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Scope 2

• Continues development of the Deformation 
Gradient and defines Strain, Strain 
Functions

• Convergence of these when strain is small

• Simple examples
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What is Strain? 3
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Strain is a well-known word, 
albeit, much misunderstood. 

Dictionaries, encyclopedias, etc. 
attempt to define strain. From our 
technical perspective, where we 

are quite specific in what we 
mean, they are usually wrong!

Strain is not just deformation. 
Deformation can be perceived in 
movement of material particles. 

Not all these movements 
constitute strain. 

Two fundamental issues come up in 
properly defining strain: Relativity 
in the movement, and exclusion of 

wholesale movements. 



What is Strain? 4
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Many, with a technical flair begin to talk about forces, 
stresses in conjunction with strain. This, it is argued, is 
because stress is accompanied by strain and vice, versa!

It is possible to create stress without strain. It is also 
possible to create strain without stress. It is NOT true that 
both are always complimentary!

Strain is a purely GEOMETRICAL concept, created to uniquely 
quantify shape changes in a material. Consequently, strain in 
two different materials can be caused by vastly different 
force or stress systems due to the material constitution.



Strain: Definition
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• If the length of a small, arbitrary line 
element in the referential state remains 
unchanged in its spatial image, and if 
the angle between two line elements in 
the referential state remains the same 
in their spatial images, then the body is 
unstrained. 

• Otherwise, the body is strained.

• Strain is a way to measure these 
changes unambiguously.
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The Strain 
Function: 

Measuring 
Shape Changes

Monday, February 10, 2020

Strain is our attempt to quantify relative displacements 
and changes in orientations of material elements as a 
result of the deformation. Wholesale movements of the 
entire element itself, by rotation, translation or a 
combination of both do not qualify as strain. We call such 
transformations Rigid Body Motions. Examples are: 

1. Rotation: of all material points in the element about an 
axis

2. Translation: of all the material element by the same 
amount in a given direction.

Strain is a definition. Successful strain functions are so 
because experience and usage of them as measuring and 
prediction tools have been successful. A proper strain 
function must satisfy two conditions: 
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Proper Strain Functions

• Two deformations, differing only by rigid body motions represent 
the same strained system in so far as they create the same shape 
changes in identical materials. 
• A correct strain function will detect this and compute equal quantities for 

the situations they represent.

• When the deformation gradient becomes 𝐅 = 𝐈, the identity 
tensor, the strain function must vanish everywhere. This means 
that
• Many strain functions can be defined in so far as they satisfy the above 

conditions. A number have been used successfully in certain situations.
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• A Material Strain Tensor:

𝐄 =
1

2
𝐂 − 𝐈

where 𝐂 = 𝐅T𝐅, the Right Cauchy Green Tensor. 

• It will become clear shortly that this strain function is more familiar 
than it looks. 

• A comparison of what it computes will be made to our 
elementary conception of strain as the quotient of “increase in 
length and original length”. It will soon become clearer that this 
is the strain function we have in mind from that common 
definition.

Green-Lagrange Strain Tensor 8
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Euler-Almansi Strain Tensor 9

• Next, we look at the Spatial Euler-Almansi Strain Tensor, 𝐞

𝐞 =
1

2
𝐈 − 𝐁−1

where 𝐁 = 𝐅𝐅T is called the Left Cauchy-Green Tensor. (𝐁, 𝐁−1 are named in 
honor of two other notable scientists: Finger & Piola Tensors respectively). 
We have shown that 𝐂 = 𝐔2 is a material tensor while 𝐁 = 𝐕2 is spatial. 
Consequently, 𝐄 is a material strain tensor field while 𝐞 is spatial.
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Seth-Hill Strain Tensors

• It has been shown by Seth and Hill that the popular strain 
functions are special cases of generalized strain functions. These 
functions, named for the authors, are called the Seth-Hill 
functions. The referential Seth Hill Strain Function is,

1

𝑚
𝐔𝑚 − 𝐈 for 𝑚 ≠ 0,

loge𝐔 ,𝑚 = 0

• It is easy to see that the Green-Lagrange Strain function is the 
special case of the Seth-Hill material strain function when 𝑚 = 2.
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Seth-Hill Strain Tensors 11

