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Abstract 

Robotic tasks usually require some collision free mo- 
tions, and there has been considerable work in methods 
for collision avoidance. However, noise in the sen- 
sor data, movement of the obstacles, and incomplete 
or inaccurate model of the surroundings all may lead 
to unexpected collisions. Detecting such collisions is 
necessary before recovery and/or replanning may take 
place. 

A means of detecting a collision, as well as the po- 
sition of the collision on the manipulator has been de- 
veloped. The detection scheme combines information 
from observed disturbance torques to detect collision 
and infer the location of contact with the environment. 
Knowledge of contact position allows for a more intel- 
ligent and less error-prone recovery scheme. 

A simulation using a three DOF manipulator shows 
that the collision identification and localization scheme 
is feasible and robust with respect to noise. 

1 Introduction 

There has been considerable work in planning robot 
motions to avoid collision [2, 3, 71. While we may con- 
struct a path which successfully avoids collisions with 
known obstacles, the problem of unexpected collisions 
always exists as long as there is uncertainty in our 
sensing, control, or our modeling of the environment. 
This is particularly true for mobile robotics where the 
errors in position may increase as the robot moves in 
the environment [9]. 

We propose a method for collision identification and 
localization using observed disturbance torques at the 
joints. The disturbance torques provide a great deal 
of information about the interaction of the manipula- 
tor with the environment, with little or no additional 
sensing. 

The method we propose models interactions be- 
tween surfaces of the manipulator and points in the 
environment as a set of features which are configura- 
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tion independent. These features have associated pa- 
rameters which provide a basis for the set of all gener- 
alized forces generated by the given feature. Combin- 
ing these features, with knowledge of the disturbance 
torques and the manipulator configuration yields a 
system which is sufficient for identification and local- 
ization of collisions of the manipulator with the envi- 
ronment. Localization of the collision involves solving 
for feature parameters which best fit the observed dis- 
turbance torques. 

We demonstrate how additional constraints on the 
system yield an overconstrained system, and a least- 
squares solution provides a means of determining fea- 
ture parameters which is robust with respect to noise. 
We also give a measure based on the least-square pro- 
jection which provides a useful measure for comparing 
the merits of competing collision hypotheses. 

We will assume below that the disturbance torque 
rd can be estimated with some uncertainty. This could 
be done by joint torque measurements if we have a 
model of the actuator dynamics, or measuring joint 
states and using a disturbance observer [13]. In gen- 
eral we are given a ?&d-link manipulator whose equa- 
tions of motion are described by: 

Td = M(B)8 + V(e, 6) + G(8) - Tinput (1) 

where M is the mass matrix, V denotes velocity- 
dependent terms such as the centrifugal and corio- 
lis terms and viscous friction, G denotes position- 
dependent terms, e.g., due to gravity, rmput repre- 
sents the inputs to the system, and rd represents a 
disturbance torque. Given measurements or estimates . . 
of Q,Q and B we may observe the disturbance torque 
rd. 

There have been advances in path planning which 
deal with uncertain control and sensing [ES], as well 
as path plannin 

7 
which is guaranteed to succeed or 

noticeably fail [4 Much less attention has been given 
to the task of collision detection and localization as 
a source of information for recovery from unexpected 
errors. We propose a means by which we may combine 
knowledge of the sensor and actuator histories, with a 
model of the dynamics to infer the geometry of contact 
with the obstacle. 
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The use of contact information is prevalent in grasp- 
ing (e.g., [la]), mobile robotics (e.g., [‘9]), and indus- 
trial robotics (e.g., [13]). [12] uses force information 
from strain gauges to infer interactions with the end 
effecters and the object. Here the object’s position is 
relatively well known, and it is the position and ori- 
entation of the various contacts that are recovered. 
[9] uses contact information to reduce t,he uncertainty 
of the robot’s position and orientation. The contact 
serves as a reference point for the robot. [13] uses 
a model of the dynamics of a serial m,anipulator and 
infers collision when a disturbance of sufficient mag- 
nitude occurs. 

