
Object-Oriented Python II
OA Fakinlede

Contents 2

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

No Description Slides From

1 Purpose of Object-Oriented Programming 3

2 Types, Classes, Attributes & Methods 6

3 Instance & Class Methods 13

4 Getters & Setter 15

5 Constructors 22

6 Initializers & Other Dunder Methods 23

7 Operator Overloading 26

Purpose of Object-Oriented Programming

• Once you understand the basic object types: int, float, str, etc.,
and you can deliberately control the flow of execution, you are
basically on your way to program in virtually any language.

• Most programming languages also afford you several pre-written
code packed in different libraries that can help you achieve much
with less effort.
• You bring many of the functionality of such libraries into you code by

importing them.

• You can get a lot done by simply writing code without
understanding OOP paradigm.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

3

Purpose of Object-Oriented Programming

• The Fusion 360 API, as we have seen is a large library specifically
designed for 3D solid modeling, design and simulation.
• Huge library; so big, like any API, that simply looking at the different things

it has may leave you despaired as to if you can ever master using them.

• OOP is a programming paradigm
• Rearrangement of your code, to create a structural, logical consistency,

• Large libraries and large programs become relatively easy to use.

• These libraries are themselves constructed in an OOP way.

• Understanding OOP helps you to understand how they are made and how
you can be effective in using them.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

4

OOP and Large Programs

• The ability to create, extend, use, reuse and deploy large
programs, libraries and Programming Interfaces require OOP logic.
• Before we explain the Object model of the Fusion 360 API, there are some

basic ideas of OOP that must be properly understood.

• We will use simple – if not even trivial examples to make these ideas clear.

• The ideas themselves are deep and sublime. Once you understand them, the
Object model of any API will easily become transparent.

• In today’s lecture, we build on the student class we started last week, and
another simple class after which we look at Fusion 360 Objects.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

5

Types, Classes, Attributes & Methods

• Apart from the names we give to identifiers in our programs so far,
perhaps the most important thing about anything we manipulate
in our code, is the type it belongs to.

• You recall that what I can do with numbers 12 and 13 will depend
on whether they are to be treated as integers or strings.
• Once that is established, we can add them, may be able to multiply them,

or print them to an output device or use them in some other way.

• These are built-in types.

• You also have lists, and other collection types. These non-scalar types are
part of the core language.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

6

Types, Classes, Attributes & Methods

• By the time you import the adsk.core, adsk.fusion, etc. and other
libraries, you begin to see things like Point3D, SketchLines,
SketchArcs, etc.
• These also are types. They are types that are displayed by graphical objects

on which basis you build your models.

• What is the difference between these and ints, floats, lists, sets or dicts?

• It is VERY SIMPLE.
• The latter are given to you in the core language,

• The former are made in the API

• They are all regarded, in Pythons as OBJECTS

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

7

OOP Empowerment

• OOP empowers you to create, use and deploy objects.
• Create from scratch, or based on an existing object.

• When you do the latter, you are simply adding functionality to an existing
type to make them more like what you want.

• In OOP, you will not need to know the details of how the base objects were
made for you to “inherit” its abilities and then add further abilities. You will
be essentially responsible ONLY for the addition.

• The objects you create are “First class” in the sense that the only
difference in their types comes from the way they are created rather than
the way they are used.

• OOP therefore essentially empowers you to make new types, new objects

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

8

Examples: Easier than Theory

• Last week we created the student class. This we, we will add the
time class to show what we mean by classes, objects, attributes
and behaviour.
• It is a good challenge to make this class more realistic. What attributes may

you add: Gender, Program of study, Credits already passed, Credits
remaining, Club membership, Sporting activities, Age, Height, weight, etc.

• What methods (behaviours) may you add? Compute Good standing, IT Done?
Qualified for BB team? Etc.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

9

The New Time Class

• Simple idea. Time given in days, hours, minutes and seconds.
• NewTime Class can turn time in minutes or secs to standard time

• Convert standard time to minutes or secs.

• Can add time in any form

• Can throw exceptions when time is not correctly given

• What other things could you do? For example, add two days, 13
hours, 50 mins and 50 secs to One day, 3 hours, 46 minutes and 40
secs.
• Can you write a program to do this?

• We will do it by creating a NewTime Class that “knows” how to add itself!

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

10

• Initially, to create a
student, we can
simply make two
strings and a list of six
integers. The
construction call in
the expression,

• Creates a student on
these data values.

• Suppose we want to
create a student in
another way. All we
have is a name. Can
we do it?

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

11

Examples from the API

• In Fusion 360 API, you created Point3D not simply by passing the 3
coordinates to the constructor as we have done here. You did it by
passing these to a “factory” method called create. You have a
statement like:

• What is significant about this compared to simply

• The factory method, instead of the simple constructor gives more
flexibility. You can make several factory methods, There is only
one constructor.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

12

Instance & Class Methods

• Compare two methods:

• The first is an instance method while the second is a class
method.