• On the spatial side of things, we have another class of strain function 
generators. Here is the spatial Seth-Hill Strain function:

1

𝑚
𝐕𝑚 − 𝐈 for 𝑚 ≠ 0

loge 𝐕 ,𝑚 = 0

• Again, as before, the Euler-Almansi Strain function, 𝐞 =
1

2
𝐈 − 𝐁−1 is the 

special case of the spatial Seth-Hill Strain function when 𝑚 = −2.
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Uniaxial Extension 12

• They told you (and you believed!) that strain is Increase 
in length over original length! Here is what they were 
talking about:

• We noted earlier that Uniaxial extension transformation 
function is, 𝐱 = 𝛘 𝐗 = 𝛼1𝑋1𝐞1 + 𝑋2𝐞2 + 𝑋3𝐞3. Let us 
write 𝛼1 = 𝑙1/𝑙0 and examine the implications. What is 
the value of 𝛼1𝑋1 when 𝛼1 = 𝑙1/𝑙0? Of course, it is zero 
when 𝑋1 = 0, and it is equal to 𝑙1 when 𝑋1 = 𝑙0. In one 
word, it properly defines the spatial configuration for 
the uniaxial extension we are so used to! 

• Consequently, the Lagrangian Strain becomes,
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Compute the relevant tensors

𝐅 =
𝛼 0 0
0 1 0
0 0 1

, 𝐂 =
𝛼2 0 0
0 1 0
0 0 1

, 𝐄 =
1

2

𝛼2 − 1 0 0
0 0 0
0 0 0

𝐄 = −
1

2
1 −

𝑙1
𝑙0

2

𝐄1 ⊗𝐄1 ≈
𝑙1 − 𝑙0
𝑙0

𝐄1 ⊗𝐄1
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Small Uniaxial Strain

• To see this, consider that,
𝑙1
2 − 𝑙0

2

2𝑙0
2 =

(𝑙1 − 𝑙0)(𝑙1 + 𝑙0)

2𝑙0
2

• Now, observe that,

lim
𝑙0→𝑙1

(𝑙1 − 𝑙0)(𝑙1 + 𝑙0)

2𝑙0
2 =

𝑙1 − 𝑙0
𝑙0

• When strains are small, in uniaxial 
extension, it is correct to state that 
change in length divided by original length 
is equal to strain! 
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𝑙0 𝑙1 𝑙1 − 𝑙0
𝑙0

𝑙1
2 − 𝑙0

2

2𝑙0
2

% 

Error

1 1.001 0.001 0.0010005 0.05

1 1.010 0.010 0.0050000 0.50

1 1.100 0.100 0.1050000 4.76

1 2.000 1.000 1.5000000 33.33

1 10.000 9.000 49.5000000 81.82

Elastomers (𝑙1~10)

Steel (𝑙1=1.002 at yield)



Computing Strain

• Lagragian strains are computed 
in the attached Mathematica 
code.

• The first case is for extension 
along the 𝑋1 −axis as described 
earlier. See what it contributes 
to the strain tensor. 

• Last two are shear cases. 
Observe the relationship with 
the tangent of the shear angle. 
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Observation 16
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From the computations above, we 
see clearly that extension 

deformations contribute to the 
diagonal elements of the strain 

tensor corresponding to the 
direction of extension. 

Shear deformations  contribute to 
the off-diagonal elements 

depicting the planes of 
deformation. 

In either case, the tensors are 
always symmetrical.

When strains are small, the linear 
strains conform to the elementary 
definitions. Shear strains are half 
the angles of shear. When strains 

are large, extensions become 
nonlinear, shear are now tangents 
of the respective angles of shear.



Deformation Gradient as a Strain Function 17

• The Polar decomposition theorem immediately shows why the deformation 
gradient cannot be a proper measure of strain. Consider the expression, 
𝐅1 = 𝐑1𝐔, 𝐅2 = 𝐑2𝐔 so that the only difference between the two 
deformation gradients is the fact that the rotations are different, but the 
stretch tensors are the same. 

