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In recent years several types of biofeedback systems have become available for both
research and public use. Particularly interesting are the types of biofeedback systems that
measure Heart Rate Variability (HRV) based on Interbeat Intervals (IBlI or R-R intervals).
Such biofeedback systems have been available for public use for a while allowing the user to
keep records of progress via coherence scores based on frequency measures derived from
HRV signals. Here we explore new metrics for the comparison between different types of
scores available as measures of psychophysiological coherence and we propose a
normalization algorithm that allows us to compare some of these metrics when derived from
different sample sizes. This methodology, we suggest, will be useful when comparing
coherence scores from different participants in different modalities in research settings.
Ideally, this could be incorporated as part of the new generation of biofeedback systems to
support users having a quantitative measure of their progress under different modalities or
activities in daily life.
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INTRODUCTION

Psychophysiological coherence has been
broadly studied in recent years in association
with HRV (McCraty et al., 2006), (McCraty,
2002), (Davis et al., 2019a). Several systems
are available for research and public use
varying in purpose, functionality, quality,
interface and price. Here we briefly describe
the emWave system (Quantum Intech, Inc.,
2010) since we have derived our data from
recordings provided by wusers of this
device-system. The emWave system allows
the user to measure HRV via an earlobe
sensor into a data acquisition, analysis and
score system. The scores are derived from a
coherence ratio that is computed based on
the different frequency components or bands
from the frequency spectrum of the IBI
(Tarvainen & Niskanen, 2012), (Medicore,
n.d.). The coherence scores are then
computed based on a set of thresholds and
criteria that relate to different levels or
degrees of desired mastery known as
challenge level (HeartMath, Inc., 2018).

When measuring HRV under different
activities or situations, a user may derive very
important information from his or her scores
that will support him or her in making choices
to correct or manage certain psychological or
physiological responses (Davis & Schuibeler,
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2019). For example, listening to an
inspirational reading may have very different
effects on the user's psychophysiological
makeup than meditating or reading complex,
energy consuming material (Davis et al.,
2019). The emWave system provides a colour
coding to discriminate between significantly
stress related (red), relaxed (blue) or
coherent (green) states in terms of the
coherence ratio measure (McCraty et al.,
2001), (Childre & Cryer, 2008). These states
are monitored numerically by a coherence
score as well as a cumulative coherence
score around every five (5) seconds. Here we
present the reader with two (2) types of score
measures: (1) normal score (S) and (2)
cumulative score (CS).

The normal scores are derived from three (3)
different kinds of simulated Markov processes
(Ross, 1983), (Law & Kelton, 1991), (Howard,
1971) associated to three (3) different types
of transition probability matrices (TPM), which
we have called red, blue and green matrix all
derived from experimental data (Davis et al.,
2019). These TPM will be used to simulate

and model three (3) distinct types of
psychophysiological scenarios related
predominantly to stressed, relaxed or

coherent states. Note that CS is derived from
S. In the first section of this work we present
the reader with four (4) types of metrics that
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allow us to compare different stochastic
processes, in our case derived from red, blue
and green matrices as stated before. These
metrics are: (1) a Euclidean Distance
(Fraleigh & Beauregard, 1995) based on
normal scores (ED_S), (2) a Euclidean
Distance based on cumulative scores
(ED_CS), (3) a distance based on the final
cumulative score (CS_final) and (4) the
average of the ideal minus the normal scores
(Mean_S).

In the second section we present a novel (to
our knowledge) computation for the
comparison of the ED_CS from two (2) data
sets with different sample sizes. This requires
the solution of some integrals in order to
derive a normalization factor.

Ideally, when collecting experimental data for
HRV we should design it in a way that
guarantees a same sample size for different
runs or trials. However, this is sometimes
difficult to achieve: (1) due to time and
resource  constraints  and participant
availability, (2) some data loss and (3) when
comparing data across studies.

