𝐅 𝐱 + 𝛼𝐠 + 𝐅 𝐱 + 𝛼𝐠 − 𝐅 𝐱

𝛼

= lim
𝛼→0

𝐅 𝐲 + 𝛼𝐡 − 𝐅 𝐲

𝛼
+ lim

𝛼→0

𝐅 𝐱 + 𝛼𝐠 − 𝐅 𝐱

𝛼
= 𝐷𝐅 𝐱, 𝐡 + 𝐷𝐅 𝐱, 𝐠

as the variable 𝐲 ≡ 𝐱 + 𝛼𝐠 → 𝐱 as 𝛼 → 0; For 𝑎, 𝑏 ∈ ℝ, using similar arguments, we can 

also show that, 
𝐷𝐅 𝐱, 𝑎𝐠 + 𝑏𝐡 = 𝑎𝐷𝐅 𝐱, 𝐠 + 𝑏𝐷𝐅 𝐱, 𝐡
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Points to Note: 

• The Gateaux differential is not unique to the point of evaluation. 

• Rather, at each point 𝐱 there is a Gateaux differential for each “vector” 𝐡. If the domain 
is a vector space, then we have a Gateaux differential for each of the infinitely many 
directions at each point. In two of more dimensions, there are infinitely many Gateaux 
differentials at each point! 

• 𝐡 may not even be a vector, but second- or higher-order tensor. 

• It does not matter, as the tensors themselves are in a Euclidean space that define 
magnitude and direction as a result of the embedded inner product.

• The Gateaux differential is a one-dimensional calculation along a specified 
direction 𝐡. Because it’s one-dimensional, you can use ordinary one-dimensional 
calculus to compute it. Product rules and other constructs for the 
differentiation in real domains apply.
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