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The Deformation 
Gradient



Deformations & Motions

• We are primarily concerned here with deformations and motions 
in material entities. 

• The first important quantity we shall encounter is the deformation 
gradient. We shall see that is is a tensor. It will also become clear 
that all the information we need concerning the deformation or 
motion are contained in this tensor.

• We will try to compute it for important deformations & motions. It 
will lead us to other geometric quantities of importance. The first 
lecture will focus on the Deformation Gradient.
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Topics in this 
Lecture

Friday, February 7, 2020

Referential (Material) & Spatial (Current) 
Configurations

The Deformation Gradient Tensor

Polar Decomposition Theorem

Simple Deformations & Motions

Displacement, Stretch, Strain & Other 
Measures of Deformation
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Insight Versus Math & 
Computation

• This and subsequent chapters call for two 
achievements: Insight and Computations. Experience 
shows that you may feel intimidated by the 
mathematics and computations, thinking, wrongly, 
that they are difficult. I have news for you, THEY 
ARE NOT as difficult as they appear to be! 

• Mathematica will be used in many cases to 
demonstrate the (Symbolic) computations. 
Simulation software will solve, numerically, the 
difficult differential equations. Every difficult 
step will be further explained if you ask for 
help.

• Insight is the key. It is possible to be able to 
work the Math and compute without gaining 
Insight! This is a trap you should avoid!

Friday, February 7, 2020
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Simulations Input & Output

• Century 21, Engineers do not have to manually solve the differential equations 
that arise from their analyses. Software is usually available to do that. 

• They need to understand the inputs and results of the software they use in 
order to supply relevant boundary conditions, obtain correct results and 
make useful judgments. 

• When, for example, you perform a simulation in Fusion 360, outputs include 
the symmetrical strain tensor and the displacement vector. 

• Fusion 360 also gives you the Equivalent Strain. 

• Weeks Two and Three will supply what you need to …

Friday, February 7, 2020
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Two Week Goals

Friday, February 7, 2020

1

Understand why 
strain, not 
deformation 
gradient, is the 
choice for 
quantifying 
deformation

2

Understand the 
meaning of each 
element in the strain 
tensor; and know 
why the strain tensor 
is necessarily 
symmetrical

3

Know that the 
elementary definition 
of strain is only 
approximate: 
understand when it 
cannot properly 
measure strain

4

See that rotations, 
translations and 
other rigid body 
motions produce zero 
strain but non-zero 
deformation 
gradient.

5

Understand why rigid 
body motions create 
ambiguity in strain 
measurement. How 
they are removed to 
make strains unique. 

6

Understand various 
deformations and 
motions such as 
Uniaxial, biaxial or 
triaxial extension, 
bending, shear, 
dilatation, torsion, 
etc. 
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Pointwise Transformation

• We look at the body we are concerned about in the 
ambient environment of a 3-Dimensional Euclidean 
Point Space, ℰ: there is a subset of ℰ between which 
is in a one to one correspondence with each point in 
the body. A deformation is a mapping from this 
subset to another subset of the same space:

𝐱 = 𝛘(𝐗)
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• Where 𝐗 represents an arbitrary point in the material region 
of concern, and 𝐱, its image in the spatial. A deformation 
that changes over time, is a motion. If at specific 𝑡 =
1,2,… , 𝑛 in time, we have the discrete functions,

𝐱1 = 𝛘1 𝐗 , 𝐱2 = 𝛘2 𝐗 ,… , 𝐱𝑛 = 𝛘𝑛 𝐗 ,…

• Motion can also be described by the single, continuous, time 
dependent function, 𝐱 = 𝛘 𝐗, 𝑡 or 𝐱 = 𝛘𝑡(𝐗)
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• Motion is defined as set of mappings, 𝐱 = 𝛘 . , 𝑡 , 𝑡 ∈ ℝ.

• We assume that our subset of ℰ is connected. 

• Each member of the set of mappings, that is, each specific 
deformation in the set, is a known as a configuration or 
description at a point in time. We can take the configurations as 
photographs of the body as it undergoes its motion. 

• If we take that view, even though we can have several 
photographs, at most one of them, represents the current state 
of the body. This configuration is called the Spatial 
Configuration.

Pointwise Transformation

Friday, February 7, 2020

Back to elementary calculus: 

Connected region, simply 

connected region, multiply 

connected region.
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Referential & Spatial Configurations

• Consider, for simplicity, the 2-D region undergoing a 
deformation as shown by what was originally a circle 
and a straight line.

• As a result of deforming the region, we have shape 
changes that we observe.

• Notice that at the time the second picture is seen, the 
first no longer exists. However, we keep a photo of it, 
and refer to it as a “Referential or Material 
Configuration”.

• To distinguish the one we are presently observing, we 
call the latter the “Spatial or Current Configuration”.

• Mathematically, we can look at this as a vector 𝑑𝐗
transformed to vector 𝑑𝐱 as shown by the purple 
arrows.

Friday, February 7, 2020
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Referential & Spatial 
Configurations

We are looking at the two vectors, 𝑑𝐗 in the referential 
configuration, and 𝑑𝐱 in the spatial. 

• Note that these do not exist physically together. We bring 
them up, in the same diagram, artificially, for the purpose 
of gaining analytical insight.

• Using this artifice, we can see the entire deformation as 
the transformation of a vector 𝑑𝐗 to the vector 𝑑𝐱. The 
former can represent any material vector in the 
referential (original) configuration, while the latter 
represents its image in the spatial (or current) 
configuration.

• We have removed the translation of the vectors, bringing 
their origins together to show that elongation (or 
contraction) with the rotation that have been caused by 
the deformation.

