Data Discovery in Images Using a
Median- Absolute-Deviation Based Filter

Shataneek Banerjee', Amardip Ghosh!, Avijit Dey?, and Prasanta Pal*®

'Department of Aerospace Engineering, IIT Kharagpur, Kharagpur 721302, India
2Big Bang Software, Kolkata, India
3SHIOM LLC, Rhode Island Startup Incubator (RIHUB), Rhode Island, USA

Abstract. The utility of a recently developed, novel, computational digital
image curation tool called SOCKS (Statistical Outlier Curation Kernel
Software) is demonstrated in this paper. Raw image-data of the James Webb
Space Telescope (JWST) is used for the tests. Data is decontaminated
through an iterative, parametrically tuned sequence of operations involving
the conditional flagging of outliers, followed by the curation of the flagged
pixels. Every iteration produces a decontaminated image and an outlier
image, till the sequence converges asymptotically producing a final
decontaminated image that represents the ground-truth as accurately as
possible. The intermediate outlier images are shown to contain a wealth of
information about the original image. An iteration-by-iteration approach of
deriving insight out of the intermediate outlier images is described in detail.
Traditional filtering methods, in contrast, discard outliers causing
irreversible loss of information contained therein.

1 Introduction

Noise of various kinds such as thermal noise, shot noise, transit-time noise, and environment-
induced noise can affect the clarity of digital images acquired through CCD and CMOS
sensors [1-8]. Outliers, in the form of undesired artefacts, could also be classified as ‘noise’
affecting the visual clarity of the underlying image.

Various filters have been utilized to enhance the clarity in such images. Traditional filters
such as the Gaussian filter [9-14] a low pass or smoothing filter de-noises images by inducing
the effect of “blur”. Wiener filter [15-22], an adaptive linear low pass filter adjusts the filter
coefficients according to an optimization algorithm removing high frequency noise while
preserving the desirable high frequency components like edges. Median filter [23-30], a non-
linear low pass filter preserves desirable high frequency components like fine details and
edges while removing unwanted impulse noise. The apparent visual improvement obtained
through these filters result from the smoothening of the original image. Two problems arise
in such cases. Firstly, every pixel in the image is affected by the filter irrespective of it is a
‘good-pixel’ or a ‘bad-pixel’. Secondly, information about noise and outlier artefacts are not
systematically curated since the focus of the effort is often on obtaining a more aesthetic
representation of the underlying image.

In certain critical applications, however, the outlier artefacts may contain equal, if not
more valuable information as the underlying image. In structural health monitoring, the



detection of minute cracks and fracture spots that appear as outliers in structural elements
may be required. In early diagnosis of cancer, the detection and classification of exceedingly
small calcified nodules that appear as unwanted indiscernible artefacts in human tissue
images may be required. In space systems engineering, the detection and classification of
minute craters that appear as outliers on the surface of the moon may be required to find
possible sites of impact.

In this paper, various properties of such an outlier preserving statistical filter called
SOCKS (Statistical Outlier Curation Kernel Software), developed by the authors, is
demonstrated through applications to various image processing case studies. The basic
difference between the SOCKS filter and traditional filters is that the SOCKS filter preserves
raw information by flagging and collecting outliers in an ‘outlier image’ while strategically
curating only affected data points at all reasonable scales and thresholds in the ‘source
image’. Small perturbations are optionally curated by regression at all scales.

2 SOCKS Filter

The SOCKS algorithm [31] uses a convolution kernel to check whether the absolute value of
Modified Z at a particular pixel location is beyond a certain threshold to flag it as an outlier.
For a set of samples X, modified Z or Z is defined as

X — Median

7 =
Median Absolute Deviation

The filter works on the heuristic that the outliers, which contribute to large-scale noise
[32] occur roughly beyond 3 MADs (Median Absolute Deviation) from the median on both
sides in a Modified Z distribution analogous to the outliers being roughly beyond 3 SDs
(Standard Deviation) from the mean on both sides of the normal distribution [33]. The
particular choice of the threshold value in a given SOCKS implementation depends on the
nature of the data set as well as specifics of the curation goal in a given context. The outlier
positions are contextually curated through interpolation, averaging, or regression techniques.
These curated data points account for the missing information of the outliers. As an additional
optional step, the non-outlier but presumably perturbed/noisy data points are further
regressed with respect to their kernel size specific local neighbourhood. The filter makes use
of two key parameters, namely the threshold and the scale. The threshold relates to a
percentile measure in the PDF of the Modified Z distribution allowing the detection of
outliers. The scale relates to the size of the convolution kernel used in flagging the outliers.
The Median and the MAD are robust statistical parameters [34, 35] that are relatively
insensitive to extreme values. Since Modified Z uses the Median and the MAD, it performs
better than Z in terms of robust statistical performance metrics like breakdown point [36] and
influence function [37].



