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Last Week Echoes

• Main task last week was the all-important Einstein Summation 
Convention.

• Moved from the regular use of the summation symbol, ∑ to the use of 
repeated indices as an indicator of summation. 

• Noted that this method does not alter the meanings of expressions but helps 
us gain parsimony

• Observed rules governing its applications – especially how to distinguish 
between dummy (mutable) indices as distinct from free indices

• Learned how to know if there are errors in the index notations
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More Echoes

• Two major symbols introduced:
1. The Kronecker delta, 𝛿𝑖𝑗, whose value depends on the relations between 

its two indices: one when they are explicit and equal, 0 when they are not 
equal. The summation convention still holding.

2. The Levi-Civita three index symbol, 𝑒𝛼𝛽𝛾, whose value depends on the 
uniqueness and arrangements of its indices. One when they are unique 
arrangements of 1,2,3 in even permutations, Minus one in odd 
permutations and zero in any other case. Again, the summation 
convention still valid
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Unfinished 
Business, 

Last Week

• Time did not allow us to cover the entire 
scope unfortunately. We were to express, 
using the newly found power with the 
summation convention, Kronecker Delta 
and the Levi-Civita, the component forms 
of vector operations.

• This includes the scalar, vector and tensor 
products that we will now define and 
expand upon.
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Dot Product, Component Form

Recall that, 𝐞𝑖 ⋅ 𝐞𝑗 = 𝛿𝑖𝑗. 

Consequently,
𝐚 ⋅ 𝐛 = 𝑎𝑖𝐞𝑖 ⋅ 𝑏𝑗𝐞𝑗

= 𝑎𝑖𝑏𝑗𝐞𝑖 ⋅ 𝐞𝑗 = 𝑎𝑖𝑏𝑗𝛿𝑖𝑗
= 𝑎𝑖𝑏𝑖
= 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3
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Note on this line 

that we avoided having four 

indices of the same type by 

invoking the fact that a 

dummy variable is mutable. 



Vector Product in 
Component Form

• Recall that 𝐞1 × 𝐞2 = 𝐞3, 
𝐞2 × 𝐞3 = 𝐞1, and
𝐞3 × 𝐞1 = 𝐞2. The table 
here shows that 

𝐞𝑖 × 𝐞𝑗 = 𝑒𝑖𝑗𝑘𝐞𝑘

• 𝐚 × 𝐛 = 𝑎𝑖𝐞𝑖 × 𝑏𝑗𝐞𝑗
= 𝑎𝑖𝑏𝑗𝐞𝑖 × 𝐞𝑗
= 𝑒𝑖𝑗𝑘𝑎𝑖𝑏𝑗𝐞𝑘
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i j 𝐞𝑖 × 𝐞𝑗 𝑒𝑖𝑗𝑘𝐞𝑘 ,