Finally, we present a comparative analysis
between different scenarios for different
metrics, for different and equal sample sizes.
We also compare metrics derived from
different sample sizes and derive some
considerations and conclusions for further
research.
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EXPERIMENTAL METHODS
AND MODELS

This section briefly describes the methods
and models that were utilized in order to
derive the TPM wused in the simulation
models. First of all, we analyzed coherence
scores derived from an experimental setting
with three (3) modalities: meditation, listening
to a reading from a book and visioning, as
described in (Davis et al., 2019). Each data
set was exported and prepared for a
comparative analysis between participants,
modalities and sessions that involved a
counting process based on normal scores in
order to estimate the experimental TPM per
participant, modality and session. This gave
us the means to estimate an average TPM
across sessions for each participant per
modality.

We selected three (3) distinct matrices that
best matched our requirements where one
matrix represents a predominantly 'green'
state, another one represents a
predominantly 'blue' state and the third one a
predominantly 'red' state.

In Figure 1 we display the three (3) average
TPM that were chosen for this study.

Based on these three (3) TPM (associated to
green, blue and red states) we carried out
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Figure 1

displays the three (3) chosen matrices associated to
different tendencies for coherent, relaxed or stressed
states; green (G), blue (B) and red (R) respectively.

simulations for a variety of experimental
settings, where we varied the number of
simulated points from 200 to 1000 and the
number of sessions from 10 to 100.

From these simulations we obtained the
simulated scores (S) and we then applied our
methodology to carry out the main analysis.

METHODOLOGY

The methodology we used is explained in
great detail in (Davis & Schubeler, 2019),
(Davis et al., 2019). Here we present the
reader with a summary that allows for a basic
understanding of the concepts and
computations that follow.
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Let us call X; = {0, 1, 2} the possible states of
the system at time t where X, = 0 is
associated to green (coherent state), X, = 1
blue (relaxed state) and X, = 2 red (stressed
state).

We define the discrete time TPM as:

PI}I} Pl}l PD:
Poy Py Poy

that describes the transitions from state i
corresponding to X; to state j, corresponding
to X for t (t=1, 2, 3, ....n) where each unit t
corresponds to a five (5) second period that
moves as follows: 5, 10,.... 5%, .... 5*n. In this
study, states i and j can only take the values
of 0, 1 or 2.

Also for this study, we computed the
simulated scores (S;) and the cumulative
scores (CS,) where S, is a function of X, and
computed as follows:

D, for a coherent state, gresn

}{l = 1. for a relaxed state, blue
2 for a stredsed state, red
Wt=1 2.3, .
2 when X =0
St = - 1 when &=1

-1 when =2

L 5 P ER—

Then the cumulative score CS; is computed
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as follows:

N
CS=Sp+ Y & (2)
(t=1)

In order to assess the performance of a
participant, we need what we could call an
ideal ongoing state which in our case is
described by the highest possible score, the
'Ideal Score', IS, where: IS; = max{S} = 2 and
N is the sample size for a session. Similarly,
the 'ldeal Cumulative Score' is ICS,, where:

N
ICS,= ¥ IS,whereS;=2 V t (3)
=1

These ideal scores allow us to compute the
gap between the actual and the ideal state of
the system, which can be thought of as a gap
or an error and which can be estimated via a
metric.

With this in mind we are equipped to compute
four (4) metrics which may be useful for
different situations, purposes and data sets.
These metrics are ED_S, ED_CS, CS final
and Mean_S, where:

N
ED_S=V( X (IS:-S)*) (4)
=1
N
ED CS=V( Y (ICS,-CS)?) (5)
=1
CS_final =(ICSy- CSy) (6)
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N
(Y ISt—St)
Mean_S = ~—— (7)

Where N is the sample size and ICS, is the
last ideal cumulative score computed,
ICS final.

NORMALIZATION ALGORITHM

When dealing with having to compare
processes coming from different sample sizes
we may face several issues. One of them,
perhaps the most common one is the
calculation of confidence intervals which is
directly affected by sample size within a
certain range. However, the real challenge
arises here for us when we deal with
particularly two (2) of our metrics, ED_S and
ED_CS. Following we will explore why.

Let us say we gather ten (10) data points
each with a value of one (1). That means that
the average of these values would be equal
to one (1) and let's assume that they come
from the same population. In such a situation
we would be able to compare the two sample
means with the appropriate two-sample t-test
for equal means and then reject or accept.
However, if we used the metrics ED_S or
ED_CS applying these tests would be
inappropriate since the first metric is a
Euclidean Distance involving the square root
of a sum of squares, as shown in equation
(4). For the second metric, we compute an
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even more complex Euclidean Distance that
involves the square root of a cumulative sum
of squares, as shown in equation (5).