• Deformation gradient creates ambiguity in strain measurement. Therefore 
the Polar decomposition becomes important to remove rigid body motions 
and make computed values depend only on deformations and not 
inconsequential motions.
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Stretch Tensors

• Consider two infinitesimal material 
vectors, 𝑑𝐗1and  𝑑𝐗2and subject the 
material in which they are placed to the 
deformation gradient 𝐅. Clearly, the 
images of these two elements in the 
spatial state will be 𝑑𝐱1 =
𝐅𝑑𝐗1and 𝑑𝐱2 = 𝐅𝑑𝐗2

• We now proceed to find the magnitude 
of the image vectors by taking the 
scalar products as follows:

𝑑𝐱1 ⋅ 𝑑𝐱2 = 𝐅𝑑𝐗1 ⋅ 𝐅𝑑𝐗2
= 𝐑𝐔𝑑𝐗1 ⋅ 𝐑𝐔𝑑𝐗2
= 𝐔𝑑𝐗1 ⋅ 𝐑

T𝐑𝐔𝑑𝐗2
= 𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗2
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Right Stretch Tensor 19

• Upon recalling that the transpose of a rotation is its inverse. So that, if both 
vectors are the same, we have that, 

𝑑𝐱1 ⋅ 𝑑𝐱1 = 𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗1

• And after taking square roots, we see that, 
𝑑𝐱 = 𝐔𝑑𝐗

• Which tells us that the magnitude of the spatial vector is governed by a 
transformation of the material vector, not by the deformation gradient, but by 
the right stretch tensor.
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Left Stretch 
Tensor

Monday, February 10, 2020

• The inverse of this argument is immediate: That, 
in terms of the spatial lengths, the referential 
length can be found from,

𝑑𝐗 = 𝐕−1𝑑𝐱

• The inverse of the Left Stretch Tensor computes 
the magnitude of material (referential) tensors 
using the spatial image as argument.
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Measuring Angles Between Deformed Fibres 21

• The above arguments helps us clarify issues with normal strains on infinitesimal 
elements. Once we know the Right stretch tensor, we can find the new length 
of any fibre. In shear strain, we are interested, not in elongation or reductions 
in lengths, but in the changes in the angles between infinitesimal elements. 

• Using the same diagram, we can take a look at the angle between these two 
referential elements as they are transformed in the deformation In the 
referential configuration, the angle between the line elements, 𝑑𝐗1 and 𝑑𝐗2 is,

Θ = cos−1
𝑑𝐗1 ⋅ 𝑑𝐗2
𝑑𝐗1 𝑑𝐗2
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Measuring 
Angles Between 

Deformed Fibres

Monday, February 10, 2020

• To find the angle between any two elements in the 
spatial configuration we simply recall that the angle 
we seek is 

𝜃 = cos−1
𝑑𝐱1 ⋅ 𝑑𝐱2
𝑑𝐱1 𝑑𝐱2

= cos−1
𝐔𝑑𝐗1 ⋅ 𝐔𝑑𝐗2
𝐔𝑑𝐗1 𝐔𝑑𝐗2

• To find shear strain, we look at two elements in the 
referential configuration that are at right angles. 
Shear strain is DEFINED as the change in the right 
angle between these two elements: We subtract the 

new angle 𝜃 in radians from 
𝜋

2
. As it is with 

elongations or contractions of length, the changes in 
angles are controlled, not by the deformation 
gradient or the rotation, but by the right and left 
stretch tensors. The insight leading to the Seth-Hill 
generalized strain functions become clearer as they 
correctly recognized the tensor responsible for the 
shape changes linearly as well, as in relative angular 
displacements.
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The Displacement Function

• Consider a material that has been subjected to a 
deformation as shown. Here, for simplicity, we refer 
both configurations to the same Cartesian origin and 
let the two coordinate systems coincide.

• Let point 𝐏 be located at the point 𝐗 in the material 
configuration be such that it transforms to the point 𝐏
located at 𝐱 = 𝛘(𝐗) in the spatial.