1 3 1 × 1 sin 90 (−𝐞2) 𝑒13𝑘𝐞𝑘 = 𝑒131𝐞1 + 𝑒132𝐞2 + 𝑒133𝐞3 = −𝐞2

1 2 𝐞1 × 𝐞2 = 𝐞3 𝑒12𝑘𝐞𝑘 = 𝑒121𝐞1 + 𝑒122𝐞2 + 𝑒123𝐞3 = 𝐞3

2 3 𝐞2 × 𝐞3 = 𝐞1 𝑒23𝑘𝐞𝑘 = 𝑒231𝐞1 + 𝑒232𝐞2 + 𝑒233𝐞3 = 𝐞1

3 1 𝐞3 × 𝐞1 = 𝐞2 𝑒31𝑘𝐞𝑘 = 𝑒311𝐞1 + 𝑒312𝐞2 + 𝑒313𝐞3 = 𝐞2

1 1 𝐞1 × 𝐞1 = 0 𝑒11𝑘𝐞𝑘 = 𝑒111𝐞1 + 𝑒112𝐞2 + 𝑒113𝐞3 = 0

2 2 𝐞2 × 𝐞2 = 0 𝑒22𝑘𝐞𝑘 = 𝑒221𝐞1 + 𝑒222𝐞2 + 𝑒223𝐞3 = 0

2 1 𝐞2 × 𝐞1 = −𝐞3 𝑒21𝑘𝐞𝑘 = 𝑒211𝐞1 + 𝑒212𝐞2 + 𝑒213𝐞3 = −𝐞3

3 2 𝐞3 × 𝐞2 = −𝐞1 𝑒32𝑘𝐞𝑘 = 𝑒321𝐞1 + 𝑒322𝐞2 + 𝑒323𝐞3 = −𝐞1

3 3 𝐞3 × 𝐞3 = 0 𝑒33𝑘𝐞𝑘 = 𝑒331𝐞1 + 𝑒332𝐞2 + 𝑒333𝐞3 = 0



The Dyad

• One exceedingly important object that you can also produce from 
taking a product of two vectors is a Tensor. Naturally, we shall 
call such a product a “Tensor Product”

• The symbol is called a dyad operator, ⊗. It combines the product 
sign and a circle.

• The tensor product is therefore also called a dyad product.

• A dyad is defined by what it does when it acts on another vector:
𝐚⊗ 𝐛 𝐜 = 𝐛 ⋅ 𝐜 𝐚
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𝐚⊗ 𝐛 = 𝑎𝑖𝐞𝑖 ⊗ 𝑏𝑗𝐞𝑗 = 𝑎𝑖𝑏𝑗𝐞𝑖 ⊗𝐞𝑗

• There are nine base dyads for expressing every tensor
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8Components of a Dyad

𝐞1 ⊗𝐞1 𝐞1 ⊗𝐞2 𝐞1 ⊗𝐞3

𝐞2 ⊗𝐞1 𝐞2 ⊗𝐞2 𝐞2 ⊗𝐞3

𝐞3 ⊗𝐞1 𝐞3 ⊗𝐞2 𝐞3 ⊗𝐞3
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Product Right or

wrong

Comments

𝛼𝐮 Correct Scaling a vector, multiplication of a scalar and a vector; No explicit sign required

𝐮𝛽𝐯 Error 𝐮𝛽 is a scaled vector whose product with 𝐯 is ambiguous. Possible additional information can make it 𝐮𝛽 ⋅

𝐯, 𝐮 × 𝛽𝐯 , or 𝐮⊗ 𝛽𝐯 . They have different meanings that cannot be reliable guessed unless you supply

the needed information a priori.

𝛽𝛼 Correct Product of two scalars; No explicit sign required

𝐯𝐮 Error Product of two vectors; 𝐯 ⋅ 𝐮 ≠ 𝐯 × 𝐮 ≠ 𝐯⊗ 𝐮

Explicit disambiguating sign required. We note here that certain authors imply this simple concatenation 

as the way they represent the tensor product, 𝐯⊗ 𝐮. In most current Literature on the subject, the tensor 

or dyad sign is the preferred way to represent this product. We retain that more popular convention here 

and subsequently.

𝛽 𝐮 × 𝐯 Correct Vector product of two vectors gives a vector. Multiplying this result by a scalar does not require another

sign. The order of the scaling is NOT important:

𝛽 𝐮 × 𝐯 = 𝛽𝐮 × 𝐯 = 𝐮 × 𝛽𝐯 = 𝐮 × 𝐯 𝛽

The order of the appearance of the vectors is inviolable:

𝛽 𝐮 × 𝐯 ≠ 𝛽𝐯 × 𝐮 = 𝐯 × 𝛽𝐮 ≠ 𝐮 × 𝐯 𝛽



Sunday, August 4, 2019www.oafak.com; www.s2pafrica.org; oafak@unilag.edu.ng

10

Product Right or

wrong

Comments

𝐮 ⋅ 𝐯𝛼 Correct The dot product of a vector with a scaled vector. No ambiguity is created with the

location of 𝛼; 𝐮 ⋅ 𝐯𝛼 , 𝐮𝛼 ⋅ 𝐯, or 𝛼𝐮 ⋅ 𝐯 all mean the same thing.