• An instance method contains a compulsory argument, “self”. The
class method, apart from the decorator @classmethod, contains a
compulsory argument, “cls”.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

13

Class Methods

• One of the things you can do with a class method is to create a
named constructor or “Factory” method. Here we used it to
create a student just because we know a name only.
• We can, later in the program supply other attributes for the same student.

• See the flexibility here. The regular constructor, supplied by Python for us,
requires us to know everything about a student before we can create one.
The factory method can be more flexible. But this creates another issue:

• When we are ready, how do we supply the rest of the information?
• We can do this by assigning to the attributes directly.

• A more professional way to do it is the creation of getter and sette
properties as we show next

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

14

Getters & Setters

• The code here creates the getter and
setter properties for matric and for
grades.

• The properties defined blur the
difference between functions (or
methods) and attributes or data.

• Is it data? Is it function? The answer is
that it is one, and acts like the other.
When what you have is a method, and,
in this one case, you handle it as if it is
simply a value.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

15

Setting Values with Properties

• Statements 54 and 56 are examples of calls to the setter
properties, matric and grades in the Student class.

• Using the property on the RHS of an expression is a call to the
getter function.

• Making a property “read only” is achieved by refusing to write a
setter function for it.

• There are other ways to achieve the same functionality, for
example by writing to the internal attributes directly. The
property method described here is the correct way to do it.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

16

Enforcing Data Format

• The first four lines of the dunder init method compels a particular
format for the matric.

• A ValueError exception is raised in the event of non-conformity.

• Instead of handling exceptions manually like we have done, we
can place the code in a try…except block and handle all value
errors together with:

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

17

Summary for the Student Class

• The student class makes it possible to create objects of the
Student Type. The class itself is the definition of the type and
every Student object is created by following the rules set in the
Student class

• An object of the student class can be created by a call to the the
constructor with arguments passed to the initializer to create the
attributes of each student created: Names, Matric, Grades, etc.
These are bound to each student.

• The student class also has methods that each student instance can
call to do things with each class instance. For example, you may
want to find the average of a student. Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

18

Summary for the Student Class

• An instance method possesses all information needed to do things
for the instance. It is limited, in this case to “self” that is, to the
particular instance, the particular student, and no more.
• In the creation of an instance method, “self” refers to the instance that

calls the method. Ity therefore has the name, matric, and grades of “self”
that, the student on which the method is called.

• This means that even if an instance method appears to have no argument, it
already has one: The instance calling the method!

• std.avg() or std.grades() in line 60 is finding the avg or accessing the grades
of a particular student, std.

• An instance method may have additional arguments. Whether it does, or
not, the class object, class instance that it is called for is already an
argument.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

19

Class Method

• A class method is different.
• First, instead of “self” it has “cls” for class. It is working on behalf of the

class as a whole – not just a particular instance of the class.

• In our example here, we used a class method to create a named
constructor, capable of “manufacturing” class instances.

• Remember that we have seen such factory functions already in
Fusion 360 API:
• Open any Fusion 360 API file and identify calls to factory methods.

• There other uses of class methods we shall see subsequently.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

20

The NewTime Class

• Consider the NewTime Class shown
here.

• We can create a NewTime object
by a call to the constructor. We
could also rely on factory
methods. Identify the factory
method here and imagine other
factory methods that we may want
to create for more flexibility

• What exception may we raise
immediately? If length tt<4?

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

21

Constructors

• Every type: built-in scalar, collection or class has a method having
the same name as the type or class.

• This is the class constructor.
• It is a function that takes an appropriate input, and creates an instance of

the type or class. Such instances are objects of the type in question.

• We also use the constructor as casting functions. For example, passing a
string to the int constructor will attempt to create an integer out of the
string, if possible.

• The example above is a value error exception raised because the int
constructor, while able to decode and make an integer out of ‘12’, was
unable to do the same with ‘1s’.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

22

Dunder Methods

• We have seen that there are instance methods as well as class
methods. Constructors and factory methods are special class
methods that create new instances.
• Other important methods exist. Perhaps the most important are in the

group of methods called dunder methods.

• The portmanteau word, double underscore is used to denote the dounble
underscore that pegins and ends the names of such methods.

• The format for a dunder method for any given name is __name__. There is
underscore at the beginning and at the end of the name: no spaces.

• We look at a few of them

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

23

The __init__() method

• The first thing you may want to do after creating a class instance
may be to create the data that defines the state of the object.
These are the data members of the object.
• The __init__() method is designed to make this happen.

• Once you try to create an instance, the __init__() method is executed and it
usually gives life to the data attributes of the class.

• For the class student, __init__() takes the data in the constructor call, and
assigns them to _name, _matric and _grades attributes in the object. The
single underscore here is to explicitly say that we do not intend to access
these outside the class definition.

• There are other housekeeping duties performed here. But the primary
purpose is the initialization.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

24

The __add__() method

• To illustrate the power of this method,
consider the code here:

• Compare lines 69 and 70. We have two
NewTime instances. We can create a
global function to add them properly.
Such a method is shown in lines 62-64.