Friday, February 7, 2020
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Spatial and 
Referential 
Vectors

• It is obvious that there is a relationship between the 
infinitesimal spatial and material vector that transformed to 
it. Each spatial vector, 𝑑𝐱 being a vector, consists of three 
scalars functions, 𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3 , or 𝑑𝑥𝛼, 𝛼 = 1,2,3.

• By the vector equation, 𝐱 = 𝛘(𝐗), we mean 𝑥𝛼 = 𝜒𝛼 𝑋1, 𝑋2, 𝑋3 , 
and, from elementary multivariate calculus, we have,

𝑑𝑥𝛼 =
𝜕𝜒𝛼
𝜕𝑋𝑗

𝑑𝑋𝑗

• In vector form, assuming the referential system is spanned by 
𝐄𝑗 , 𝑗 = 1…3 and that the spatial system is spanned by 𝐞𝛼, 𝛼 =
1,2,3. Adding the relevant bases, we have the vector equation,

𝑑𝑥𝛼𝐞𝛼 =
𝜕𝜒𝛼
𝜕𝑋𝑗

𝐞𝛼 ⊗𝐄𝑗 𝑑𝑋𝑖𝐄𝑖

Friday, February 7, 2020

Several ways to 

explain this dyad

Observe that there are 

nine components here: 

three for each 𝛼
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The Deformation Gradient

More compactly, we write, 
𝑑𝐱 = 𝐅𝑑𝐗

• where transformation tensor field 

𝐅 𝐗, 𝑡 = Grad 𝛘 𝐗, 𝑡 =
𝜕𝑥𝛼
𝜕𝑋𝑗

𝐞𝛼 ⊗𝐄𝑗 =
𝜕𝜒𝛼
𝜕𝑋𝑗

𝐞𝛼 ⊗𝐄𝑗

• the material (referential) gradient of the deformation or motion 
function, 𝛘 𝐗, 𝑡 . This deformation gradient is the tensor that 
transforms material vectors to spatial vectors in the region of 
interest. 

• It contains ALL information about the deformation or motion.

Friday, February 7, 2020

Textbooks write these equations as equivalent. 

However, the rightmost is the correct expression 

because it differentiates the function 𝐱 = 𝛘 𝐗, 𝑡 while 

the other differentiates the value.

When is it a 

deformation? Motion?
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The Deformation Gradient

• Is the fundamental tensor describing deformation 
and motion. Its second base vector, 𝐄𝑗, is a 
reciprocal base, as is obvious from the fact that the 
variable it represents is below. 

• Under Cartesian coordinates, there is NO difference 
between a base vector and its reciprocal base 
vector. 

• Once we are in curvilinear systems such as 
cylindrical or spherical polar, there will be 
differences as we shall illustrate.

Friday, February 7, 2020

14

oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii



The Deformation Gradient

• It is conventional to use the capital letter 
Grad for the gradient in the deformation 
gradient to emphasize the fact that the 
gradient is taken of the deformation (or 
motion) function with respect to the 
Referential system. When a gradient is 
taken with respect to the Spatial system, 
we shall write is as grad.

• Observe that 
Grad 𝛘 𝐗, 𝑡 ≠ grad 𝛘 𝐗, 𝑡 = 𝐈

Friday, February 7, 2020
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The Deformation Gradient

Easily proved because 

• The deformation gradient is the material gradient of the 
deformation function; 

grad 𝛘 𝐗, 𝑡 =
𝜕𝑥𝛼
𝜕𝑥𝑗

𝐞𝛼 ⊗𝐞𝑗

= 𝛿𝛼𝑗𝐞𝛼 ⊗𝐞𝑗
= 𝐈

• 𝐱 = 𝑥𝛼𝐞𝛼 is, in Cartesian Coordinates, the fundamental spatial 
variable. It is dependent on the referential vector variable, 
𝐗 = 𝑋𝑖𝐄𝑖 .

• This relationship is called “the deformation” or “the motion”, 
𝐱 = 𝛘 𝐗, 𝑡

Friday, February 7, 2020
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Volume Ratio

• The change in the material vectors implies there are 
also changes in areas and volumes. To obtain the 
change in volume as a result of the deformation, 
consider an infinitesimal tetrahedron in the referential 
state.

• The volume of the tetrahedron,
1

6
𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3 ≠ 0

• i.e. the volume will not vanish if the three vectors are 
neither colinear nor all coplanar. As a result of the 
motion, the corresponding spatial vectors will form a 
deformed tetrahedron.

Friday, February 7, 2020
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Volume Ratio

• Each side will be a transformed referential vector into 
the spatial: 𝑑𝐱1, 𝑑𝐱2, 𝑑𝐱3 will be related to the 
material vectors in such a way that,

𝑑𝐱𝑖 = 𝐅𝑑𝐗𝑖

• The volume ratio between the spatial and material 
configurations,

𝐽 =
𝑑𝐱1, 𝑑𝐱2, 𝑑𝐱3
𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3

=
𝐅𝑑𝐗1, 𝐅𝑑𝐗2, 𝐅𝑑𝐗3
𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3

= det 𝐅 .

• The linear independence of vectors 𝑑𝐗1, 𝑑𝐗2, 𝑑𝐗3 is 
guaranteed by the non-vanishing of the tetrahedron or 
we shall have chosen a trivial volume. However, what 
guarantee do we have for the spatial tetrahedron?

Friday, February 7, 2020
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Consider the 
Possibility:

𝑑𝐱 = 𝐅𝑑𝐗 = 𝐨

Friday, February 7, 2020

the zero vector. What can this mean physically? The linear 
independence of the denominator in the determinant 
expression guarantees non-vanishing of the numerator 
provided the deformation gradient is an invertible tensor. 
Mathematically, the Jacobian (determinant of 𝐅) of the 
transformation is zero.

