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ABSTRACT 

The interpretation of video imagery is the quintessential goal of computer vision. The ability to group moving pixels 
into regions and then associate those regions with semantic labels has long been studied by the vision community. In 
urban nighttime scenarios, the difficulty of this task is simultaneously alleviated and compounded. At night there is 
typically less movement in the scene, which makes the detection of relevant motion easier. However, the poor quality of 
the imagery makes it more difficult to interpret actions from these motions. In this paper, we present a system capable 
of detecting moving objects in outdoor nighttime video. We focus on visible-and-near-infrared (VNIR) cameras, since 
they offer low cost and very high resolution compared to alternatives such as thermal infrared. We present empirical 
results demonstrating system performance on a parking lot surveillance scenario. We also compare our results to a 
thermal infrared sensor viewing the same scene. 

1. INTRODUCTION 
In this paper, we focus on the problem of automated parking lot surveillance at night using visible-and-near-infrared 
cameras (VNIR). These sensors are low cost (100s of US dollars) when compared with thermal infrared sensors (1000s 
of dollars) and have a much higher resolution. Thermal imaging may seem an obvious choice for nighttime surveillance 
since it enables detection of people and warm cars without any ambient light. However, most parking lots are never 
completely without ambient light, with typical illumination levels between 5 and 50 lux even on moon-less nights. In 
fact, parking lots next to buildings with strict security tend to be well lit as a deterrent to illegal activity. Intuitively, 
cameras optimized for low-light are therefore just as appropriate as thermal cameras for this scenario. Long-wave infra-
red (LWIR) 160x120 cameras are the least expensive thermal solution, but they still cost anywhere from $7,000 to 
$15,000. Finally, the ability of thermal cameras to detect cars generally depends on the engine being warm, hence a cold 
car starting up and driving away can be difficult to see. 
We call our research system VANESSA, for Video Analysis for Nighttime Surveillance and Situational Awareness. 
VANESSA is capable of: 1) enhancing a video stream, 2) determining moving objects, and 3) rejecting false motion due 
to vehicle headlights. This paper focuses on identifying the key difficulties associated with our chosen domain and cam-
era technology. In addition, we present algorithms to correctly detect and segment moving objects while maintaining a 
low false alarm rate. This is a non-trivial task given the difficult nature of the imagery.   
The remainder of this paper is laid out as follows. In Section 2, we present a brief overview of previous work in the 
field, Section 3 discusses the challenging problems associated with video surveillance in VNIR, and Section 4 discusses 
our data collection. In Section 5, we present our motion detection algorithm along with mechanisms for suppressing 
false motion due to headlights. Section 6 presents empirical results on several video sequences along with a simple per-
formance comparison to LWIR data. 

2. PREVIOUS WORK 
The computer vision literature is rich with valuable contributions to the field of video surveillance and tracking. The 
previous work discussed in this section is not an attempt at a complete literature review, but rather focuses on the key 
bodies of work most helpful when designing and implementing the VANESSA system. As such, the review does not 
focus on specific papers, but rather long-running research programs spanning multiple publications. 
The DARPA funded Video Surveillance And Monitoring (VSAM) work at MIT has lead to the development of a so-
phisticated system for tracking and identifying pedestrians from a collection of sensors spanning a large area. Their ap-
proach begins with background modeling over time [1]. The technique they have formalized uses a mixture of Gaus-
sians to represent each pixel in the image. (We have chosen to use this technique for our background modeling work, 
see Section 4). Once moving objects are segmented, they are labeled as pedestrian or clutter using a trained classifier 
[2]. The classifier is constructed in an unsupervised fashion and learns to delineate frequently detected parts of moving 
people (such as torso). Pedestrians are tracked over time using a simple Kalman filter. The tracks formed are then used 



