Ecomist Insect Killer With Natural Pyrethrins Ecomist Australia Pty Ltd

Chemwatch Hazard Alert Code: 4

Issue Date: **25/10/2022** Print Date: **25/10/2022** L.GHS.AUS.EN

Version No: 6.11
Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier			
Product name	Ecomist Insect Killer With Natural Pyrethrins		
Chemical Name	Not Applicable		
Synonyms	CEA0300, CEA0301		
Proper shipping name	AEROSOLS		
Chemical formula	Not Applicable		

Relevant identified uses of the substance or mixture and uses advised against

CEA0300, CEA0301

Relevant identified uses Insecticide

Other means of identification

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Ecomist Australia Pty Ltd	Ecomist Systems Limited	
Address	25 Hargraves Place, Wetherill Park NSW 2164 Australia	800 Te Ngae Road BOP New Zealand	
Telephone	1800 243 500	0800 75 75 78	
Fax	Fax +61 2 9756 0985 073456019		
Website	www.ecomist.com.au	www.ecomist.co.nz	
Email	Email info@ecomist.com.au info@ecomist.co.nz		

Emergency telephone number

Association / Organisation	CHEMCALL	CHEMCALL (0800 CHEMCALL)	
Emergency telephone numbers	1800 127 406	0800 243 622	
Other emergency telephone numbers	Not Available	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable		
Classification ^[1]	Sensitisation (Respiratory) Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 1, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1, Aerosols Category 1		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI		

Label elements

Hazard pictogram(s)

Signal word Dange

Hazard statement(s)

Hazaru Statement(5)			
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.		
AUH044	Risk of explosion if heated under confinement.		
H317	May cause an allergic skin reaction.		
H410	Very toxic to aquatic life with long lasting effects.		
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.		

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P211	Do not spray on an open flame or other ignition source.	

Version No: **6.11** Page **2** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

P251	Do not pierce or burn, even after use.
P261	Avoid breathing dust/fumes.
P280	Wear protective gloves and protective clothing.
P284	[In case of inadequate ventilation] wear respiratory protection.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.		
P302+P352	IF ON SKIN: Wash with plenty of water and soap.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		
P391	Collect spillage.		

Precautionary statement(s) Storage

P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

P501

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
8003-34-7*	<3	PYRETHRUM 50%	
64742-48-9*	20-35	NAPHTHA PETROLEUM, HYDROTREATED HEAVY	
51-03-6*	<5	TECHNICAL PIPERONYL BUTOXIDE	
106-97-8.	25-40	butane	
74-98-6	20-35	propane	
Legend:	Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. Generally not applicable.
Inhalation	If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Generally not applicable.
Ingestion	 Not considered a normal route of entry. Generally not applicable. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.

Version No: 6.11 Page 3 of 15 Issue Date: 25/10/2022

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

SMALL FIRE:

▶ Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Fire Fighting Use water delivered as a fine spray to control fire and cool adjacent area.
 - DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - ▶ If safe to do so, remove containers from path of fire.
 - Equipment should be thoroughly decontaminated after use.

Slight hazard when exposed to heat, flame and oxidisers

- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition with violent container rupture.
- Aerosol cans may explode on exposure to naked flames.
- Rupturing containers may rocket and scatter burning materials.
- Hazards may not be restricted to pressure effects.
- May emit acrid, poisonous or corrosive fumes.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Fire/Explosion Hazard

carbon monoxide (CO)

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains

Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard

Vented gas is more dense than air and may collect in pits, basements.

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Clean up all spills immediately.

Minor Spills

- Avoid breathing vapours and contact with skin and eyes.
- Wear protective clothing, impervious gloves and safety glasses
- Shut off all possible sources of ignition and increase ventilation.
 - Wipe up.
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

Major Spills

- Clear area of all unprotected personnel and move upwind.
- Alert Emergency Authority and advise them of the location and nature of hazard.
- May be violently or explosively reactive.