• We were able to find a non-trivial (not a zero tensor) 
transformation tensor that transforms a real vector into 
nothingness! We, by a deformation transformation 
destroyed matter! 

• Our physical considerations preclude this possibility. We 
exclude from consideration such a possibility. And since we 
cannot have 𝐽 = 0, we can therefore conclude that 

𝐽 > 0

• Since continuity forces it to pass through zero to negative; 
if it cannot be zero, it cannot be negative. The only 
allowable transformations have a positive determinant. 

Q2.2519
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The Reference Map

• The set of mappings that gives each deformation, 
and consequently, the entire motion is a set of one-
to-one mappings. Such mappings are invertible. It 
follows that, at each time 𝑡, we have,

𝐗 = 𝛘−1 𝐱, 𝑡

• From which we can find the reference configuration 
that resulted in each spatial configuration at a time 
𝑡. The material point that occupied the spatial 
position 𝐱 at time 𝑡 can be computed by the 
reference map.

Friday, February 7, 2020
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Simple Deformation

• Consider a rectangular 2-D region and draw a circle 
of a unit radius and a diagonal line as shown.

• We can plot the line and the circle using parametric 
expressions for each as shown in the picture.

This is generated by the Mathematica code:

Friday, February 7, 2020
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Simple Deformation

• Consider a simple 2-D deformation function,

𝐱 = 𝛘 𝐗, 𝛼 = 𝑋1 + 𝛼𝑋2 𝐞1 +
𝑋2
𝛼

4𝑋1 +
1

𝛼
𝐞2

For any 𝛼 ≠ 0, the prescribed parameter signifies a 
specific deformation. Let 𝛼 = 0.2 then, the above 
deformation can be plotted as shown. The picture 
here is generated by the Mathematica code:

Friday, February 7, 2020
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Simple Motion, Reference Map

Consider, for example, the motion,
𝐱 = 𝝌 𝐗, 𝑡 = 𝑡𝑋1 + 𝑘1𝑋2 𝐞1 + 𝑘2𝑋1 + 𝑡𝑋2 𝐞2 + 𝑡𝐞3

• Where 𝑘1 and 𝑘2 are constants, and 𝑡 is the time variable. To 
obtain the reference map, we can invert this function and obtain,

𝐗 = 𝝌−𝟏 𝐱, 𝑡 =
𝑡𝑥1 − 𝑘1𝑥2
𝑡2 − 𝑘1𝑘2

𝐄1 +
𝑡𝑥2 − 𝑘2𝑥1
𝑡2 − 𝑘1𝑘2

𝐄2 +
𝑥3
𝑡
𝐄3

Friday, February 7, 2020
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Examples of Simple Motions

The following examples of simple motions have been named:

• Pure translation, 𝛘 𝐗, 𝑡 = 𝐗 + 𝐜(𝑡), where 𝐜 is a differentiable vector-
valued function of time.

• Pure rotation, 𝛘 𝐗, 𝑡 = 𝐐(𝑡)𝐗, where 𝐐 is a proper orthogonal function. (A 
way of saying that it is a rotation function of time).

• Simple Shear. 𝛘 𝐗, 𝑡 = 𝐈 + 𝛼 𝑡 𝐞1 ⊗𝐞2 𝐗, where 𝛼 is a differentiable, 
scalar valued function of time. Q: Transpose the dyad and what do you get? 
Compare to the original shear motion.

Friday, February 7, 2020
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Simple Shear

• The Mathematica graphic is about Uniform Shear.
The Deformation gradient here is easily 
calculated by hand. Do this to ensure you don’t 
get lost in the mechanical computation and lose 
the context:

𝐱 = 𝛘 𝐗 = 0.5 + 𝑋1 + 0.5𝑋2 𝐞1 + 𝑋2𝐞2

• for the element occupying 𝑋1𝐄1 + 𝑋2𝐄2 initially.

Friday, February 7, 2020
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Deformation Gradient of Simple Shear

𝜕𝑥1

𝜕𝑋1
= 1,

𝜕𝑥1

𝜕𝑋2
= 0.5,

𝜕𝑥1

𝜕𝑋3
= 0 and 

𝜕𝑥2

𝜕𝑋2
=

𝜕𝑥3

𝜕𝑋3
with all other 

components of the deformation gradient vanishing.
1 0.5 0
0 1 0
0 0 1

• is the matrix of the deformation gradient 
components.

Friday, February 7, 2020

26

oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii



Uniform Extension

• Consider the unit cube with the transformation 
vector:

𝐱 = 𝛘 𝐗 = 𝛼1𝑋1𝐞1 + 𝛼2𝑋2𝐞2 + 𝛼3𝑋3𝐞3

• Note that uniaxial extension can be obtained by 
allowing two of the constants to be unity while 
biaxial will be ensured by one of the constants 
becoming one as follows:

• Uniaxial: 𝐱 = 𝛘 𝐗 = 𝛼1𝑋1𝐞1 + 𝑋2𝐞2 + 𝑋3𝐞3

• Biaxial: 𝐱 = 𝛘 𝐗 = 𝑋1𝐞1 + 𝛼2𝑋2𝐞2 + 𝛼3𝑋3𝐞3

• Pure Dilatation: 𝐱 = 𝛘 𝐗 = 𝛼(𝑋1𝐞1 + 𝑋2𝐞2 + 𝑋3𝐞3)

Friday, February 7, 2020
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The 1 − 𝑥 −1 Riddle
To keep you awake in class!



Primary 5: 
Long 

Division

Long Division

Friday, February 7, 2020
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Foolish 
Crammer

1 − 𝑥 −1 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 +⋯

• No thought, no sense just memorize and 
give back to the teacher when asked!