If we invoke the same example for let's say
purely red and blue processes, then we would
expect an ED_S = 6.32 for the red process
and an ED_S = 3.16 for the blue one, each
with a sample size of n=10. For a sample size
of n=5 the values would be 4.47 and 2.23 for
the red and blue process respectively. The
reader must note that it would be
meaningless to compare blue or red
processes of different sample sizes unless we
normalize the results while also taking care of
the confidence intervals.

Here we will only deal with the issue of
normalizing same processes either red, blue
or green without addressing the associated
complexities in computing the appropriate
confidence intervals for the normalized data
set, since this is outside the scope of this
work. We will also leave for another study an
in depth analysis in applying these metrics for
a mixed red-blue-green process.

Theoretical values for the purely red, blue and
green process are derived via the following
mathematical models for ED S and ED CS
for the three (3) limiting cases or processes.
Also, these formulas will be used when in
need for normalization due to different sample
sizes, as will be explained and illustrated in
the next section.
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ED_S, (pure red process) (8)

N N
ED_S,=V( X (2(-1)?)=v( X (3))
(t=1) (t=1)

N
ED_S,=v( Y 9)=v(N*9)=3*VN
=1

ED_S, (pure blue process) (9)

N N
ED_S;=v( X (217)=v( X (17)
t=1) =1

N
ED_S;=Vv( Y 1)=v(N*1)=vVN
(t=1)
ED_S, (pure green process)
N N
ED_S;=V( ¥ (2-2¢)=V( X (0))
(t=1) (t=1)
N
ED Sy=V( Y 0)=Vv(N*0)=v0=0
(t=1)

ED, (ED_CS, pure red process) (11)

N N
D, = J; (2t — 0)° = dt = J; (2¢)° + dt
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ED, (ED_CS, pure blue process) (12)
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ED, (ED_CS, pure green process) (13)

_'\'r“
D, = [ (2t — 28)° = dt
o

D, =0

ED, = /D, = O

ANALYSIS OF DATA

In this section we will evaluate the four (4)
metrics we obtained regarding their feasibility
to best analyse HRV data in order to better
interpret the results obtained from it. We also
aim to make some initial assessment of what
number of data points per session (sample
size) give the best results, while at the same
time meeting feasibility requirements in
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obtaining such quality of results. For example,
to have sessions of 30 minutes may be more
feasible in certain experimental settings than
obtaining data from several hours of
recording. Finallyy, we provide some
recommendations for the number of sessions
that should be recorded in order to derive
meaningful HRV analysis.

First, in the following Figure 2, we use the
three (3) matrices G;, B; and R; that we
introduced in Figure 1 in order to compute the
limiting probabilities (LP). The LP values for
R; are: P(X=2) = 0.39 (red state), P(X=1) =
0.32 (blue state) and P(X=0)= 0.29 (green
state). The LP values for B; are: P(X=2) =
0.29 (red state), P(Xi=1) = 0.19 (blue state)
and P(X=0)= 0.52 (green state). Finally, the
LP values for G; are: P(X=2) = 0.04 (red
state), P(Xi=1) = 0.14 (blue state) and
P(X=0)= 0.82 (green state).

The reader must note that the state variable
in the real system (level of coherence or
state, X;) has been observed to remain only
for a relatively short time in the blue state,
which can be understood as a transition state
and the system is more likely to gravitate
towards either green or red. When the system
spends a large percentage of time in blue, we
interpret this as a system with very frequent
transitions between green and red, as we can
observe in real life experimental data
associated with R;.
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Limiting Probabilities for all Matrices (red, blue & green|
Red Matr
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Figure 2

displays the limiting probabilities for the red (R;), blue
(B;) and green (G;) matrix (left to right) respectively.