 

to register all sensors viewing the object into a common reference frame [3]. The described system uses color imagery 
and has not been extended to nighttime use. 
The DARPA funded VSAM work at CMU focused on reliably tracking moving objects from a moving platform. In this 
context, simple background modeling is not appropriate, so the video stream was first stabilized before frame differenc-
ing could be applied to detect moving objects [4]. To track objects from frame to frame, infinite impulse response filters 
(IIRF) were used to build a dynamic appearance model, or image chip, of the 2D object [5]. This technique allows a 
short time window of memory when building the template, and greatly increases the robustness when tracking multiple 
vehicles and individuals. In addition, they explored the use of skeletonization for classifying pedestrian motion [6]. This 
system has not been extended to nighttime use. 
The University of Maryland has constructed a series of surveillance systems to track people in video imagery. They use 
color and grayscale imagery as well as IR video for nighttime operation. Their system begins with a non-parametric 
background-modeling algorithm [7] to detect moving objects. Once segmented, row and column projections are exam-
ined as well as points of high curvature on the object boundary [8]. These features are used to localize pedestrian heads 
and are tracked over time. Their appearance models are based on histograms, IIRF models, and motion history tem-
plates [9]. Color information is also exploited to track objects in groups as well as segment shadows from moving fig-
ures. 

NIGHTTIME VIDEO SURVEILLANCE 
Before developing the VANESSA system, we collected and analyzed VNIR video from our parking lot. We used this 
data to identify several issues that make VNIR based video surveillance difficult. We then developed our system to deal 
with as many of these issues as possible. The issues we determined to be relevant are: 

• Pixel noise: low light levels require high gain to produce an image with acceptable brightness, but the high 
gain also amplifies the sensor’s noise. This causes high variance in pixel values between frames. This can be 
problematic to any background modeling approach since pixels of the same surface change significantly from 
frame to frame. 

• Blooming: vehicles at night use headlights, turn signals, and reverse-gear lights that cause blooming. These ef-
fects distort the segmented shapes of objects, confusing our tracker. On the other hand, a heuristic-based im-
age-processing algorithm could take advantage of such features in the image to detect vehicles and even sig-
nificant motion events (turns, backing up, etc.). 

• Glare/Specular reflections: car headlights cast a wide beam that reflects off any surface the light irradiates. To 
complicate matters, parking lots contain surfaces designed to reflect light, such as retro-reflective parking 
markers and signs. Unless compensated for, these effects cause numerous false detections in the background 
model. 

• Rapid lighting changes: since vehicles move quickly across the field of view, shadows appear/disappear 
quickly, headlights and taillights appear/disappear quickly and reflections shift along reflective surfaces 
quickly. 

• Shadows: since the scene is artificially lit by many point-light sources, people walking through the scene cause 
sharp shadows with changing orientation (with respect to the person) over time. This is problematic for motion 
detection since the shadows often have similar luminance as the person. 

• Low local contrast: pixel values tend to form two distinct clusters corresponding to well-lit surfaces and poorly 
lit surfaces. This causes most pixels to appear either very light or very dark. When a bright object moves across 
a dark background, segmentation is easy. However, more often a dark object appears against dark background, 
making segmentation very difficult. This contrasts with daytime operation where many different gray levels are 
present in the image making segmentation more robust. 

In addition, our datasets contain many of the same difficulties that plague automated video surveillance algorithms op-
erating on data collected in the daytime. Two of these issues are: 

• Camera motion: our initial rooftop data collections used a tripod-mounted camera. Wind shook the camera 
during several collections, causing many false alarms in a background-modeling algorithm designed to detect 
motion. 

• Occlusions: both cars and pedestrians tend to move in-between parked vehicles causing large levels of occlu-
sion. This is problematic for tracking since the apparent object size in the image plane changes rapidly at the 
start and end of each occlusion event. 



 

• One of our key concerns has been the feasibility and robustness of VNIR-based video surveillance at night. 
VNIR needs justification in particular since IR-based analysis might be thought of as the most obvious sensor 
choice for this domain. Based on the VNIR and LWIR data we have collected, we have formulated the follow-
ing list of factors affecting the choice of sensor for this domain: 

• Resolution: VNIR cameras use CCD or CMOS sensors of various sizes, but even low-end cameras generally 
have VGA (640x480) or better resolution. The Sony camera we used in our work has a sensor resolution of 
720x480, and our initial experience shows that the data has sufficient resolution to identify crude facial fea-
tures at 45 meters. Low-end LWIR sensors typically have 160x120 sensing elements and up-sample or interpo-
late to produce data at 320x240. Both cameras operate at 30fps. 

• Cost: VNIR sensors are typically on the order of a few hundred dollars compared to LWIR priced at many 
thousand dollars. While the cost of LWIR sensors has been steadily decreasing over the years, a comparable 
decrease in VNIR sensor prices has also occurred and LWIR is unlikely to catch up in the foreseeable future. 