• Inside the class definition, look at lines
58-60. It is essentially the same code.
It is the method called when the
regular addition operation is used
between two NewTime objects:

• We have Overloaded the addition
operation for this class! Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

25

Operator Dunder Method Operator Dunder Method OperatorDunder Method

+ __add__(self, other) < __lt__(self, other) -= __isub__(self, other)

– __sub__(self, other) > __gt__(self, other) += __iadd__(self, other)

* __mul__(self, other) <= __le__(self, other) *= __imul__(self, other)

/ __truediv__(self, other) >= __ge__(self, other) /= __idiv__(self, other)

// __floordiv__(self, other) == __eq__(self, other) //=
__ifloordiv__(self,
other)

% __mod__(self, other) != __ne__(self, other) %= __imod__(self, other)

** __pow__(self, other) **= __ipow__(self, other)

>> __rshift__(self, other) – __neg__(self) >>= __irshift__(self, other)

<< __lshift__(self, other) + __pos__(self) <<= __ilshift__(self, other)

& __and__(self, other) ~ __invert__(self) &= __iand__(self, other)

| __or__(self, other) |= __ior__(self, other)

^ __xor__(self, other) ^= __ixor__(self, other)

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

26

Operator Overloading

• To overload an operator is to give it meaning in a different
context.
• The semantics of the overloading is your responsibility.

• The dunder methods listed above are simply the mechanism of the
overloading.

• For example, the addition operation means different things when they occur
between two ints, floats, strs or NewTime objects.

• If the class does not define the proper dunder method, that operator is NOT
defined in that context, and an exception will be raised.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

27

Operator Overloading

• The code here will successfully
execute line 71 while control will
be passed to the exception
handler in line 76.

• This is because, the __add__()
function is defined in the class
instance whereas, the __sub__()
method is not defined.

• We now come to a programming
principle:

• An operation that has not been
defined for the class instance
cannot be performed on the
objects of the class.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

28

Function Overloading

• Python does not support function name overloading in the way C++
or C# does.
• The name mangling with function arguments you have in those languages is

not a viable way to do things in Python.

• Python provides a powerful equivalent of function overloading for
constructors in the way you can create factory methods for specific
purposes as we have shown.

• If you try to do further overloading by creating new functions with the same
name, Python interpreter will not flag an error or raise an exception,
instead, the last definition will overwrite the previous.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

29

Summary

• By way of example, the first principle of Object-Oriented
programming has been enunciated:
• We create new types by making classes and instantiating them to new

objects that have internal states and methods that define how they function
and what operations are allowed on them.

• Properties allow us to create setters and getters that access the data
attributes in an orderly fashion.

• Dunder methods help us initialize and overload operators.

• Class methods are can be used to create factory methods and expand the
ways new instances are created.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

30

Scopes & Namespaces

• In a Python program, several dicts exist that keep track of the
names identified.

• Each of these dicts constitutes a namespace.
• You do not deal with these dicts directly but it is a good thing to understand

how they work

• They are created and kept automatically as a result of the way your
program is organized.

• The names created by all identifiers – in-built as well as those created by
you, are organized into these dicts.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

31

Names & Attributes

• Once a name is augmented by another through a dot, we can see
the name after the dot as an attribute of the name before the
dot.

• If you consider an augmented name as a name, then any name
further augmented by it with a dot, is an attribute of the
augmented name. For example, in

The create method is an attribute of adsk.core.Point3D. Point3D is an
attribute of adsk.core; core is an attribute of adsk

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

32

Uniqueness of names in a namespace

• The names in a namespace are unique and are completely
unrelated to the names in another namespace.

• It is therefore important to understand where a particular name,
and consequently the object it represents “lives” so that you may
properly create the correct reference that can reach it.

• If you do not do this, Python can easily create a new name in the
inferred namespace and you may be referring to a different object
entirely

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

33

Important namespaces

• The built-in names in Python constitute a namespace. This
includes all identifier keywords and functions.

• The global names in a module;

• The local names in a function invocation.

• When you create an object of, say, the student class, all the
attributes and methods of that class are in the namespace of the
class. So that the local names in a class constitutes a namespace.

• These attributes are reached by the name augmentation that we
have noted.

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

34

Scopes

• A textual region in which the names in a namespace are directly
accessible, constitutes its scope.

• A class definition, a function or method definition, are scopes.

• Clearly, scopes can contain other scopes.
• When you are not in the scope of a named object, you cannot usually access

the name directly, augmentation will be needed to reach it.

• There are keywords that provide direct access to names that are not
necessarily in scope. These are nonlocal and global keywords

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

35

Searching nested scopes

• The code in the next slide helps explain these matters concretely

• Note the effect of deleting the association and see how a hidden
association replaces it.

• Best to demonstrate this by going through a debug session

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

36

Saturday, October 31, 2020Python for Modeling and Design oafak@s2pafrica.org

37