We used each matrix to simulate the
stochastic processes for a set of sessions
(10, 20, 30, 40, 50 and 100 runs) with
different sample sizes (200, 400, 600, 800
and 1000 points). Note that 200 points = 30
minutes of real life HRV recordings with the
emWave system. In Figure 3 we display the
results for the mean values for different
sample sizes and runs associated with the
Euclidian Distance (ED, Norm2) (Fraleigh &
Beauregard, 1995) of the difference between
the ideal cumulative score vector (ICS;) and
the cumulative simulated score vector (CS,).
For this metric (ED_CS), we also computed
the corresponding confidence intervals (ClI)
(Allen, 1978), (Law & Kelton, 1991). We
conducted the same type of analyses for the
other three (3) metrics:

(1)  The mean values across sessions for
the ED of the difference between the ideal
score vector (IS;) and the simulated score
vector (S;), which we call ED_S.

(2) The mean values across sessions of
the final cumulative score (CS_final).

© Knowledge Publishing Group. All Rights Reserved.

(3) The grand mean (Mean_S) of the
computed means of S; across sessions.

All four (4) metrics display similar tendencies.

| Whether calculated for ten (10) sessions or

more, the mean differs very little for different
sample sizes and the CI are also relatively
small. However, for a sample size of 200
points we observe slightly larger Cl around
the mean and we interpret that to be a
minimum good or acceptable sample size
below which the statistical significance of the
estimated means would be questionable.

In Figure 4 we present the results obtained
from the simulation for the ED_CS metric.
While we can identify some variations in the
mean from 10 to 100 sessions, the
differences are very small, however the CI
gets noticeably smaller as the number of
sessions increases, something expected.
When we computed the same type of
comparison for the other three (3) metrics, we
found very similar results. For all metrics we
observed large Cl and relatively poor
statistical significance in the results for ten
(10) sessions which we regard as a very
minimum number of sessions in real life
experiments. It is certainly recommended that
twenty (20) or more sessions be recorded for
very good quality results. This applies to all
sample sizes which means that for very good
results we could record 30-60 minutes of
data, which is a comfortable recording time
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for participants, according to our experience.
This would mean 200 to 400 points per
session.

ED_CS mean Values for all Matrices, Number of Sessions

and Sample Sizes
. ==y e
¥ - ——% 1 i — -
# [ L] 1] . . . - =
L [ ] L 3 L ] ] ¥ [ 2 1 ] [ 3 L5 .

—* o

H .

L] = el
X-axis: shows the number of

b —— sessions simulated, 1=10,

A ———— 2=20, 3=30, 4=40, 5=50 &
6=100 sessions

e e Y-axis: shows the ED_CS mean

i values
Figure 3

displays the simulation means (M1) of the ED_CS
metric for all three (3) matrices (red, blue & green) and
for all the combinations of sample sizes and sessions.
Sample size of 200 points (top left), 400 points (top
right), 600 points (middle left), 800 points (middle right)
and 1000 points (bottom left), each value in a graph
represents the mean for a particular number of
sessions (10, 20, 30, 40, 50 & 100 sessions, 1 to 6 on
the x-axis respectively).

We then computed the coefficient of variation
for each of the four (4) metrics and again for
all simulations, sample sizes and number of

© Knowledge Publishing Group. All Rights Reserved.

Comparison of the ED_CS mean Values for the Red Matrix

X-axis: shows the number of
sessions simulated, 1=10,
2=20, 3=30, 4=40, 5=50 &
6=100 sessions

¥-axis; shows the ED_C5 mean
values

Figure 4
displays the ED_CS for the red matrix, for all number
of points and all number of sessions.

sessions for all three (3) matrices. Following,
we present the general formula we used to
compute the sampled coefficient of variation:

¢ == (14)

v X
The coefficients of variation are displayed in
Figure 5 and we can appreciate very similar
results for these computations per metric and
per type of matrix. It is important to note that
the graph for the CS_final (bottom left) shows
the results associated to the red matrix as the
one with the highest values, while the results
associated with the green matrix are the
smallest. This is expected since the green
matrix will generate a CS much closer to the
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ideal CS than the blue and red matrix,
therefore displaying a larger CS_final value.
This in turn results in a larger CS_final mean
value over all simulations, which finally will
result in a smaller coefficient of variation. For
all the other cases, the analysis is trivial since
the green matrix is expected to show the
highest scores while the blue shows slightly
better scores than the red matrix.