Version No: 6.11 Page 4 of 15 Issue Date: 25/10/2022

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

- Wear full body clothing with breathing apparatus.
- Prevent by any means available, spillage from entering drains and water-courses.
- Consider evacuation.
- ▶ Shut off all possible sources of ignition and increase ventilation.
- No smoking or naked lights within area
- Use extreme caution to prevent violent reaction.
- Stop leak only if safe to so do.
- Water spray or fog may be used to disperse vapour.
- DO NOT enter confined space where gas may have collected.
- ▶ Keep area clear until gas has dispersed.
- Remove leaking cylinders to a safe place.
- Fit vent pipes. Release pressure under safe, controlled conditions
- Burn issuing gas at vent pipes.
- DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal.
- Clean up all spills immediately.
- Wear protective clothing, safety glasses, dust mask, gloves.
- Secure load if safe to do so. Bundle/collect recoverable product.
- Use dry clean up procedures and avoid generating dust
- Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Water may be used to prevent dusting.
- Collect remaining material in containers with covers for disposal
- Flush spill area with water.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage Precautions for safe handling

Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment, the flow of gas should be stopped and a four hour delay enforced to allow gamma-radiation to drop to background levels. Protective equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [TEXACO]

Safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- DO NOT incinerate or puncture aerosol cans
- DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
- ▶ Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials.
- Store in a cool, dry, well ventilated area.

Version No: **6.11** Page **5** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

- Avoid storage at temperatures higher than 40 deg C.
- Store in an upright position.
- Protect containers against physical damage.
- ► Check regularly for spills and leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Store away from incompatible materials.

Conditions for safe storage, including any incompatibilities

Suitable container

Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler.

- Aerosol dispenser.
- ▶ Check that containers are clearly labelled.

Low molecular weight alkanes:

- ▶ May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- ▶ May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation.
- ► Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition.

Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Storage incompatibility

Butane/ isobutane

- ▶ reacts violently with strong oxidisers
- reacts with acetylene, halogens and nitrous oxides
- ▶ is incompatible with chlorine dioxide, conc. nitric acid and some plastics
- ▶ may generate electrostatic charges, due to low conductivity, in flow or when agitated these may ignite the vapour.

Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C)

Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- Iquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Avoid reaction with oxidising agents
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	PYRETHRUM 50%	Pyrethrum	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	NAPHTHA PETROLEUM, HYDROTREATED HEAVY	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	butane	Butane	800 ppm / 1900 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
NAPHTHA PETROLEUM, HYDROTREATED HEAVY	350 mg/m3	1,800 mg/m3	40,000 mg/m3
TECHNICAL PIPERONYL BUTOXIDE	6.5 mg/m3	72 mg/m3	1,200 mg/m3
butane	Not Available	Not Available	Not Available
propane	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
PYRETHRUM 50%	5,000 mg/m3	Not Available
NAPHTHA PETROLEUM, HYDROTREATED HEAVY	2,500 mg/m3	Not Available
TECHNICAL PIPERONYL BUTOXIDE	Not Available	Not Available
butane	Not Available	1,600 ppm
propane	2,100 ppm	Not Available

MATERIAL DATA

Exposed individuals are **NOT** reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Version No: **6.11** Page **6** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550 As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects

Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE)

Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties.

Odour Safety Factor (OSF)

OSF=0.042 (gasoline)

May act as a simple asphyxiants; these are gases which, when present in high concentrations, reduce the oxygen content in air below that required to support breathing, consciousness and life; loss of consciousness, with death by suffocation may rapidly occur in an oxygen deficient atmosphere.

CARE: Most simple asphyxiants are odourless or possess low odour and there is no warning on entry into an oxygen deficient atmosphere. If there is any doubt, oxygen content can be checked simply and quickly. It may not be appropriate to only recommend an exposure standard for simple asphyxiants rather it is essential that sufficient oxygen be maintained. Air normally has 21 percent oxygen by volume, with 18 percent regarded as minimum under normal atmospheric pressure to maintain consciousness / life. At pressures significantly higher or lower than normal atmospheric pressure, expert guidance should be sought.

For propane

Odour Safety Factor(OSF)

OSF=0.16 (PROPANE)

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Issue Date: 25/10/2022 Version No: 6.11 Page 7 of 15

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

Close fitting gas tight goggles

DO NOT wear contact lenses

▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

No special equipment for minor exposure i.e. when handling small quantities.

OTHERWISE: For potentially moderate or heavy exposures:

- Safety glasses with side shields.
- NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.

No special equipment required due to the physical form of the product.

- Safety glasses with side shields.
- Chemical goggles.

 Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalentl

Skin protection

Eve and face protection

See Hand protection below

Wear general protective gloves, eq. light weight rubber gloves.

NOTE:

Hands/feet protection

- F The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- No special equipment needed when handling small quantities
- ► OTHERWISE:
- For potentially moderate exposures:
- ▶ Wear general protective gloves, eg. light weight rubber gloves.
- For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

See Other protection below

- The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities.

Other protection

OTHERWISE:

- Overalls. ► Skin cleansing cream.
- Eyewash unit.
- Do not spray on hot surfaces.

No special equipment required due to the physical form of the product.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respiratory protection not normally required due to the physical form of the product.