𝛽𝐮 ⋅ 𝐯 × 𝐰𝛼 Correct Scalar triple product with vector scaling along. Result is the same as 𝛽𝛼 𝐮 ⋅ 𝐯 × 𝐰 =

𝛽𝛼 𝐮 × 𝐯 ⋅ 𝐰

𝛽𝐮 × 𝐯 × 𝐰 Error Vector triple product with vector scaling along. Vector product is not associative:

𝛽𝐮 × 𝐯 ×𝐰 = 𝛽 𝐮 ⋅ 𝐰 𝐯 − 𝛽 𝐮 ⋅ 𝐯 𝐰

≠ 𝛽 𝐮 × 𝐯 ×𝐰 = 𝛽 𝐮 ⋅ 𝐰 𝐯 − 𝛽 𝐯 ⋅ 𝐰 𝐮

Parentheses are required to show which product is intended.

𝐮 ⋅ 𝐯 ⊗𝐰 Error 𝐯⊗𝐰 𝐮 ≠ 𝐮 𝐯⊗𝐰 . Error in the book

𝐮 × 𝐯⊗𝐰 Correct Treat the vector cross as a tensor, then obtain the LHS: 𝐮 × 𝐯 ⊗𝐰 = 𝐮 × 𝐯⊗𝐰

The two different interpretations evaluate to the same value.



𝐚 = 𝐞1, 𝐞2, 𝐞3

𝑎1
𝑎2
𝑎3

= 𝑎1𝐞1 + 𝑎2𝐞2 + 𝑎3𝐞3 = 𝑎𝑖𝐞𝑖

𝐛 = 𝑏1, 𝑏2, 𝑏3

𝐞1
𝐞2
𝐞3

= 𝑏1𝐞1 + 𝑏2𝐞2 + 𝑏3𝐞3 = 𝑏𝑗𝐞𝑗

Vectors & Their 
Matrices
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Dyads & Matrices

𝐚⊗ 𝐛 = 𝐞1, 𝐞2, 𝐞3

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

⊗

𝐞1
𝐞2
𝐞3

𝐚⊗ 𝐛 = 𝐞1, 𝐞2, 𝐞3 ⊗

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

𝐞1
𝐞2
𝐞3
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Obtain the trace of a dyad by changing the dyad operator into a dot as follows
tr 𝐚⊗ 𝐛 = 𝑎𝑖𝑏𝑗 tr 𝐞𝑖 ⊗𝐞𝑗

= 𝑎𝑖𝑏𝑗 𝐞𝑖 ⋅ 𝐞𝑗
= 𝑎𝑖𝑏𝑗 𝛿𝑖𝑗
= 𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3

It is the inner product as can be seen from the matrix: The scalar product of 
operands. 

𝒂𝟏𝒃𝟏 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝒂𝟐𝒃𝟐 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝒂𝟑𝒃𝟑
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• Consider a set of Cartesian coordinate 
orthonormal vectors, 𝐞𝟏, 𝐞𝟐, 𝐞𝟑 shown 
in blue in figure These vectors are 
position vectors at 1,0,0 , 0,1,0 and 
0,0,1 respectively.

• Consider another orthonormal system, 
shown in pink, whose unit vectors are 
oriented as shown in the picture. Let 
these unit vectors be 𝛏𝟏, 𝛏𝟐, 𝛏𝟑 . 

• All we know about the Coordinate 
Vectors 𝛏𝟏, 𝛏𝟐, 𝛏𝟑 is that they too are 
orthonormal, having the same Origin as 
𝐞𝟏, 𝐞𝟐, 𝐞𝟑

Axes Rotation
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New System in Terms of Old

• Set 𝐞𝟏, 𝐞𝟐, 𝐞𝟑 are orthonormal and are therefore 
linearly independent; They form a basis. Therefore 
any vectors in their space can be written in scaled 
additions (linear ) of them: This includes each of 
the vectors 𝛏𝟏, 𝛏𝟐 and 𝛏𝟑