• Light levels: LWIR sensors can operate in complete darkness. VNIR sensors require ambient lighting that pro-
duces light levels on the order of 1–10 lux. Therefore, VNIR is appropriate for partially lit parking lots, but not 
environments without any ambient lighting. 

• Day/Night Transition: we have collected several VNIR sequences at dusk and right after sunset. There is a 
short time window where the local contrast between people and cars substantially decreases, making tracking 
of people harder as they move in front of or behind cars. This time window is much shorter than the transition 
period in LWIR where pavement and asphalt takes several hours to cool down from solar loading, during 
which vehicles have very similar temperature as the pavement.  

• Segmentation: pedestrian segmentation in LWIR is trivial. In many cases, a simple threshold can be used to 
cleanly segment people from cool backgrounds. This does not hold for cars with cold engines, they appear the 
same temperature as the cold pavement (after solar loading has dissipated). Apart from that, LWIR is not 
plagued by the segmentation problems discussed above: headlight blooming, glare, and shadows are not 
sensed. 

3. DATA COLLECTION 
We have collected 80 video clips from three different sensors covering 55 events on 6 separate days spanning 10 

hours. Our goal was to produce a data set that could be used both to determine the difficult operating conditions for 
VNIR-based video surveillance, as well as to provide data for algorithm development and evaluation.  provides a map 
of the building and the area of the parking lot that can be seen from the camera location currently being used. Our cur-
rent camera placement is approximately 12.8 meters above the ground (measured using a laser rangefinder). Measure-
ments to other features in the scene were also made to give a better feel for scale, typical distances to moving pedestri-
ans and cars were between 30 and 60 meters.  
The first two sensors used in the collection were very similar: Sony digital video (DV) camcorders, models DCR-
TRV33 and DCR-TRV17. The CCD sensor in each camcorder has peak sensitivity in the NIR range (around 0.8µm), 
which requires an internal IR blocking filter for normal daylight usage. The NightShot™ feature removes that filter from 
the optical path, thereby significantly increasing the total number of photons reaching the CCD. This extends the cam-
era’s operational capability into lower lighting conditions, at the expense of color. Sony camcorders also offer a second 
mode called Super NightShot™, which produces significantly brighter images than the NightShot™ mode, presumably 
because of longer exposure times (Sony does not disclose such technical details). While the better sensitivity of the Su-
per NightShot™ mode is clearly preferable, tracking can become problematic if the resulting shutter speed is so slow 
that individual rapidly moving objects have significant motion blur. 
The third sensor was a LWIR imager rented from Bodkin Design (www.bodkindesign.com). It is a 160x120 sensor that 
produces a 320x240 interpolated image stream. The LWIR data was all collected on the same night. The environmental 
conditions were optimal for LWIR sensing: 1) very cold air temperature (10 degrees Fahrenheit) and 2) data was col-
lected several hours after sunset. This data is used to estimate the performance difference of our tracking algorithms 
between the two modalities (LWIR and VNIR). 
Once the video clips were recorded, the data was converted to AVI files for processing. The VNIR images were cropped 
to 640x480 and resampled to 320x240 to ensure that the VNIR and LWIR images were at comparable resolutions. 



 

 

Figure 1. Data collection layout 

4. MOVING OBJECT DETECTION 
Figure 2 shows the VANESSA system architecture. This system was built to perform automated parking lot surveil-
lance at night, addressing many of the issues presented in Section III. The system takes as input sequential frames from 
a video sequence. During our preprocessing stage (discussed in Section 5.1) a contrast enhancement operator is first 
applied to deal with the low local contrast. Also in this stage, both spatial and temporal smoothing is used to reduce the 
effects of random variance at the pixel level (sensor noise and camera motion).  

 

Figure 2. VANESSA System Architecture  

A motion detection algorithm is then used to identify objects of interest in the scene. Motion detection is a common 
approach to video surveillance [4, 5, 11] where some form of background representation, or model, of the scene is 
computed. The easiest method to implement is background subtraction where the current frame is subtracted from the 
mean of the last N frames [5]. More complicated non-parametric [8] and parametric models [1] have been explored to 
build an adaptive representation that is more robust to objects stopping and starting (such as pedestrians) and reoccur-
ring events (such as fluttering foliage). 