• Consider the vector 𝐮 = 𝛘 𝐗 − 𝐗. Let us take the 
material gradient of this equation and write,

𝐇 ≡ Grad 𝐮 = Grad 𝛘 𝐗 − 𝐈 = 𝐅 − 𝐈
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Small Strains 24

• The built environment, using linear elasticity, has at its core the fact the strains are small: a 
very reasonable assumption in the days where hard metals such as iron and its ores or 
aluminum in its harder varieties were the chief materials for the built environment and 
manufacturing. Things have changed significantly, and those assumptions are no longer always 
valid. In this section, we will assume “small strains” and observe its implications on the 
quantities we have been looking at. In component form, we can write,

𝐻𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑋𝑗

• Upon noting that the identity tensor, in Cartesian coordinates has the Kronecker delta as its 
coefficients, we can therefore write,

𝐹𝑖𝑗 = 𝛿𝑖𝑗 +𝐻𝑖𝑗

Monday, February 10, 2020oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii



Small Strains

• Again, in Cartesian, the transpose is simply the reversal of the indices. Hence, 
we can write,

𝐄 =
1

2
𝐅T𝐅 − 𝐈 =

1

2
𝐇 + 𝐈 T 𝐇+ 𝐈 − 𝐈

=
1

2
𝐇 + 𝐇T + 𝐇T𝐇

• In component form as,

𝐸𝑖𝑗 =
1

2
𝐻𝑖𝑗 + 𝐻𝑗𝑖 + 𝐻𝑘𝑖𝐻𝑘𝑗

=
1

2

𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖
+
𝜕𝑢𝑘
𝜕𝑋𝑖

𝜕𝑢𝑖
𝜕𝑋𝑗
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Small Strains

• If we can neglect second-order terms, and realizing that the spatial is 
indistinguishable from the material, then we obtain the familiar form for 
strain-displacement relationships:

𝜖𝑖𝑗 =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
≈ 𝐸𝑖𝑗

• As we can see, this expression is valid only when the strains are 
sufficiently small that the exclusion of second-order terms does not 
affect the results significantly. Ignoring second-order terms, We can 
write the small strain tensor 𝛜 as,

2𝛜 = 𝐇 + 𝐇T ≈ 2𝐄
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Small Deformation: 
Euler-Almansi Strain Tensor

• We have based all our computations on Green-Lagrange Strain tensor 
thus far. Let us consider the Euler strain tensor. Note that,

𝐅 = 𝐈 + 𝐇

• So that, when 𝐇 is small, ignoring second order term, 𝐈 + 𝐇 𝐈 − 𝐇 ≈ 𝐈; 
𝐅−1 = 𝐈 + 𝐇 −1 ≈ 𝐈 − 𝐇

• Consequently, under small strains, Euler-Almansi Strain tensor,

𝐞 =
1

2
𝐈 − 𝐅𝐅T

−𝟏
=
1

2
𝐈 − 𝐅−T𝐅−1 =

=
1

2
𝐈 − (𝐈 − 𝐇−T)(𝐈 − 𝐇) ≈

1

2
𝐇 + 𝐇T = 𝛜
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Eulerian & Lagragian Strains Coincide

• Under small strain conditions, the two most used strain tensors 
give the same result. 

• This result also coincides with the elementary definition of strain 
as change in length divided by original length or final length. 

• Under small strains, there is little difference between these.
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Small Eulerian & Lagragian Strains

• For uniaxial extension, consider the Mathematica Code:

• We have the following results:

• 𝐅 = , 𝐄 = , and 𝐞 =
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• Let the constant, 𝛼1 ≡
𝑙1

𝑙0
, final length of a line element divided by its 

original length, From here we see that the deformation gradient has 
zeroes for all off diagonal elements and unity on the diagonal except 
𝛼1 ≡

𝑙1

𝑙0
at the first element. 

• (Green-) Lagragian strain 
1

2

𝑙1

𝑙0

2

− 1 =
1

2𝑙0
2 𝑙1

2 − 𝑙0
2 =

(𝑙1+𝑙0)(𝑙1−𝑙0)

2𝑙0
2 ≈

𝑙1−𝑙0

𝑙0

• (Almansi-) Eulerian Strain 
1

2
1 −

𝑙0

𝑙1

2

=
1

2𝑙1
2 𝑙1

2 − 𝑙0
2 =

(𝑙1+𝑙0)(𝑙1−𝑙0)

2𝑙1
2 ≈

𝑙1−𝑙0

𝑙1

So that one is change in length over original length, the other change in 
length over final length. In small strains, the difference between 𝑙1, 𝑙0 is 
insignificant.

Small Strain 30
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