• Taking these vectors one by one, we may write,
𝛏1 = 𝛼1𝐞1 + 𝛽1𝐞2 + 𝛾1𝐞3
𝛏2 = 𝛼2𝐞1 + 𝛽2𝐞2 + 𝛾2𝐞3
𝛏3 = 𝛼3𝐞1 + 𝛽3𝐞2 + 𝛾3𝐞3

where 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖, 𝑖 = 1,… , 3 are coefficients to be 
determined
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Small Adjustment 16

• Suppose instead of {𝛼, 𝛽, 𝛾} we 
used a single indexed symbol 
{𝑎1, 𝑎2, 𝑎3}

• 𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗 → 𝑎1𝑗 , 𝑎2𝑗 , 𝑎3𝑗 , 𝑗 = 1,2,3. 

• In other words, we can represent 
all the nine coefficients above as, 

𝑎𝑖𝑗 , 𝑖 = 1,… , 3, 𝑗 = 1,… , 3
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𝛼 𝛽 𝛾

1 𝑎11 𝑎21 𝑎31

2 𝑎12 𝑎22 𝑎32

3 𝑎13 𝑎23 𝑎33



Transformation Coefficients

• Our original transformation equations, 
𝛏1 = 𝛼1𝐞1 + 𝛽1𝐞2 + 𝛾1𝐞3
𝛏2 = 𝛼2𝐞1 + 𝛽2𝐞2 + 𝛾2𝐞3
𝛏3 = 𝛼3𝐞1 + 𝛽3𝐞2 + 𝛾3𝐞3

• Now take the form, 
𝛏𝑖 = 𝑎𝑖𝑗𝐞𝑗 .

• Scalar multiplication with 𝐞𝜶 results in,
𝛏𝒊 ⋅ 𝐞𝜶 = 𝑎𝑖𝑗𝐞𝒋 ⋅ 𝐞𝜶 = 𝑎𝑖𝑗𝛿𝑗𝛼 = 𝑎𝑖𝛼

from which we conclude that 𝛏𝑖 ⋅ 𝐞𝑗 = 𝑎𝑖𝑗.
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Reverse Transformation

• We now invert the argument this way: Set 𝛏1, 𝛏2,𝛏3 are 
orthonormal and are therefore linearly independent; They form a 
basis. Therefore any vectors in their space can be written in 
scaled additions (linear ) of them: This includes each of the 
vectors 𝐞1, 𝐞2 and 𝐞3!

𝐞𝑗 = 𝑏𝑗𝑘𝛏𝑘 = 𝑏𝑗𝑘𝑎𝑘𝛼𝐞𝛼
𝐞𝑗 ⋅ 𝐞𝛽 = 𝑏𝑗𝑘𝑎𝑘𝛼𝐞𝛼 ⋅ 𝐞𝛽

𝛿𝑗𝛽 = 𝑏𝑗𝑘𝑎𝑘𝛼𝛿𝛼𝛽 = 𝑏𝑗𝑘𝑎𝑘𝛽

Showing that the matrix [𝑏𝑖𝑗] is the inverse of [𝑎𝑖𝑗]. 
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Reverse 
Transformation 

Again

Sunday, August 4, 2019

• Another way to find the 𝑏𝑗𝑘s, we multiply 
scalarly by 𝛏𝑖 again and obtain, 

𝛏𝑖 ⋅ 𝐞𝑗 = 𝛏𝑖 ⋅ 𝑏𝑗𝑘𝛏𝑘
= 𝑏𝑗𝑘𝛏𝑖 ⋅ 𝛏𝑘
= 𝑏𝑗𝑘𝛿𝑖𝑘𝑏𝑗𝑖
= 𝑏𝑗𝑖

• Showing that the reverse transformation 
matrix is also a transpose of the original 
transformation. 

𝐀 = 𝐁−1 = 𝐁T
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Road Sign:
Geometry of 

Transformation
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In the next five slides, we present a two-
dimensional view of the geometry of the 
transformation of coordinates. 

This is tedious even though not rigorous. You 
need to be patient. What are trying to 
achieve here is for you to believe the easy 
formulas we will later use. 