 

We have implemented the Gaussian Mixture Model (GMM) technique presented in [1]. This technique is outlined in 
Section 5.2. For nighttime surveillance, we found this technique performed poorly when applied directly to the (non-
preprocessed) video data. We attribute this to the fact that the on-line learning algorithm assumes that the various fore-
ground and background distributions have very little overlap. Since the raw data has very low contrast, learning to sepa-
rate foreground from background was impossible. However, our preprocessing stage increases the dynamic range as 
well as reduces the high pixel variance (which also interferes with the GMM technique). Even with these modifications, 
the technique still produced a large number of false alarms during rapid illumination changes (typically caused by glare 
from vehicle headlights). To correct for this, we then verify the detected motion by checking for a corresponding change 
in texture in an image-patch centered on each pixel labeled as moving [10]. If texture change is insignificant then we 
assume the “motion” was really just a sudden change in local illumination, such as headlight glare. Region culling and 
connected components are then used to compute blobs for tracking. The remainder of this section provides details for 
each step of this pipeline.  

IMAGE PREPROCESSING 
The first step in the process is to compute a histogram for each frame. The cumulative distribution of the pixel data is 
then computed and a parameter is introduced to clip 2% of the data at the beginning and end of this distribution. A 
gamma function is then fitted to the clipped cumulative density, followed by the computation of a lookup table that both 
increases the brightness in the image and produces a higher dynamic range (increased contrast). The parameters of the 
gamma function are tracked over time so as not to produce flicker. 
Once the data is both contrast and brightness enhanced, spatial smoothing is applied. We are currently using a 5x5 
Gaussian kernel with a standard deviation of 1.4 and exploit the separable nature of the filter to reduce convolution 
time. The result is then temporally smoothed using a global infinite impulse response filter. The filter’s output is a 
weighted average of the current frame and a buffer containing an exponential history of all past frames. The single pa-
rameter of this filter determines how rapidly the memory of past frames is extinguished from the buffer. Best results 
were obtained with a value of this parameter = 0.5. The result is then passed to the background-modeling algorithm, 
which labels pixels as foreground/background.  
Each of these preprocessing steps was designed to deal with different environmental conditions specific to nighttime 
surveillance (see Section 3). The contrast/brightness enhancement compensates for the low local contrast. The spatial 
and temporal smoothing compensate for high levels of pixel noise. Finally, temporal smoothing reduces the effects of 
camera jitter.  shows an example of an original image (left) and the preprocessed result (right). 

GAUSSIAN MIXTURE MODELS 
Algorithms designed to detect events in dynamic environments must adapt to ensure an acceptably low false alarm rate 
without missing important events. For example, a detection system trained to operate during the day requires a different 
model of acceptable background content than a system operating at night. Hard-coding a static model for a specific set 
of operating conditions will ensure drastic failures when a fielded system is presented with even slightly different condi-
tions.  

 

 

Figure 3. Data preprocessing result 



 

We used the GMM technique to learn a representation of an event-free environment. When new data arises that deviates 
from the model, we assume that the deviation is the result of an event of interest. Furthermore, this model adapts over 
time to deal with an ever-changing environment. Since multiple models are used, the system also learns the different 
states of re-occurring events (such as the same pixel sometimes showing a bright leaf and sometimes a dark leaf in 
wind-ruffled foliage). Simple differencing of current measurements with a running average of previous measurements is 
not able to cope with such repetitive events. 
The method we used was presented in [11]. In their mixture model, each pixel is represented using a collection (Stauffer 
suggests 3 to 5) of weighted Gaussian distributions. These distributions are parameterized by the mean µ and the co-
variance ∑. In the following notation, we will use the subscript i to denote a specific mixture of a random variable and t 
to denote the current snapshot in time. The shape of the composite distribution is then: 

 ∑ ∑⋅=
i

titittit xGwxP ),,()( ,,, µ  (1) 

where ),,( ,, tititxG ∑µ is the Gaussian model, x is the measurement, P(x) is the probability the pixel is part of the 

model, and iw  is used to weight the distributions in the mixture. When a new measurement x is made, it is compared to 
the current set of mixtures. If a match is found, the distribution parameters associated with that match are updated.  
To verify that our implementation of the GMM technique was correct, we generated several synthetic datasets of five 
Gaussian distributions with different means and standard deviations. A biased sampling mechanism was then used to 
ensure that the learning technique could estimate acceptable weightings for the different distributions.  shows a simula-
tion in which, all five synthetic distributions were set so that there was very little overlap. The red lines represent the 
synthetic data, and the blue represent the learned model. Note that the model has learned the correct mean and variance 
of each distribution, and has a good approximation of the weighting. 