• Something a Primary 5 pupil can achieve! 
Simple Long division!

Friday, February 7, 2020
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Senior Secondary School 3: Binomial Theorem

𝑎 + 𝑏 𝑛 = 𝑎𝑛𝑏0 + 𝑛𝑎𝑛−1𝑏1 +
𝑛 𝑛 − 1

2!
𝑎𝑛−2𝑏2 +

𝑛 𝑛 − 1 (𝑛 − 2)

3!
𝑎𝑛−3𝑏3 +⋯

• For example

𝑎 + 𝑏 3 = 𝑎3𝑏0 + 3𝑎3−1𝑏1 +
3 3 − 1

2!
𝑎3−2𝑏2 +

3 3 − 1 (3 − 2)

3!
𝑎3−3𝑏3 +⋯

= 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3

1 − 𝑥 −1 = 1−1(−𝑥)0+ −1 1−2 −𝑥 1 +
−1 −2

2!
1−3 −𝑥 2 +

−1 −2 −3

3!
1−4 −𝑥 3

+
−1 −2 −3 (−4)

4!
1−5 −𝑥 4 +

−1 −2 −3 (−4)(−5)

5!
1−6 −𝑥 5…

Friday, February 7, 2020
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GEG 30x Engineering Mathematics

• Taylor Series near the point 𝑥 = 𝑎,

𝑓 𝑥 = 𝑓 𝑎 + 𝑥 − 𝑎 𝑓′ 𝑎 +
𝑥 − 𝑎 2

2!
𝑓′′ 𝑎 + ⋯+

𝑥 − 𝑎 𝑛

𝑛!
𝑓𝑛 𝑎 + ⋯

Here we are evaluating the function, 𝑓 𝑥 =
1

1−𝑥
near the point, 𝑥 = 0.

𝑓′ 𝑥 =
1

1 − 𝑥
= −1 1 − 𝑥 −2 −1 ⇒ 𝑓′ 0 = 1

𝑓′′ 𝑥 =
𝑑

𝑑𝑥

1

1 − 𝑥

2

= −2 1 − 𝑥 −3 −1 ⇒ 𝑓′′ 0 = 2 × 1 = 2!

It is not difficult to show that 𝑓𝑛 0 = 𝑛! so that, as before,

1 − 𝑥 −1 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 +⋯

Friday, February 7, 2020
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Mathematica Compliant Engineer

Friday, February 7, 2020
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But is the expansion correct?

• For example, let us try 𝑥 = 2 and find the answer given by the 
expansion:

1 − 𝑥 −1 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 +⋯

• So that,
1 − 2 −1 = 1 + 2 + 22 + 23 + 24 + 25 +⋯

= 1 + 2 + 4 + 8 + 16 + 24 +⋯

• If at this point, you do not know what is happening and cannot 
solve this riddle, you are a foolish crammer! You have learned 
nothing here! Matters not what marks you got!
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Solution to Riddle

Parenthetical Issues:

• Convergence properties of Infinite Series

• Remainder estimate of Taylor expansion

• You did not bother cramming those. 

It turns out that they are far more important than cramming the formula. 

See how easy it is for software to spit out the result. If I need the result in 

my business, I will rather buy the software than hire you! I need someone 

that understands how to interpret the results and knows when they are 

valid! Crammers are more than useless to any serious business!
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The Girl & Boy

• There are several skills that can be picked up this semester:

1. Solid Modeling

2. Animation

3. Simulation

4. Computation

5. Design & Analysis

Each of these, on their own, if you were to master them, not only can 
fetch your daily bread, can also make you an asset to your family, your 
people and your country. I am afraid not many seem to realize that! 

Continuum Mechanics is to give you insight to the theoretical 

underpinnings of these. Memorization is OK. Insight and 

understanding are more important. When you choose 

cramming over insight, you are self-immolating!
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Polar 
Decomposition 

Theorem

Friday, February 7, 2020

• In this section, we are looking at a multiplicative 
decomposition, motivated by the reality that it is 
NOT the entire transformation wrought by the 
deformation gradient that concerns us in the study 
of geometrical changes resulting from the 
application of loads. 

• It successfully separates portions of the 
deformation gradient that do not cause shape 
changes from the parts that are relevant in 
geometric modifications resulting from the 
transformation.

For a given deformation gradient 𝑭, there is
a unique rotation tensor 𝑹, and unique, 
positive definite, symmetric tensors 
𝑼 and 𝑽 for which, 𝑭 = 𝑹𝑼 = 𝑽𝑹

• 𝑼 is called the Right Stretch Tensor, and 𝑽 the 
Left Stretch Tensor.
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• The proof of this important theorem is given subsequently. More important though is 
to know the meaning:

• Beginning from any material configuration, the transformation given by the 
deformation gradient leads to the spatial configuration. However, this transformation 
can be achieved in two two-stage processes. 

• A stretch in the material configuration through the Right Stretch Tensor 𝐔; followed by a rotation by the 
rotation tensor 𝐑 to the spatial configuration. Note that the rotation tensor is neither a material nor a 
spatial tensor. It is, like the deformation gradient, a two-toe tensor; operating on a material vector and 
producing a spatial tensor.

• A transformation to the spatial configuration by the rotation tensor 𝐑, followed by a stretch to the final 
state in that configuration by the left stretch tensor. The latter is a spatial tensor as it takes a spatial vector 
(output of the rotation tensor), and returns a spatial vector.

Meaning of Polar 
Decomposition

Friday, February 7, 2020
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Polar Decomposition: Proof

There are two stages to establish the Polar Decomposition of the 
Deformation Gradient:

1. We show that the Right Cauchy-Green Tensor, 
𝐂 = 𝐅𝐓𝐅

is symmetric and positive definite. 