When we shall have established the 
connection, we will not need to repeat this 
tedious process again. However, those who 
do not give sufficient attention will find it 
hard to apply the easy formulas later!
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• 𝐎 𝑥1 𝑥2 → 𝐎 𝑦1 𝑦2, find coordinates of vector 𝐎𝐏 in the 
new system

• Let 𝐎𝐏 = 𝐯 = 𝑎𝑖𝐞𝑖 where 𝐞1and 𝐞2 are unit vectors 
along 𝐎 𝑥1 𝑥2. If the coordinates are rotated to 𝐎 𝑦1 𝑦2
such that the same vector now becomes 𝐯 = 𝑏𝑖𝛏𝑖 where 
𝛏1and 𝛏2 are unit vectors along the 𝐎 𝑦1 𝑦2 system. 

𝐎𝐀 = 𝑎1; 𝐎𝐁 = 𝑎2; 𝐎𝐀
′′ = 𝑏1?𝐎𝐁

′′ = 𝑏2?

• We drop perpendicular lines to the lines 𝐎 𝑦1 and 𝐎 𝑦2
meeting them at 𝐀′′and 𝐁′′respectively. 

𝐎𝐀′ = 𝑎1 cos 𝛼 𝐀𝐀′′ = 𝑎2 sin 𝛼

• because 𝐏𝐀 is the hypotenuse of a right-angled triangle 
𝐀𝐏𝐀′′′with angle 𝛼 at 𝐀𝐏𝐀′′′ And it is easy to see that 
𝐀𝐀′𝐀′′𝐀′′′is a rectangle. Its opposite sides are equal, 
consequently, the length

𝐎𝐀′′ = 𝑏1= 𝑎1 cos 𝛼 + 𝑎2 sin 𝛼.
= 𝑎1 𝛏1 ⋅ 𝐞1 + 𝑎2 𝛏1 ⋅ 𝐞2



Sunday, August 4, 2019www.oafak.com; www.s2pafrica.org; oafak@unilag.edu.ng 22



The Other Coordinate

• 𝐁′′ is the foot of the perpendicular from point 𝐏 to the 𝐎 𝑦2-axis. 
𝐁𝐁′is parallel to 𝐏𝐁′′. 𝐁′′′ is the foot of the perpendicular from 𝐁
to 𝐏𝐁′′. By the same arguments as before, 𝐁𝐁′𝐁′′𝐁′′′ is also a 
rectangle. Clearly,

𝐎𝐁′′ = 𝑏2= −𝑎1 sin 𝛼 + 𝑎2 cos 𝛼.
= 𝑎1 𝛏2 ⋅ 𝐞1 + 𝑎2 𝛏2 ⋅ 𝐞2

• The rotation tensor is: 𝐑T = 𝐞𝑗 ⊗ 𝛏𝑗. Hence, we have
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The Rotation

• Consider the Dyad Sum:
𝐑T𝐯 = 𝐞𝑗 ⊗ 𝛏𝑗 𝑎𝑖𝐞𝑖

= 𝑎𝑖𝐞𝑗 𝛏𝑗 ⋅ 𝐞𝑖
𝐑T𝐯 = 𝐞1 𝑎1 𝛏1 ⋅ 𝐞1 + 𝑎2 𝛏1 ⋅ 𝐞2 + 𝐞2 𝑎1 𝛏2 ⋅ 𝐞1 + 𝑎2 𝛏2 ⋅ 𝐞2

• Exactly the same expression we found geometrically!

• Look again at the dyad sum! It is simply the dyads formed by the 
coordinate basis vectors! 

• To compute any rotation, we only need to form the dyads from the 
set of coordinates before and after!
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The Cartesian System 
of Coordinates

• Three orthonormal unit vectors as 
basis set.

• The intersection of two planes 
creates a coordinate line. 