Generally not applicable

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Aerosol		
Physical state Article Relative density (Water = 1) 0.60-0.63			
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	431
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Applicable

Version No: **6.11** Page **8** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: **25/10/2022**

	1		1
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	-81	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	1.8	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm).

Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe cases

The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure.

The vapour is discomforting

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Inhaled

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death. Significant concentrations of the non-toxic gas reduce the oxygen level in the air. As the amount of oxygen is reduced from 21 to 14 volume %, the pulse rate accelerates and the rate and volume of breathing increase. The ability to maintain attention and think clearly is diminished and muscular coordination is somewhat disturbed. As oxygen decreases from 14-10% judgement becomes faulty; severe injuries may cause no pain. Muscular exertion leads to rapid fatigue. Further reduction to 6% may produce nausea and vomiting and the ability to move may be lost. Permanent brain damage may result even after resuscitation at exposures to this lower oxygen level. Below 6% breathing is in gasps and convulsions may occur. Inhalation of a mixture containing no oxygen may result in unconsciousness from the first breath and death will follow in a few minutes.

Version No: **6.11** Page **9** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

Ingestion

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage.

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin Contact

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Spray mist may produce discomfort

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

irritation after brief exposures.

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Chronic

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Ecomist Insect Killer With Natural Pyrethrins

TOXICITY	IRRITATION	
Dermal (Other) LD50: 2884 mg/kg ^[2]	Not Available	

Version No: 6.11 Page 10 of 15 Issue Date: 25/10/2022

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

	Oral (Rat) LD50; 9912 mg/kg ^[2]		
	TOXICITY	IRRITATION	
-V	Dermal (Other) LD50: 2001 mg/kg ^[2]	Not Available	
PYRETHRUM 50%	Inhalation(Rat) LC50; 3.4 mg/I(V)/4h ^[2]		
	Oral (Rat) LD50; 2370 mg/kg ^[2]		
	TOXICITY	IRRITATION	
PHTHA PETROLEUM, DROTREATED HEAVY	Oral (Rat) LD50; 15000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
SKOTKEATED HEAVI		Skin: adverse effect observed (irritating) ^[1]	
TECHNICAL PIPERONYL BUTOXIDE	TOXICITY	IRRITATION	
	Dermal (Other) LD50: 2001 mg/kg ^[2]	Not Available	
BOTOXIDE	Oral (Rat) LD50; 4570 mg/kg ^[2]		
	TOXICITY	IRRITATION	
butane	Inhalation(Rat) LC50; 658 mg/l4h ^[2]	Not Available	
	TOXICITY	IRRITATION	
propane			

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of

n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial

biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more

susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

PROPANE	No significant acute toxicological data identified in literature sear
---------	---

Ecomist Insect Killer With

Natural Pyrethrins

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	X
Serious Eye Damage/Irritation	×	STOT - Single Exposure	X
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	X

★ - Data either not available or does not fill the criteria for classification.

Version No: **6.11** Page **11** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Farmist Incast Killer With	Endpoint	Test Duration (hr)	Species	Value	Source
Ecomist Insect Killer With Natural Pyrethrins	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96	Crustacea Other	0.087mg/L	8
	LC50	96	Crustacea Daphnia other	0.0014mg/L	8
PYRETHRUM 50%	LC50	48	Crustacea Daphnia magna	0.012mg/L	8
	LC50	96	Fish Lepomis macrochirus (Bluegill)	0.01mg/L	8
	LC50	96	Fish Pimpephales promelas (Fathead minnow)	0.016mg/L	8
	LC50	96	Fish Oncorhynchus mykiss (Rainbow trout)	0.0052mg/L	8
	Endpoint	Test Duration (hr)	Species	Value	Sourc
NAPHTHA PETROLEUM, HYDROTREATED HEAVY	EC50(ECx)	96h	Algae or other aquatic plants	64mg/l	2
HIDROTREATED HEAVT	EC50	96h	Algae or other aquatic plants	64mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	LC50	0	Crustacea Other	0.32mg/L	8
TECHNICAL PIPERONYL BUTOXIDE	LC50	0	Fish Pimpephales promelas (Fathead minnow)	3.94mg/L	8
BOTOMBE	LC50	0	Fish Oncorhynchus mykiss (Rainbow trout)	Fish Oncorhynchus mykiss (Rainbow trout) 6.12mg/L	
	LC50	0	Fish Lepomis macrochirus (Bluegill)	5.37mg/L	8
	Endpoint	Test Duration (hr)	Species	Value	Sourc
hutana	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
butane	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
propane	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
Legend:	Ecotox databas		CHA Registered Substances - Ecotoxicological Information - Aqui C Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcent		

May cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Version No: **6.11** Page **12** of **15** Issue Date: **25/10/2022**

Ecomist Insect Killer With Natural Pyrethrins

Print Date: 25/10/2022

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For butane: log Kow: 2.89 Koc: 450-900 BCF: 1.9

Environmental Fate

Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilisation from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported.

Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane.

For Propane: Koc 460. log

Kow 2.36.

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water. Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
TECHNICAL PIPERONYL BUTOXIDE	HIGH	HIGH
butane	LOW	LOW
propane	LOW	LOW

Bioaccumulative potential

Ingredient

Version No: 6.11 Page **13** of **15** Issue Date: 25/10/2022 Print Date: 25/10/2022

Ecomist Insect Killer With Natural Pyrethrins

Ingredient	Bioaccumulation
TECHNICAL PIPERONYL BUTOXIDE	HIGH (LogKOW = 4.75)
butane	LOW (LogKOW = 2.89)
propane	LOW (LogKOW = 2.36)

Mobility in soil

Ingredient	Mobility
TECHNICAL PIPERONYL BUTOXIDE	LOW (KOC = 69.74)
butane	LOW (KOC = 43.79)
propane	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Consult State Land Waste Management Authority for disposal.
- ▶ Discharge contents of damaged aerosol cans at an approved site.
- ► Allow small quantities to evaporate.
- DO NOT incinerate or puncture aerosol cans.
- ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

Not Applicable

Land transport (ADG)

UN number	1950	1950		
UN proper shipping name	AEROSOLS			
Transport hazard class(es)	Class 2.1 Subrisk Not App	licable		
Packing group	Not Applicable	Not Applicable		
Environmental hazard	Environmentally hazar	Environmentally hazardous		
Special precautions for user	Special provisions Limited quantity	63 190 277 327 344 381 1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950			
UN proper shipping name	Aerosols, flammable			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L		
Packing group	Not Applicable			
Environmental hazard	Environmentally hazardo	ous		
Special precautions for user	Special provisions Cargo Only Packing In Cargo Only Maximum Passenger and Cargo	Qty / Pack	A145 A167 A802 203 150 kg 203	

Version No: 6.11 Page **14** of **15** Issue Date: 25/10/2022 Print Date: 25/10/2022

Ecomist Insect Killer With Natural Pyrethrins

Passenger and Cargo Maximum Qty / Pack 75 kg Passenger and Cargo Limited Quantity Packing Instructions Y203 Passenger and Cargo Limited Maximum Qty / Pack 30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	1950			
UN proper shipping name	AEROSOLS	AEROSOLS		
Transport hazard class(es)	IMDG Class 2 IMDG Subrisk N	.1 lot Applicable		
Packing group	Not Applicable	Not Applicable		
Environmental hazard	Marine Pollutant	Marine Pollutant		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-D, S-U 63 190 277 327 344 381 959 1000 ml		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
PYRETHRUM 50%	Not Available
NAPHTHA PETROLEUM, HYDROTREATED HEAVY	Not Available
TECHNICAL PIPERONYL BUTOXIDE	Not Available
butane	Not Available
propane	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
PYRETHRUM 50%	Not Available
NAPHTHA PETROLEUM, HYDROTREATED HEAVY	Not Available
TECHNICAL PIPERONYL BUTOXIDE	Not Available
butane	Not Available
propane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

PYRETHRUM 50% is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 2

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

NAPHTHA PETROLEUM, HYDROTREATED HEAVY is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

TECHNICAL PIPERONYL BUTOXIDE is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

butane is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

propane is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes

Version No: 6.11 Page **15** of **15** Issue Date: 25/10/2022 Print Date: 25/10/2022

Ecomist Insect Killer With Natural Pyrethrins

yretiirins	
ED HEAVY; TECHNICAL PIPERON	YL BUTOXIDE; butane; propane)

Canada - DSL	Yes
Canada - NDSL	No (PYRETHRUM 50%; NAPHTHA PETROLEUM, HYDROTREATED HEAVY; TECHNICAL PIPERONYL BUTOXIDE; butane; propane)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (PYRETHRUM 50%)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	No (PYRETHRUM 50%)
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	25/10/2022
Initial Date	14/02/2017

SDS Version Summary

National Inventory

Status

Version	Date of Update	Sections Updated
5.11	24/10/2022	Chronic Health, Classification, Personal Protection (hands/feet), Physical Properties

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.