2. Use this fact to find 𝐔, such that 𝐂 = 𝐅𝐓𝐅 = 𝐔𝐔.
𝐑 = 𝐅𝐔−1

3. Then find 𝐕 in terms of 𝐔. 

Friday, February 7, 2020
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Symmetry & 
Positive 

Definiteness 
of 𝐂

Friday, February 7, 2020

• It is obvious that 𝐂 = 𝐅T𝐅 is symmetric because its 
transpose is

𝐂T = 𝐅T𝐅 = 𝐂

• Now select ANY real non-zero vector 𝐮. We can 
find a vector 𝐛 = 𝐅𝐮.

The quadratic form, 
𝐮 ⋅ 𝐅T𝐅𝐮 = 𝐛 ⋅ 𝐅𝐮 = 𝐛 2 > 0

Since we selected 𝐮 arbitrarily, and we have 
reached the conclusion that any quadratic form 
with 𝐂 is always greater than zero, we have 
proved that 𝐂 is positive definite.
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Square Root of 𝐂

• Every Positive Definite Tensor has a positive definite square root: 
The right Cauchy-Green Tensor

𝐔𝐔 = 𝐂 = 𝐅T𝐅 = 𝐔T 𝐑T𝐑 𝐔 = 𝐔T𝐈 𝐔 = 𝐔2

• Shows that 𝐂 = 𝐅T𝐅 = (𝐑𝐔)T𝐑𝐔 so that 𝐅 = 𝐑𝐔. To complete the 
proof, write,

𝐅 = 𝐑𝐔 = 𝐕𝐑

and we immediately find that 𝐕 = 𝐑𝐔𝐑T by simply post-multiplying 
the above by 𝐑T. Since 𝐔 is positive definite, so must 𝐕. Obvious, if 
we consider arbitrary real vectors 𝐮, 𝐯 such that 𝐯 ≡ 𝐑T𝐮, 

𝐮 ⋅ 𝐕𝐮 = 𝐮 ⋅ 𝐑𝐔𝐑T𝐮 = 𝐮 ⋅ 𝐑𝐔𝐯 = 𝐯 ⋅ 𝐔𝐑T𝐮 = 𝐯 ⋅ 𝐔𝐯 > 0

Friday, February 7, 2020
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Right Cauchy Green Tensor

• In the proof of Polar Decomposition Theorem, we encounter another 
important tensor: The Right Cauchy-Green Tensor

𝐂 = 𝐅T𝐅 = 𝐔T 𝐑T𝐑 𝐔 = 𝐔T𝐈 𝐔 = 𝐔2

• It is said to be “Right” because there is a “Left” Cauchy-Green Tensor:
𝐅𝐅T that can be obtained by the product of the deformation gradient 
and its transpose. 

• In the former, the deformation gradient is at the right hand; in the 
latter, it is at the left side – hence the distinguishing names. It is easily 
shown that,

𝐕𝟐 = 𝐅𝐅𝐓

Friday, February 7, 2020
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• Remember that referential and spatial configurations DO NOT 
coexist. Bringing vectors from either state together is artificial, not 
real.

• Tensors that come to our attention are classified by what kinds of 
arguments they can take and what kind of vectors they produce. 

• On the other hand, vectors are classified by where they reside. For 
example, the material vector is so called because it is made up of 
elements in the referential (material) configuration. Spatial tensors 
are similarly defined.

Referential (Material) & Spatial 
Vectors, Tensors

Friday, February 7, 2020
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Material, Spatial & Two-Towed 
Tensors

• A tensor that takes a material argument and produces 
a material result is defined as a material tensor.

• Right Cauchy Green Tensor, Right Stretch Tensor

• A tensor that takes a spatial argument and produces a 
spatial result is defined as a spatial tensor.

• Left Cauchy-Green Tensor, Left Stretch Tensor

• A Tensor that takes a material argument and produces 
a spatial result transforms a vector from the 
referential state to an image in the spatial 
configuration. 

• Examples: Deformation Gradient, Rotation Tensor

Friday, February 7, 2020
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Determine the Type of Tensor

• Consider a spatial vector 𝐬. The dot product 𝐬 ⋅ 𝑑𝐱 has physical significance 
while 𝐬 ⋅ 𝑑𝐗 does not as the two operands do not exist at the same time so 
an operation between them makes no physical sense. Clearly, 

𝐬 ⋅ 𝑑𝐱 = 𝐬 ⋅ 𝐅𝑑𝐗 = 𝑑𝐗 ⋅ 𝐅T𝐬

• meaning that 𝐅T𝐬 is a material vector so that 𝐅T transforms spatial vectors 
to material. Beginning with a material vector 𝐭. The physically meaningful 
product, 

𝐭 ⋅ 𝑑𝐗 = 𝐭 ⋅ 𝐅−1𝑑𝐱 = 𝑑𝐱 ⋅ 𝐅−𝐓𝐭

• Showing that 𝐅−𝐓, just like 𝐅, transforms material to spatial while 𝐅−1 like 
𝐅T transforms spatial vectors to material. These tensors are two-toed.