In Figure 6 we compare Mean_S with the
expected or theoretical mean, as well as the
simulated and theoretical standard deviations

C, values for all Matrices compared by Metric

O RSy XL ) R | 0 ML DN B0 EOE g J0CO

Figure 5

displays the coefficient of variation (c,) for each of the
four (4) metrics for the red matrix (red line), blue matrix
(blue line) and green matrix (green line).

over each particular number of sessions. The
reader can easily observe that for all three (3)
matrices, the simulated mean is very close to
the theoretical mean. The same applies to the
standard deviations. Again, the standard
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simulated Values for Mean_S and Theoretical Vatses for § and Standard
Deviations around mesn valwes for each particular Number of Seéssion

| ] i I
N A TR = e N
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Simulated Mgan_5 values
Rad line = Theoretical mesn walue of 5

o = Mean Standend Deviation of §
for each Mo of Sewsions for all Sampds Sices

= aopn | dop | wpn | EMpn | 3000m %
i 1 | = Theoretical Standsnd Deviation

al &
Black dotted lines = CI around the dmulated
beari_% vl

Figure 6

displays the theoretical mean values (red line) and the
simulated means (blue dots) together with the standard
deviations of the theoretical mean (yellow line) and the
standard deviation of the simulated means (green
dots).

deviation around the simulated means per
session follows very closely the tendency of
the standard deviation of the theoretical mean
values. Note that for all sample sizes the
results associated with ten (10) sessions is
noticeably larger in Cl further supporting our
previous observations.

Finally, we present in Figure 7 the Mean_S
together with associated CI, for all sample
sizes for all number of sessions.

We can observe that as sample size
increases, the CI gets closer to the mean,
and again for a number of ten (10) sessions
the CI increases noticeably for all sample
sizes. We can also observe, as expected, that
for any particular sample size, the Cl gets
closer to the mean as the number of sessions
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increases. While the CI for the green matrix
are already very small for simulations with
200 points sample size, the red and blue
matrix produce means with relatively larger
Cl, when compared to the green. Overall, we
are able to properly classify the different
processes (red, blue and green) for all
sample sizes and all number of sessions for
all metrics. This means that even though the
Cl are larger for ten (10) sessions and a
sample size of 200, still we can achieve a
good classification.

Mean_5 & €l for all Sample Sizes and Mumber of Sessions for the
Red, Blue & Green hiatrix

1a
T L I ,
oo i | I

|
12 S it ---u---'j-." TrEmietEr. I---...... I aianye
..-"'- I i

a8

oa | I ]

Figure 7

displays the Mean_S values for all simulated scenarios
for the green matrix (green line), the blue matrix (blue
line) and the red matrix (red line) and their
corresponding Cl (black dotted lines). Note that the six
(6) values within each of the different sample size
regions for 200, 400, 600, 800 & 1000 points
correspond to the 10, 20, 30, 40, 50 & 100 runs
respectively.

In order to complement our CI analysis we
calculated the t-values and p-values for the
null hypotheses Hy: yu = gy and the alternative
Hi: y # Yo where po: {E(ED_CS), E(ED_S),
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E(CS_final), E(IS-S)} and each theoretical
expected value for each metric where N is the
sample size for a particular session, LP are
the limiting probabilities and IS is the ideal
score with a value of two (2) and are
computed as follows:

E(ED_CS) = (IS - S) * V(N%/3) (15)

E(ED_S) = V(E(IS - S)?) * VN (16)

E(CS_final) =5 * N (17)
3

E(IS-S)= ¥ (IS-S)*LP (IS-S) (18)

(i=1)

The t-statistic is computed as:
xX= 1,

s/n

t= where n is the no. of sessions (19)

In our case x can be any of the four (4)
metrics: Mean ED CS, Mean ED_S, Mean
CS_final, Mean_S. Following we present in
Table | the results for the case of ED_CS for
all three (3) matrices (red, blue and green).