• Intersection of three planes 
create three coordinate lines all 
meeting at the same point at 
which the three planes intersect 
to give the location of the point.
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Mathematica Code 

• The graphics you have just seen were mathematically generated. 
The code is something like we show here:
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The Euclidean Point Space

• All engineering objects of interest reside. This space contains 
point locations that can be occupied by a location in an object at 
a particular time. It is often of interest to be able to do several 
things:

• Locate the point in an unambiguous way,

• Relate the point to one or more other points in its vicinity, and

• Define quantities that take up values of interest at that point: Fields.

• Examples of Fields
• Temperature map of this classroom (one thousand thermometers) 

• Temperature distribution, Temperature field.

• Tensor Fields
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Points & Vectors

• The Euclidean Point Space that we have used our 
Cartesian Coordinate System to describe contains 
points, NOT vectors.

• It is critically important for you to be able to do 
graphics, to note the distinction. 

• It is even more serious to note the difference in 
order to do mechanical analysis such as Solid 
Mechanics, Fluid Mechanics, Thermodynamics, etc., 
that our knowledge of Continuum Mechanics lead us 
to.
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Points & Vectors

• 𝐎 and 𝐏 are points.

• Drawing a line between 𝐎 and 𝐏 creates the vector 
𝐎𝐏 possessing all the attributes of vectors as we 
have previously defined:

• Magnitude defined by the length of the line 𝐎𝐏,

• Direction defined by the direction of the line 𝐎𝐏, and 

• Sense as from 𝐎 to 𝐏

• The vector we have just created is no ordinary 
vector. It was brought to life by joining the point 𝐏
to the origin. 
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Position Vectors

• Note that we could create a vector by joining any two points. 

• It is a no brainer that every point in the space can be treated as 
we have just treated 𝐏: Create a vector by simply joining the 
point to the origin. 

• The vectors created this way have a name: Position Vectors.

• We are emphasizing the fact that we have created a vector from a 
point by simply using a line to join the point to the origin. 

• They are special vectors. Not all vectors are created this way.
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Cartesian System: Special Attributes

 Each coordinate surface is a plane. The three defined at a particular point are

respectively parallel to the three you can define at any other point.

 Each coordinate line: the intersection of these planes that are parallel to the

axes are similarly parallel straight lines at all points in the system.

 The basis vectors – usually defined as unit vectors along the axes, are always the

same at any point in the Cartesian system. It does not matter where the point P

is located, the basis vectors are the same unit vectors we define as 𝐢, 𝐣 and 𝐤

or 𝐞1, 𝐞2, and 𝐞3 along the coordinate lines at the origin.
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Consequences of Attributes

• Position Vector is a linear function of the coordinates:
𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 = 𝑥𝑖𝐞𝑖

• We can easily write the vector field in terms of three scalar fields 
that we call its components;
𝐯 𝑥1, 𝑥2, 𝑥3 = 𝑣1 𝑥1, 𝑥2, 𝑥3 𝐞1 + 𝑣2 𝑥1, 𝑥2, 𝑥3 𝐞2 + 𝑣3 𝑥1, 𝑥2, 𝑥3 𝐞3
• In order, say to find acceleration, we may need to differentiate this 

function spatially or temporally; We need to worry only about the 
components as their vector bases are all constants.

• These nice features occurs only in Cartesian System of 
coordinates.
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Relate Position Vectors to Basis Set

• A partial differentiation of the position vector with respect to the 
coordinate variables yield the basis vectors for the coordinate 
system as shown here:

𝐫 = 𝑥1𝐞1 + 𝑥2𝐞2 + 𝑥3𝐞3 = 𝑥𝑖𝐞𝑖
𝜕𝐫

𝜕𝑥𝑖
= 𝐞𝑖 , 𝑖 = 1,2,3.

• The partial derivative of the position vector to the three 
coordinate variables constitute a set of linearly independent 
vectors that can form the basis set.

• In the Cartesian System, they are the same as our usual basis set
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Nonlinear Coordinate Systems

To form a coordinate system,

• Select three variables 𝜉1, 𝜉2, 𝜉3 . When each takes a value, say, 𝜉𝑖 = 𝛼𝑖
where each 𝛼𝑖 is a real number, then we have the point 𝛼1, 𝛼2, 𝛼3 . We can 
write this point in at least two other ways: 𝜉𝑖 = 𝛼𝑖, 𝑖 = 1,… , 3 or as 
𝜉1 = 𝛼1, 𝜉2 = 𝛼2, 𝜉3 = 𝛼3 . 