Friday, February 7, 2020
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Area Ratio

• For an element of area 𝑑𝐚 in the deformed body with a vector 𝑑𝐱
projecting out of its plane (does not have to be normal to it). For 
the elemental volume, we have the following relationship:

𝑑𝐯 = 𝐽𝑑𝐕 = 𝑑𝐚 ⋅ 𝑑𝐱 = 𝐽𝑑𝐀 ⋅ 𝑑𝐗

• where 𝑑𝐀 is the element of area that transformed to 𝑑𝐚 and 𝑑𝐗 is 
the image of 𝑑𝐱 in the undeformed material. Noting that, 𝑑𝐱 =
𝐅𝑑𝐗 we have,

𝑑𝐚 ⋅ 𝐅𝑑𝐗 − 𝐽𝑑𝐀 ⋅ 𝑑𝐗 = 0
= 𝐅T𝑑𝐚 − 𝐽𝑑𝐀 ⋅ 𝑑𝐗

Friday, February 7, 2020
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Area Ratio

• For an arbitrary vector 𝑑𝐗, we have:
𝐅T𝑑𝐚 − 𝐽𝑑𝐀 = 𝐨

• so that,
𝑑𝐚 = 𝐽𝐅−T𝑑𝐀 = 𝐅𝐜𝑑𝐀

• where 𝐅𝐜 is the cofactor tensor of the 
deformation gradient.

Friday, February 7, 2020
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Deriving Reciprocal Bases

• Reciprocal bases are easily derived. The dyad 
product of a reciprocal bases with the natural bases 
yield the identity tensor. 

• In Cartesian systems, the natural and the reciprocal 
bases coincide. In curvilinear coordinates such as 
Cylindrical and Spherical Polar, this is not so. For 
example, for spherical polar, the reciprocal basis 
can be derived from the natural basis (obtained by 
differentiating the position vector), using 
superscript to represent the reciprocal bases, as 
follows:

Friday, February 7, 2020
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Spherical Reciprocal Bases

𝐞1

𝐞2

𝐞3
=

1

𝐞1 ⋅ 𝐞1
0 0

0
1

𝐞2 ⋅ 𝐞2
0

0 0
1

𝐞3 ⋅ 𝐞3

𝐞𝜌
𝜌𝐞𝜃

𝜌 sin 𝜃 𝐞𝜙

=

1 0 0

0
1

𝜌2
0

0 0
1

𝜌2 sin2 𝜃

𝐞𝜌
𝜌𝐞𝜃

𝜌 sin 𝜃 𝐞𝜙
=

𝐞𝜌
𝜌𝐞𝜃
𝜌2

𝜌 sin 𝜃 𝐞𝜙

𝜌2 sin2 𝜃

=

𝐞𝜌
𝐞𝜃
𝜌
𝐞𝜙

𝜌 sin 𝜃
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Natural & Reciprocal Bases

• This can be repeated for other coordinate systems, e.g. the 
cylindrical. The results can be summarized as follows:

Friday, February 7, 2020

Coordinate System Natural Basis Vectors Reciprocal Base Vectors

Cartesian
𝜕𝐫

𝜕𝑥1
= 𝐞1;

𝜕𝐫

𝜕𝑥2
= 𝐞2;

𝜕𝐫

𝜕𝑥3
= 𝐞3

{𝐞1, 𝐞2, 𝐞3}

Cylindrical Polar
𝜕𝐫

𝜕𝑟
= 𝐞𝑟;

𝜕𝐫

𝜕𝜙
= 𝑟𝐞𝜙;

𝜕𝐫

𝜕𝑧
= 𝐞𝑧

𝐞𝑟;
𝐞𝜙

𝑟
; 𝐞𝑧

Spherical Polar
𝜕𝐫

𝜕𝜌
= 𝐞𝜌;

𝜕𝐫

𝜕𝜃
= 𝜌𝐞𝜃;

𝜕𝐫

𝜕𝜙
= 𝜌 sin𝜃𝐞𝜙 𝐞𝜌;

𝐞𝜃
𝜌
;

𝐞𝜙

𝜌 sin 𝜃
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Deformation Gradient: Cartesian to Cartesian

• If the Referential State is based on Cartesian unit vectors, 𝐄𝑖 , 𝑖 = 1,2,3 and we 
have 𝐞𝛼 , 𝛼 = 1,2,3 for the spatial state. Deformation takes the form, 𝐱 =
𝝌 𝐗, 𝑡 = 𝝌 𝑋1, 𝑋2, 𝑋3, 𝑡 in this case, the Deformation Gradient,

𝐅 =
𝜕𝜒𝛼
𝜕𝑋𝑗

𝐞𝛼 ⊗𝐄𝑗

= 𝐞1 𝐞2 𝐞3

𝜕𝜒1
𝜕𝑋1

𝜕𝜒1
𝜕𝑋2

𝜕𝜒1
𝜕𝑋3

𝜕𝜒2
𝜕𝑋1

𝜕𝜒2
𝜕𝑋2

𝜕𝜒2
𝜕𝑋3

𝜕𝜒3
𝜕𝑋1

𝜕𝜒3
𝜕𝑋2

𝜕𝜒3
𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

.
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Deformation Gradient: Cylindrical to 
Cylindrical

• In the case of orthogonal systems, linear or curvilinear, this relationship becomes 
simply dividing by the magnitude of the respective natural base vector. The 
deformation gradient from a material configuration in cylindrical Polar coordinates 
𝑅, Θ, 𝑍 to a spatial configuration 𝑟, 𝜃, 𝑧 in the same coordinate system is,

𝐅 = 𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧

𝜕𝑟

𝜕𝑅

𝜕𝑟

𝜕Θ

𝜕𝑟

𝜕𝑍
𝜕𝜃

𝜕𝑅

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕𝑍
𝜕𝑧

𝜕𝑅

𝜕𝑧

𝜕Θ

𝜕𝑧

𝜕𝑍

⊗

𝐄𝑹
𝐄Θ
𝑅
𝐄𝑍

= 𝐞𝑟 𝐞𝜃 𝐞𝑧

𝜕𝑟

𝜕𝑅

1

𝑅

𝜕𝑟

𝜕Θ

𝜕𝑟

𝜕𝑍

𝑟
𝜕𝜃

𝜕𝑅

𝑟

𝑅

𝜕𝜃

𝜕Θ
𝑟
𝜕𝜃

𝜕𝑍
𝜕𝑧

𝜕𝑅

1

𝑅

𝜕𝑧

𝜕Θ

𝜕𝑧

𝜕𝑍

⊗

𝐄𝑹
𝐄Θ
𝐄𝑍

.