It is important to note that p-values greater
than or equal to a = 0.05 would lead us to
accept the null hypothesis H, which is the
case for all p-values for all sample sizes and
number of sessions. Furthermore, these
results give us the confidence that we
simulated the processes for a large enough
sample size and number of sessions, even for
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the very minimum of 200 points and ten (10)
sessions. All of this means to us that we
could expect good enough results in real life
measurements for half an hour to an hour per
session, for a total of ten (10) to twenty (20)
day sessions. All of this is fairly easy to
achieve with a relatively small budget. Finally,
it is important to mention that we performed
the same analysis for the other two (2)
metrics with similar results, where all the
p-values were greater than or equal to a=
0.05.

HPoints | #5esgons | ED O5 ED 5 ED 5 | Mean 5| Mean 5| Mean 5
200 10 073 a7 023 as7 a3 .50
204 20 0.4 a7 0.45 aAL 247 054
200 30 13 71 041 68 & L% 4}
200 A0 a2 a2 0.13 .86 033 028
200 0 0.a3 a79 0.14 a7 a73 .34
200 100 041 037 0.26 .37 2.30 0,43
400 1a 035 034 0.4 .48 33 51
400 20 0353 232 Q.05 Q.87 2435 025
400 E us-=] 062 011 =] 250 .57
400 40 082 022 0.24 066 214 .54
400 1) 51 2 0.27 Ay ia a2
400 100 f A 0.99 0.71 36 ¥
&00 10 =] 023 .73 073 042 032
&0 20 076 aas 0.26 (5] 045 .40
800 30 054 233 0.13 02.70 021 0.48
600 a0 473 aas 0.15 (R 037 047
&0 50 0.6 033 0.57 .88 243 0.7
&0 100 53 16 057 (i8] 24 31
b i} 1a 088 031 0.2 .85 134 0.28
a0 20 057 028 0.34 0. 70 .12 .58
a0d 30 0uel 054 0485 0.9% 033 0.43
a0 A0 0.6 37 0.90 .75 aAa2 .73
a0d 50 0.7 &S 0.90 0.3 aas 4.7
a0 100 066 0.7 Q.71 &3 17 52
1000 1a Q.77 037 o] 350 (17 0.25
1000 20 033 054 0.4 a4 416 027
1000 E Q.23 038 0.78 233 047 072
1030 40 0ue3 054 o.a7 rE| aas @71
1000 0 055 06 0.33 . Q.26 &3
1000 100 064 &4 0.5 63 344

Table |
p-values for ED_CS and Mean_S
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In the following part of this analysis section,
we introduce the reader to the results
obtained from our normalization algorithms
according to the formulas introduced in
section ‘Normalization algorithm'.

When the need arises to compare the ED_CS
results (a metric derived from a cumulative
process) coming from different simulations,
which are different in sample size, we apply
our normalization formulas as depicted in
equations (8) to (13). We always normalize
from the larger sample size to the smaller one
in order to be conservative with Cl. For
example, for the red matrix with 200 points
and 10 sessions we got an ED_CS value of
2398.048 while for 400 points and 10
sessions we computed a value of 7143.003.
We then normalized the results from a
sample size of 400 points by applying
equation (11) and obtained a normalized
ED_CS value of 2525.43307 comparable to
2398.048. We normalized all possible
combinations based on the simulation sample
size, which means for example, that for a
sample size of 200 points we normalized
ED_CS from 400 to 200, from 600 to 200,
from 800 to 200 and from 1000 to 200 points.

As an illustration, we present in Figure 8 the
normalized results for all ED_CS obtained for
10 and 100 sessions only. The blue bars
present the ED_CS value computed from
simulations that are the normalization target
(smaller sample size) and the red bars
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present the normalized ED_CS values from
simulations  with  larger sample size
(normalization source).

Here the reader can visually identify that for
all normalizations, the source values are very
close to the values they were normalized to

Comparison of target vs. source values for ED_CS
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Figure 8

displays ED_CS target value (blue bars) vs. the
ED_CS source value after normalizing the ED_CS to
the target value (red bars). These results are shown for
10 (left) and 100 (right) sessions for the red (top), blue
(middle) and green (bottom) matrix.

