INTENSIFIER (SIMPLIFIED)

Intensifier Anatomy

Three main stages:

- 1. **Photocathode** (S20, S25, GaAs, etc.): Converts incoming photons → electrons. Sensitivity depends on material.
- 2. **Microchannel Plate (MCP)**: Multiplies electrons (gain up to 10⁶).
- 3. **Phosphor screen (P43, P46, etc.)**: Converts electrons → photons (green light), which are then relayed to a CCD sensor.

So, **S20/S25** describe the *front end (wavelength sensitivity)*, and **P43/P46** describe the *back end (decay time + color)*.

Image Intensifiers: Mode of Operation

Photocathodes (input)

- S20:
 - Standard multialkali photocathode.
 - o Sensitive from ~180 nm (UV) up to ~850 nm.
 - o Peak sensitivity: blue–green region (350–450 nm).
 - o Quantum efficiency (QE): ~10–15% in visible.
 - o Good general-purpose, especially for UV-blue chemiluminescence (OH*, CH*, etc.).
- S25 / "red-extended S20" (sometimes called S23):

- o Similar to S20, but "red-extended."
- o Covers ~180–900+ nm.
- o More sensitive in red–NIR region (>650 nm).
- o Useful for CN*, C2*, or other chemiluminescence in red, and for IR applications.
- o Slightly higher dark current than S20 (so noisier at long gate times).

MCP (amplifier)

MCP is a **thin glass wafer** (\approx 0.2–1 mm thick) containing **millions of microscopic channels** (tiny capillaries).

• Each channel is about 6–25 μ m in diameter, angled slightly (~8–15°) so electrons don't go straight through.

Function

- 1. **Electron entry:** A photon first hits the **photocathode** (S20, S25, etc.), releasing a photoelectron.
- 2. **Electron multiplication:** That electron enters one of the MCP's channels. Inside, the walls are coated with a **semiconducting material** that releases secondary electrons when struck.
 - a. The incoming electron bounces along the channel wall, knocking out **more electrons** each time.
 - b. Typical gain: each channel multiplies by $\sim 10^3 10^6$.
- 3. **Electron exit:** A cascade of amplified electrons exits the channel → hits the phosphor screen → produces a bright light spot (which is then imaged onto the CCD).

Phosphors (output)

Phosphor screen choice determines image brightness vs decay speed:

- P43 phosphor:
 - o Emission: green (~545 nm).
 - o Decay time: ~1.5 ms.
 - o Bright, efficient, but *long persistence* (ghosting if you do fast gating).
 - Good for low-light, steady signals where brightness matters more than temporal resolution.
- P46 phosphor:
 - o Emission: green–yellow (~530 nm).
 - o Decay time: ~300 ns (fast!).
 - o Dimmer than P43, but allows **nanosecond time resolution** without smearing.
 - Standard for time-resolved laser/plasma/combustion diagnostics.

Putting it together

Combination	Use case
S20 + P43	General UV–visible detection, slower events, steady chemiluminescence.
	Bright but limited temporal resolution.
S20 + P46	UV-visible detection, fast time-resolved imaging (laser-induced
	fluorescence, PLIF, fast chemiluminescence).
S25 (S23) + P43	Extended red/NIR detection for slow signals, e.g. CN*, C2*
	chemiluminescence, soot radiation.
S25 (S23) + P46	Extended red/NIR + fast nanosecond gating. Used for fast imaging of
	red/NIR species.