• We used upper case to depict the Material system. It is the reciprocal system.
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Deformation Gradient: Spherical to Spherical

• If both were spherical, 𝜚, Θ,Φ → 𝜌, 𝜃, 𝜙 the deformation gradient becomes,

•

𝐅 = 𝐞𝜌 𝜌𝐞𝜃 𝜌 sin 𝜃 𝐞𝜙

𝜕𝜌

𝜕𝜚

𝜕𝜌

𝜕Θ

𝜕𝜌

𝜕Φ
𝜕𝜃

𝜕𝜚

𝜕𝜃

𝜕Θ

𝜕𝜃

𝜕Φ
𝜕𝜙

𝜕𝜚

𝜕𝜙

𝜕Θ

𝜕𝜙

𝜕Φ

⊗

𝐄𝜚
𝐄Θ
𝜚
𝐄Φ

𝜚 sinΘ

= 𝐞𝜌 𝐞𝜃 𝐞𝜙

𝜕𝜌

𝜕𝜚

1

𝜚

𝜕𝜌

𝜕Θ

1

𝜚 sinΘ

𝜕𝜌

𝜕Φ

𝜌
𝜕𝜃

𝜕𝜚

𝜌

𝜚

𝜕𝜃

𝜕Θ

𝜌

𝜚 sinΘ

𝜕𝜃

𝜕Φ

𝜌 sin 𝜃
𝜕𝜙

𝜕𝜚

𝜌 sin 𝜃

𝜚

𝜕𝜙

𝜕Θ

𝜌 sin 𝜃

𝜚 sinΘ

𝜕𝜙

𝜕Φ

⊗

𝐄𝜚
𝐄Θ
𝐄Φ

.
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Coordinate System Pairings

• We are completely free to represent the initial coordinate system any way 
we like. 

• We can therefore have Cartesian to Spherical Polar or Spherical Polar to Cylindrical Polar 
transformations. 

• It is a matter of which system best describes the deformation 
transformations as will be shown in examples.

Friday, February 7, 2020
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Illustrative Example

• Consider the length 2𝐿 of a thin rod uniformly bent 
into a semicircle as shown. 

• Referential configuration is the straight rod, 
Spatial, after the bending, is the semi-circular rod. 
If the rod’s length does not increase as a result of 
shape change, then 𝜋𝑅 = 2𝐿. Clearly, radius 𝑅 =
2𝐿/𝜋

• A point previously located at the distance 𝑥 from 
the origin is now at angle 𝜃. The relationship 
between the two is linear:

𝑥

2𝐿
=
𝜃

𝜋
⇒ 𝜃 =

𝜋𝑥

2𝐿

Friday, February 7, 2020

𝑥 0 𝐿

2

𝐿 −𝐿

𝜃 0 𝜋

4

𝜋

2
−
𝜋

2

How else can you 

obtain this formula?

57

oafak@s2pafrica.org; oafak@unilag.edu.ng         https://lms.s2pafrica.com/courses/continuum-mechanics-ii



Bar to 
Semicircular 

Region

Friday, February 7, 2020
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Bar to Semicircular Region

• Imagine that we bent the bar shown into a 
semicircular region. Transformation function can 
be found by the following consideration: Note 
that each horizontal filament in the original bar 
becomes a circular filament in the spatial 
configuration. The vertical undeformed sections 
become radial sections in the spatial state. Let 
the centerline be a semicircle at a distance 𝑅 and 
let the thickness contract uniformly with a factor 
𝛼

⇒ 𝑥1 = 𝑟 = 𝜒1 𝑋1, 𝑋2, 𝑋3, 𝑡 = 𝑅 + 𝛼𝑋2, and

𝑥2 = 𝜃 = 𝜒2 𝑋1, 𝑋2, 𝑋3, 𝑡 =
𝜋𝑋1
2𝐿

• If the bar contracts uniformly in 𝑋3 direction, 
𝑥3 = 𝑧 = 𝜒3 𝑋1, 𝑋2, 𝑋3, 𝑡 = 𝛽𝑋3
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Referential & Spatial Configurations

• Clearly, the referential configuration here is the bar; Spatial is the 
semicircular bar.

• Deformation is such that the spatial is in cylindrical coordinates, 
the referential is in Cartesian.

• Deformation gradient requires the reciprocal Cartesian bases 
which are the same as the Cartesian. In the spatial, we use the 
cylindrical. The full computation given in Q4.7, is repeated here:
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Deformation Gradient

𝐅 = 𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧

𝜕𝑟

𝜕𝑋1

𝜕𝑟

𝜕𝑋2

𝜕𝑟

𝜕𝑋3
𝜕𝜃

𝜕𝑋1

𝜕𝜃

𝜕𝑋2

𝜕𝜃

𝜕𝑋3
𝜕𝑧

𝜕𝑋1

𝜕𝑧

𝜕𝑋2

𝜕𝑧

𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

= 𝐞𝑟 𝐞𝜃 𝐞𝑧 𝑟

0
𝜕𝑟

𝜕𝑋2
0

𝜕𝜃

𝜕𝑋1
0 0

0 0
𝜕𝑧

𝜕𝑋3

⊗
𝐄1
𝐄2
𝐄3

= 𝐞𝑟 𝐞𝜃 𝐞𝑧

0 𝛼 0
𝜋𝑟

2𝐿
0 0

0 0 𝛽

⊗
𝐄1
𝐄2
𝐄3

=
𝜋𝑟

2𝐿
𝐞𝜃 𝛼𝐞𝑟 𝛽𝐞𝑧 ⊗

𝐄1
𝐄2
𝐄3

=
𝜋𝑟

2𝐿
𝐞𝜃 ⊗𝐄1 + 𝛼𝐞𝑟 ⊗𝐄2 + 𝛽𝐞𝑧 ⊗𝐄3
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Right Cauchy-Green/Stretch Tensors