(target values). This we would expect since
we used the same matrices to simulate
different sample sizes in order to test the
normalization equations. Even though we are
confident that these formulas are reliable to
allow us to compare data from different
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sample sizes, we still recommend a further in
depth statistical analysis, which is outside the
scope of this paper.

CONCLUSIONS

The methodology presented here is applied to
discrete HRV simulated signals based on
Markovian transition probability matrices.
However, this methodology can be applied to
any other real-life or simulated signal that fits
the requirements of a discrete stochastic
process, like for example, simulated discrete
semi-Markovian models, ARIMA models or
biological signals, like the ones derived from
brain dynamics and stress hormone levels
when sampled discretely.

From our analysis we have derived some
valuable insights in terms of what metrics are
more convenient and appropriate for what
type of analysis, as well as what combination
of sample size and number of sessions are
most ideal when weighing statistical
requirements for data analysis with efforts
required in order to obtain such data. From
our analysis we conclude that a recording of
200 points over a period of ten (10) sessions
just suffices for most purposes of statistical
data comparison. However, if a larger
confidence is required for smaller Cl, then a
larger sample size and number of sessions
may be more appropriate. The choice of
sample size and number of sessions will
remain dependent on the study's objectives
as well as the available equipment and
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resources. For example, while large sample
sizes for many days are relatively easy to
obtain when using a more permanent device
such as a FIRSTBEAT Bodyguard 2 HRV
recorder (Firstbeat Technologies Ltd., 2017),
this is very different when using a heartbeat
monitor such as the emWave 2 (Quantum
Intech, Inc., 2014) which is limited to one (1)
hour recordings per session, a relatively small
sample size (~400 points). From our
observations it seems desirable to find some
conventions regarding sample size and
sessions across studies since it will greatly
simplify the comparison between studies and
improve the utilization of data already
obtained in previous studies. However, the
normalization procedure will be of great value
for comparing results when similar sample
size across studies is unfeasible.

When we compare the results of the four (4)
analyzed metrics in this study, we can draw
some conclusions regarding the power of
analysis associated to each metric. As we
have shown in Figure 6, the Mean_S and its
associated mean standard deviations across
sessions produces, already with a sample
size of 200 and with ten (10) sessions, results
that are very close to the expected values.
When comparing overall performance of
participants Mean_S is an easy metric to
compute that may give a very good initial
impression  about the similarites or
differences between processes. This also
applies to the ED_S metric which is in close

© Knowledge Publishing Group. All Rights Reserved.

relation to the Mean_S. However, these two
(2) metrics lack the ability to reflect the quality
of the process itself when we need to make a
distinction based on the type of trajectory with
cumulative effects. If we are interested in
capturing the nature of the process rather
than overall tendencies, then the ED CS
metric is more appropriate. When applying
this measure we can derive valuable
information  reflecting the participants'
performance throughout the session. This
kind of measure reveals which process is
cumulatively better when compared with
another one.

For example, when comparing a participant
that started a session in red and then slowly
recovered throughout the session (to green),
with another participant whose process
showed the opposite tendency, initially green
and then deteriorating to red. The answer to
this question is illustrated in Figure 9 and a
thorough analysis awaits for future studies.

Finally, we conclude that the CS_final is the
least useful of the four (4) metrics analysed in

ED_CSvsCS final
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Figure 9

shows a comparison between a participant that starts
in red and recovers to green (red line and bar), with
another participant showing the opposite tendency,
initially green and then deteriorating to red (green line
and bar).

this study. This metric fails to capture the
process as well as the fact that it may
produce values that are non-comparable
between participants and sessions. For
example, if a participant spends the first half
of a session in red and the second half in
green, the CS_final computed from such a
session will give a noticeably higher CS_final
value than if the participant spent the first half
in green and then the second half in red,
completely ignoring that starting in green may
mean more resilience and recovery capacity

than starting in red when measuring
psychophysiological coherence via HRV
measurements. The intuitive  minimum

requirement would be equal values for both
processes, otherwise the CS final metric
indicates that being first in red and then in
green is better than vice versa. As already
mentioned, it seems to us that the opposite is
more biologically plausible, which means that
it is better to initially be in green since when
dropping we have already built resilience to
efficiently address the drop into red. This
issue surely awaits more research.
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