• For each, 𝜉𝑖 = 𝛼𝑖, we have defined a coordinate surface. In the case of 
Cartesian coordinates, given any three 𝛼𝑖 ∈ ℝ, 𝑖 = 1,2,3, we have 𝑥1 = 𝛼1, 
defining a plane with normal along the 𝐞1axis, 𝑥2 = 𝛼2, defining a plane 
with normal along the 𝐞2axis and 𝑥3 = 𝛼3, which is a plane with normal 
along the 𝐞3 axis. 

• A systematic choice leads to specific systems: Cylindrical, Spherical Polar
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Cylindrical Polar Coordinate System

• We now introduce a transformation (called a polar transformation) 
of 𝑥1, 𝑥2 → {𝑟, 𝜙} such that, 𝑥1 = 𝑟 cos𝜙, and 𝑥2 = 𝑟 sin𝜙 .Note 

also that this transformation is invertible: 𝑟 = 𝑥1
2 + 𝑥2

2,and 𝜙
= tan−1

𝑥2

𝑥1

• With such a transformation, we can locate any point in the 3-D 
space with three scalars {𝜉1, 𝜉2, 𝜉3} → {𝑟, 𝜙, 𝑧} instead of our 
previous set 𝑥1, 𝑥2, 𝑥3
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Cylindrical Position Vector

• What does the position vector look like?
𝐫 = 𝑟 cos𝜙 𝐞1 + 𝑟 sin𝜙 𝐞2 + 𝑧𝐞𝑧 = 𝑟𝐞𝑟 + 𝑧𝐞𝑧

Where we have defined,
𝐞𝑟 = cos𝜙 𝐞1 + sin𝜙 𝐞2
𝐞𝑧 = 𝐞3

There are several methods to obtain the basis set of vectors. One 
instructive way is to do a partial differentiation of the position vector:
𝜕𝐫

𝜕𝑟
= cos𝜙 𝐞1 + sin𝜙 𝐞2 = 𝐞𝑟,

𝜕𝐫

𝜕𝜙
= −𝑟 sin𝜙 𝐞1 + 𝑟 cos𝜙 𝐞2 ≡ 𝑟𝐞𝜙, 

𝜕𝐫

𝜕𝒛
= 𝐞𝑧
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Cylindrical Basis Vector Set 38

By differentiating the position vector,  
𝐫 = 𝑟 cos 𝜙 𝐞1 + 𝑟 sin𝜙 𝐞2 + 𝑧𝐞𝑧
= 𝑟𝐞𝑟 + 𝑧𝐞𝑧

with respect to the coordinate 
variables 𝜉1, 𝜉2, 𝜉3 which now are 𝑟, 𝜙, 𝑧, 
the basis vectors are shown in the 
table shown:
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Derivative Explicit Form

𝜕𝐫

𝜕𝑟

cos 𝜙 𝐞1 + sin𝜙 𝐞2 𝐞𝑟

𝜕𝐫

𝜕𝜙

−𝑟 sin𝜙 𝐞1 + 𝑟 cos𝜙 𝐞2 𝑟𝐞𝜙

𝜕𝐫

𝜕𝒛

𝐞𝑧



𝐞𝑟
𝟐 = cos2𝜙 + sin2 𝜙 = 1

𝐞𝜙
𝟐
= sin2 𝜙 + cos2𝜙 = 1

𝐞𝑧
𝟐 = 1

They are individually normalized with each having a norm or 
magnitude of 1.  Now let’s take them in pairs:

𝐞𝑟 ⋅ 𝐞𝜙 = −cos𝜙 sin𝜙+ cos𝜙 sin𝜙 = 0
𝐞𝜙 ⋅ 𝐞𝑧 = −sin𝜙 × 0 + cos𝜙 × 0 + 1 × 0 = 0
𝐞𝑧 ⋅ 𝐞𝑟 = cos𝜙 × 0 + sin𝜙 × 0 + 1 × 0 = 0

So that they are pairwise orthogonal.

