UNIVERSITY OF LAGOS DEPARTMENT OF MECHANICAL ENGINEERING FIRST SEMESTER 2022/2023 SESSION

MEG 805: CONTINUUM MECHANICS

Lecturers				
Dr. Olayinka O. Adewumi	Rm. 051 oadewunmi@unilag.edu.ng			
Teaching Assistant				
TBD				
Prerequisites	Vector Algebra and Calculus			
Lectures:	Date: Monday, 12 noon to 2 pm, Wednesday 9am to 11 am (Zoom Virtual Classes)			
Learning resources	1. Lecture Course Material Continuum Mechanics for Modeling , Simulation & Design by OA Fakinlede on https://lms.s2pafrica.com/ 2. Download Mathematica Software (Compulsory)			
Supplementary Texts	Weekly lecture and tutorial recordings will be posted on https://lms.s2pafrica.com/			
Online Self Tests	Self-testing will be done after each chapter is covered			

GRADING

Quizzes: Six online self-tests will be held in Weeks 3, 6, 9, 13 and 14 after each chapter covered

Attendance: The university policy states that students must have a minimum of 65% attendance to sit for the final examinations. This will be strictly adhered to.

Tutorials: There will be 6 tutorial sessions during the semester to further strengthen students understanding of the course and Mathematica Programming

Self-Tests, and Final Exams will be graded as follows,

GRADING Self-Tests (Chap1to3)	20%
Self-Tests (Chap4to6)	30%
Final Exam	50%

COURSE OBJECTIVES

The focus of this course is getting students to understand the fundamental concepts of tensor and tensor analysis used to describe the mechanics of a material modeled as a continuum. Towards the end of the course, you will apply the

concepts learnt in the science of kinematics and the conservation laws. By the end of this course (MEG 805), students will develop competence in reading and understanding current textbooks written in tensor notation in preparation for engineering design and simulation projects.

Course learning outcomes

- Describe what a vector basis is and understand how to write in index notation
- Describe how to carry out a coordinate transformation from one coordinate system to another and its interpretation
- Identify what a tensor is, its components, invariants and decomposition of tensors
- Applying and extending the concepts of vector calculus to tensors
- Analyzing and solving problems written in tensor notation using Mathematica codes
- Understand why strain is the choice in quantifying deformation
- Understand the conservation principles from the continuum mechanics perspective

ACADEMIC INTEGRITY

You are encouraged to have group discussions with other students but you also have a responsibility to be honest with yourself, your colleagues and the staff of the faculty on all tasks carried out during the course. The following constitute a breach of academic integrity,

- Submitting homework copied from another source as your own.
- Submitting another student's work as your own
- Bringing prohibited materials into an exam

Lecture Schedule

		Vectors: A review of elementary principles & an extension to abstract	
		concepts	
Week 1		Introduction and The Summation Convention	
R1	03/04/23	Introduction, Vectors and Linear Independence, Orthonormal basis, Kronecker	
		Delta, Substitution symbol, Component form – Product of vectors, Tensor	
		Product	
Week2		Coordinate Transformation for Euclidean Space, Basis Vectors, Euclidean Point & Vector Spaces	
R2	10/04/23	Axes Rotation, Geometry of Transformation, Cartesian and other coordinate	
		systems, Vector spaces	
Week3		Tutorial and Coding Session	OST1 Opens
R3	17/04/23	Worked Examples	
		Tensor Algebra	
Week 4		Tensor: A Linear Transformation and Euclidean Vector Space	
R4	24/04/23	Definition of a Tensor, Linear Transformations, Simple Tensors, Properties of	
		Tensors, Tensor Magnitude & Direction, Axioms for Second-Order Tensors,	
		Decomposing Tensors, Transformation of Line Elements	
Week 5		The Eigen-value Problem	
R5	01/05/23	Determinant & Transformation of Volumes, Characteristic Equation, Spectral	
		Decomposition	
Week 6		Tutorials and Coding Session	OST2 Opens
R6	08/05/23	Worked Examples	
		Tensor Calculus	
Week 7		Differential & Integral Calculus with Tensors, Gradient, Divergence & Curl of Vectors	

R7	15/05/23	Differentiation & Large Objects, Scalar, Vector & Tensor Arguments, The	
		Gateaux Differential, Review of Limit & Continuity for Real Scalar Domains,	
		The Directional Derivative, Limit & Continuity for Normed Vector Spaces, Real	
		Functions in Real Domains, Frechet Derivatives	
Week 8		Green, Stokes & Gauss Integrals	
R8	22/05/23	Integral Field Theorems	
Week 9		Tutorials and Coding Session	OST3
R9	29/05/23	Worked Examples	
		Kinematics	
Week 10		Introduction, Deformation Gradient and Configurations	
L1	05/06/23	Referential and Spatial Configurations, Simple Deformation & Motions, Polar	
L2	07/06/23	Decomposition Theorem, Strain Tensors	
Week 11		Tutorials and Coding Session	OST4 Opens
L3	12/06/23	Worked Examples on Kinematics	•
L4	14/06/23		
Week 12		Stress and Heat Flux	
L5	19/06/23	Introduction, Cauchy's Stress Theorem, Stress Invariants and Decompositions	
L6	21/06/23		
Week 13		Tutorials and Coding Session	OST5 Opens
L7	26/06/23	Worked Examples on Stress & Heat Flux	-
L8	28/06/23		
Week 14		Natural Balance Principles: Mass, Momentum & Energy Balances	
L9	03/07/23	Introduction, Balance of Mass, Balance of Linear Momentum, Balance of	
L10	05/07/23	Angular Momentum, Energy Balance, Second Law of Thermodynamics	
L11	08/07/23	Tutorials and Coding Session	OST6 Opens
Exam		FINAL EXAMS	
Week			