 

Figure 4. Evaluating the GMM learning technique 

After each pixel is labeled moving/stationary, the image is convolving with a 16x16 square uniform kernel and thresh-
old to produce a cleaner version of the motion mask. A connected-components algorithm is then applied to individuate 
each moving region.  
These regions are then tracked over time.  shows an example of the motion detection algorithm being applied to two 
different scenes containing a car and a pedestrian. The left column shows the binary detection labeling produced by the 
GMM technique, after the 16x16 blurring. The middle column shows the connected component output of the data. The 
right column shows the input images with tracked objects indicated with a box overlay. Note that the false motion pro-
duced from the headlight glare on the pavement easily fools the algorithm. 
In the simple examples shown in , the problems associated with nighttime surveillance are painfully evident. The head-
lights cause a drastic change in the pixel values across a large portion of the ground and object shadows cause inaccu-
rate segmentations. In addition, the headlights cause flashes of highly specular reflection across the parked cars. The 



 

literature is filled with approaches to deal with illumination changes that cause a motion detection algorithm to produce 
false alarms. The technique we have chosen is based on the notion that false alarms should not produce a corresponding 
change in texture in the image. Intuitively, an object moving over an image should cause both a change in pixel inten-
sity and a change in the local texture of the image [10].  
Our approach first computes a new image representing the ratio of the background model to the new frame. Each pixel 
marked as moving by the background subtraction algorithm is examined in this ratio image to determine if a change in 
texture also exists. A change in texture is defined as a large variance in a 5x5 window in the ratio image.  shows two 
images with the same detected object shown in both. In the left image, the pixels labeled as moving by the motion seg-
mentation are shown in red. Note the large number of false alarm pixels. The right image shows only those pixels pass-
ing the motion verification step. This verification step has essentially eliminated the false motion due to headlight glare 
in this example. The red and blue boxes represent the output of a temporal tracker performing data association across 
time.  shows another example of both vehicles and pedestrians being detected. 

 

 

Figure 5. Motion Verification 

6. SYSTEM EVALUATION 
To evaluate the system, we manually image-truthed 10 LWIR and 10 VNIR sequences of the same scene. We then 
compared the true bounding boxes of each moving object to the regions produced by the motion detection algorithm. 
For the LWIR evaluation, we did not apply the false motion suppression algorithm, as headlights do not show up in 
thermal IR. We then combined the per frame score into a score across the entire lifetime of each tracked object. 
Fig. 6 shows the percentage missing tracks (as a percentage of actual tracks) and the count of extra tracks in each se-
quence. Each point in the figure represents a single track, and both LWIR and VNIR modalities are shown. In this plot, 
we can clearly see that motion detection algorithm in LWIR produces fewer false alarms than the motion detection op-
erating on VNIR. The main reason for this is the specular glare from headlights cast onto vehicles that caused false mo-
tions not removed by our motion verification. These extra regions can be rejected as false motion by a higher-level 
tracker as they have very distinct motion characteristics. Also note, that the motion detection missed comparable num-
ber of objects in both LWIR and VNIR. This implies that while VNIR has a slightly higher false alarm rate, the prob-
ability of detection for both sensors is comparable. 

7. CONCLUSIONS  
In this paper, we have presented an automated video surveillance system developed to detect moving pedestrians and 
vehicles at night. We have explored the use of both LWIR and VNIR imagery and presented several techniques to re-
duce the false alarm rate associated with VNIR artifacts (such as headlight glare on pavement). Our preliminary results 
demonstrate the significant potential of lower cost VNIR sensors for parking lot surveillance. 
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Fig. 6. Comparing LWIR and VNIR Tracking performance 



 

  
Fig. 7. Examples of moving target detection 

Tracking examples from sequence 

 

Figure 8: Example of tracking vehicles and pedestrian 
 