Cylindrical Polar basis vectors 
constitute an orthonormal system 39
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Coordinate 
Surfaces in 

Cylindrical System
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The code to plot the coordinate 
surfaces are given here

Type it into the Mathematica Notebook …



Mistakes to Avoid

• That the Cylindrical position vector is 𝑟𝐞𝑟 𝜙 + 𝜙𝐞𝜙 𝜙 + 𝑧𝐞𝑧
• A simplistic copy of the Cartesian formula. This is wrong in at least two 

ways. For one thing, it is dimensionally incorrect because the unit of the 
middle basis component is an angle while the other components are 
measuring lengths. Secondly, we cannot obtain the Cartesian result from 
this via a coordinate transformation.

• That the basis vectors are constants. 
• They are NOT all constants. 𝐞𝑟 𝜙 and 𝐞𝜙(𝜙) are both functions of 𝜙 unlike 

in the Cartesian case, but 𝐞𝑧 is a constant like the Cartesian case.
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Spherical Coordinates

• The spherical Polar coordinate system selects its three ordered 
triplets with yet another strategy. This can be explained by the 
same transformation route we started. Continuing further with our 
transformation, we may again introduce two new scalars such that 
𝑟, 𝑧 → {𝜌, 𝜃} in such a way that the position vector,

𝐫 = 𝑟𝐞𝑟 + 𝑧𝐞𝑧 = 𝜌 sin 𝜃 𝐞𝑟 + 𝜌 cos 𝜃 𝐞𝑧 ≡ 𝜌𝐞𝜌

• Here, 𝑟 = 𝜌 sin 𝜃 , 𝑧 = 𝜌 cos 𝜃. As before, we can use three scalars, 
𝜌, 𝜃, 𝜙 instead of {𝑟, 𝜙, 𝑧}. In comparison to the original Cartesian 

system we began with, we have that
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Spherical Polar Coordinates 43

𝐫 = 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤
= 𝜌 sin 𝜃 𝐞𝑟 + 𝜌 cos 𝜃 𝐞𝑧
= 𝜌 sin 𝜃 cos𝜙 𝐢 + sin𝜙 𝐣 + 𝜌 cos 𝜃 𝐤
= 𝜌 sin 𝜃 cos 𝜙 𝐢 +𝜌 sin 𝜃 sin𝜙 𝐣 + 𝜌 cos 𝜃 𝐤
≡ 𝜌𝐞𝜌(𝜃, 𝜙)

where 
𝐞𝜌 ≡ sin 𝜃 cos𝜙 𝐢 + sin 𝜃 sin𝜙 𝐣 + cos 𝜃 𝐤

a nonlinear function of the coordinate 
variables 𝜌, 𝜃 and 𝜙
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Spherical Coordinate Surfaces

• Again, we introduce the unit vector, 

𝐞𝜃 ≡ cos 𝜃 cos 𝜙 𝐢 + cos 𝜃 sin𝜙 𝐣 − sin 𝜃 𝐤

• and retain 

𝐞𝜙 = −sin𝜙 𝐢 + cos𝜙 𝐣

• as before. It is easy to demonstrate the fact that 
these vectors constitute another orthonormal set. 
Combining the two transformations, we can move 
from 𝑥, 𝑦, 𝑧 system of coordinates to 𝜌, 𝜙, 𝜃
directly by the transformation equations, 𝑥
= 𝜌 sin𝜙 cos 𝜃, 𝑦 = 𝜌 sin𝜙 sin 𝜃 and 𝑧 = 𝜌 cos 𝜃 .The 
orthonormal set of basis for the 𝜌, 𝜃, 𝜙 system is
𝐞𝜌 𝜃, 𝜙 , 𝐞𝜃 𝜃, 𝜙 , 𝐞𝜙 𝜙
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