• Clearly, 

𝐂 = 𝐅T𝐅 =
𝜋𝑟

2𝐿
𝐄1 ⊗𝐞𝜃 + 𝛼𝐄2 ⊗𝐞𝑟 + 𝛽𝐄3 ⊗𝐞𝑧

𝜋𝑟

2𝐿
𝐞𝜃 ⊗𝐄1 + 𝛼𝐞𝑟 ⊗𝐄2 + 𝛽𝐞𝑧 ⊗𝐄3

=
𝜋𝑟

2𝐿
𝐄1 ⊗𝐞𝜃

𝜋𝑟

2𝐿
𝐞𝜃 ⊗𝐄1 +⋯+ 𝛽𝐄3 ⊗𝐞𝑧 𝛽𝐞𝑧 ⊗𝐄3

=
𝜋𝑟

2𝐿

2

𝐄1 ⊗𝐄1 + 𝛼2𝐄2 ⊗𝐄2 + 𝛽2𝐄3 ⊗𝐄3

• since each set of basis vectors is orthonormal, and the Right Stretch Tensor,

𝐔 =
𝜋𝑟

2𝐿
𝐄1 ⊗𝐄1 + 𝛼𝐄2 ⊗𝐄2 + 𝛽𝐄3 ⊗𝐄3

• Is the square root of the Right Cauchy Green tensor. The positive square roots are taken since 

both 𝐂 as well as 𝐔 are necessarily positive definite and can only have positive eigenvalues.
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Computing Functions in Cylindrical Systems

𝑟 = 𝑟 𝑅, 𝛩, 𝑍 = 𝜒𝑟 𝑅, 𝛩, 𝑍 ; 𝜃 = 𝜃 𝑅, 𝛩, 𝑍 = 𝜒𝜃 𝑅,𝛩, 𝑍 ; 𝑧 = 𝑧 𝑅, 𝛩, 𝑍 = 𝜒𝑧 𝑅,𝛩, 𝑍

𝑑𝐱 =
𝑑𝐱

𝑑𝐗
𝑑𝐗 =

𝑑𝛘

𝑑𝐗
𝑑𝐗 = 𝐅 𝑑𝐱

The spatial position vector, 𝐱 = 𝑟𝐞𝑟 𝑟, 𝜃 + 𝑧𝐞𝑧 ⇒

𝑑𝐱 =
𝜕𝐱

𝜕𝑟
𝑑𝑟 +

𝜕𝐱

𝜕𝜃
𝑑𝜃 +

𝜕𝐱

𝜕𝑧
𝑑𝑧 = 𝐞𝑟𝑑𝑟 + 𝑟

𝜕𝐞𝑟 𝑟, 𝜃

𝜕𝜃
𝑑𝜃 + 𝐞𝑧𝑑𝑧

= 𝐞𝑟𝑑𝑟 + 𝑟𝐞𝜃𝑑𝜃 + 𝐞𝑧𝑑𝑧

Similarly, in the Referential, 

𝑑𝐗 =
𝜕𝐗

𝜕𝑅
𝑑𝑅 +

𝜕𝐗

𝜕𝛩
𝑑𝛩 +

𝜕𝐗

𝜕𝑍
𝑑𝑍 = 𝐄𝑅𝑑𝑅 + 𝑅𝐄𝛩𝑑𝛩 + 𝐄𝑍𝑑𝑍
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Cylindrical Deformation Gradient

𝑑𝐱 =
𝑑𝛘

𝑑𝐗
𝑑𝐗 = 𝐅 𝑑𝐗 = 𝐞𝑟 𝑟𝐞𝜃 𝐞𝑧

𝜕𝜒𝑟
𝜕𝑅

𝜕𝜒𝑟
𝜕𝛩

𝜕𝜒𝑟
𝜕𝑍

𝜕𝜒𝜃
𝜕𝑅

𝜕𝜒𝜃
𝜕𝛩

𝜕𝜒𝜃
𝜕𝑍

𝜕𝜒𝑧
𝜕𝑅

𝜕𝜒𝑧
𝜕𝛩

𝜕𝜒𝑧
𝜕𝑍

⊗

𝐄𝑅
𝐄𝛩
𝑅
𝐄𝑍

𝐄𝑅
𝑅𝐄𝛩
𝐄𝑍

So that the deformation gradient, in terms of unit vector sets {𝐞𝑟 , 𝐞𝜃 , 𝐞𝑧} and 𝐄𝑅, 𝐄𝛩 , 𝐄𝑍 , 𝐅 can be written as,

𝐅 =

𝜕𝜒𝑟
𝜕𝑅

1

𝑅

𝜕𝜒𝑟
𝜕𝛩

𝜕𝜒𝑟
𝜕𝑍

𝑟
𝜕𝜒𝜃
𝜕𝑅

𝑟

𝑅

𝜕𝜒𝜃
𝜕𝛩

𝑟
𝜕𝜒𝜃
𝜕𝑍

𝜕𝜒𝑧
𝜕𝑅

1

𝑅

𝜕𝜒𝑧
𝜕𝛩

𝜕𝜒𝑧
𝜕𝑍
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