3. Results and Discussions
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Fig. 1 (A) Original selfie image sent by JWST. (B) Curated image by taking Fig.1A as input and
removing the first-order set of outliers (stars and speckles) (C) Curated image by taking Fig.1B as input
(D) Curated image by taking Fig.1C as input.

Fig. 1 shows a typical use case, demonstrating the systematic noise and outlier removal from
a selfie image of the James Webb Space Telescope (JWST). Fig. 1A shows the original selfie
image sent by JWST. Fig. 1B shows the curated image after one complete iteration, taking
Fig. 1A as input and removing the first order set of outliers, comprising mostly of stars and
speckles, with kernel size k=4 and threshold t = 0.86. Pixels with intensities greater than
Median + 3.T.MAD are flagged as outliers. Fig. 1C shows the curated image after one more
iteration, taking Fig. 1B as input and using the same parameters (threshold and kernel size)
as in the previous iteration. Fig. 1D shows the curated image after one more iteration, taking
Fig. 1C as input and using the same parameters as in the previous iteration. Fig. 1



demonstrates that using a systematic iterative process, the visual clarity of an image can be
enhanced by removing noise and speckles from the data.

Fig. 2 Demonstration of the spatial structure of outlier (and noise) distribution obtained with Kernel
size K=4 from the selfie of JWST as demonstrated in Fig 1. (A) Outlier distribution obtained from Fig.
1A. (B) Outlier distribution obtained from Fig. 1B.(C) Outlier distribution obtained from Fig 1C. (D)
Outlier distribution obtained from Fig 1D.

Fig. 2A demonstrates the spatial structure of outlier and noise distribution obtained with
kernel size K=4 and threshold=0.86 from the selfie image of the JWST as shown in Fig 1A.
Fig. 2A shows that there is an abundance of information in the outlier space. The image is
binary with white dots representing outliers. The intensity of every outlier is set to 1 while
the absence of outliers is set to 0. It is trivial to observe that, the density of stars in the
background part of the sky is very dense compared to the same in the original data as shown
in Fig 1A. Stars reflected by the primary mirror can also be seen in the outlier space. Although
it is apparently surprising, however in the original data we notice only the relatively bright
high-intensity speckles as compared to all the marked flags that are visible despite being less
intense in the raw data set. Fig. 2B shows the spatial structure of outlier and noise distribution



obtained from Fig 1B using a kernel size K=4 and threshold=0.86. Since the outliers shown
in Fig. 2B are removed from Fig. 1A to obtain Fig. 1B, the outliers obtained from Fig. 1B are
the outliers of lesser intensity compared to the outliers obtained from Fig. 1A. In this process,
after every iteration we find outliers of lesser and lesser intensities revealing patterns in the
outlier space not visible in the previous iteration due to the presence of more intense outliers
in the figures from where they were extracted. Since the intensities of the outliers after every
iteration are mapped to a binary scale, they show the same intensity in all the outlier images.
Fig. 2C shows the spatial structure of outlier and noise distribution obtained with kernel size
K=4 and threshold=0.86 obtained from the image in Fig 1C. Fig. 2D shows the spatial
structure of outlier and noise distribution obtained with kernel size K=4 and threshold=0.86
obtained from the image in Fig 1D.

Fig. 3 Outliers after fourth iteration. K = 6,1 =0.86

Fig. 3 shows outlier distribution after removing outliers from Fig 1D with slightly higher
kernel size K=6, but same threshold, t = 0.86. In Fig. 3, the region corresponding to the
illuminated hexagonal region in Fig. 1A, the appearance of 5 circular structures comes as a
surprise as visually, the illuminated region in Fig. 1A looks uniform in intensity. Also, the
top right portion in Fig. 3 shows a finger-like shadowy region and a possible explanation is
the blocking effect of the background stars by the struts surrounding the telescope as
described in the design of JWST.



3. Conclusions

The use of the SOCKS filter in information separation, image filtering and outlier detection
is demonstrated. After every iteration, new patterns in the outlier image sets are detected
revealing information buried in the source image at various levels of intensities. This attribute
of the filter makes it suitable for the detection of early-stage tumours, calcifications and cysts
in human tissues where they may occur as outliers of relatively low intensity which the
iterative outlier detection routine can reveal in a systematic stepwise fashion.
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