The overall goal of our approach is similar to the 
force-based contact sensing of [5, 11, and the contact 
detection given in [13]. Unlike the work of [13], we 
wish to extract contact position information, rather 
than the presence or absence of a collision. We extend 
the work of [5, l] to include links with arbitrary geom- 
etry, and multiple contact features. This is achieved 
by explicitly forming the basis of extern.al forces which 
may act on the manipulator given the geometry of the 
link, and the contact type. Additionally, the tasks of 
contact identification and localization are combined 
into one formalism. Like [13] we may estimate the 
disturbance torques by observing the system dynam- 
ics, or we may use direct measurements of the forces 
and moments as in [12] if this sensor information is 
available. 

Sensing issues aside, the problem we wish to ad- 
dress is, to a large extent, the inverse problem of [12]. 
The grasping problem of [12] involves precise knowl- 
edge of the object, both position and orientation, with 
unknown contact geometry. The goal is to infer the 
contact geometry from measurements of the applied 
forces and torques at the contacts. With the collision 
localization problem we use a model of the contact, 
with measured interaction forces, and infer the un- 
known position of the object. 

We propose a means by which not only the presence 
of a collision, but also the position of the collision on 
the manipulator can be inferred. [13:/ assumes that 
once a collision has taken place the robot is able to 
return to a “safe position”. This not simple in practice 
since the same positional errors in the robot that may 
have lead to the collision may make it impossible to 
move to the safe position. By recovering the collision 
geometry we may make a more intelli,gent choice for 
error recovery. 

We begin in $2 with a description of contact forces 
on a serial manipulator in terms of features of the 
links, and their associated parameters. These features 
are combined with the configuration-dependent terms 
to produce a contact Jacobian which will fully describe 
the set of joint forces observable by the manipulator. 
The task of localizing the collision from a set of dis- 
turbance torques is presented in 53. Geometric con- 
straints on the position, its well as cone-constraints due 
to friction are given to further constrain, the system. A 

means of qualitatively determining which feature took 
part in the collision, as well as metric for comparing 
competing contact hypotheses is then developed. Re- 
sults of a simulation of a planar 3 DOF manipulator 
is presented in $4, followed by a discussion of possible 
extensions to the formulation in $5. We conclude with 
a summary of the results in $6. 

2 Contact Forces 

Determining contact position involves finding a po- 
sition and force which is consistent with the observed 
disturbance torques. Since there will be errors in our 
disturbance torque measurements, the contact infor- 
mation should correspond to the interpretation which 
“best” describes the measurements. To sufficiently 
constrain the system we may have to impose addi- 
tional constraints on the number and the type of con- 
tacts which are modeled. 

To model the interaction of the manipulator with 
an object, we will consider a set of features which de- 
scribe the set of generalized forces which can be trans- 
mitted to the manipulator. These features may be 
generate by point, line, or soft-finger contacts and may 
include frictional forces (see, for example, [lo]). 

For example, consider the simplified example of a 
three DOF manipulator with parallel joints in Fig. 1, 
with triangular links. The manipulator is effectively 
planar, but we shall treat it as a spatial manipulator 
for consistency. Suppose there is frictionless contact 
between face i of Linkj and a point in the environment. 
Then the contact wrench (i.e., force and torque) in 
Linkj’s frame of reference is 

iWi E lR6 = Xil( Q.hi2( &;) (2) 

Here Xii is the magnitude of the contact force, 
Q  E Iw3 is the unit vector normal to face i, vi E IR3 is 
a unit vector tangent to face i in the plane perpendic- 
ular to the joint axes (since this is effectively a planar 
problem), and &z/&r parameterizes the location of 
the contact on face i. Thus associated with each fea- 
ture is a vector Xi whose elements parameterize the set 
of possible generalized forces the feature may produce. 

It is important to note that the X; are subject to fur- 
ther admissibility constraints; e.g., X;i is required to 
be non-positive since it represents the inward contact 
force, and X;s is subject to constraints from the ge- 
ometry of the face i. We will return to this issue in 
$3. 

The set of all possible contact forces can be ex- 
pressed in a single configuration independent matrix 
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Figure 1: A three DOF planar manipulator with tri- 
angular faces. 

F E -[~6nd Xnf, where nd is the number of degrees of 
freedom of the manipulator, and nf is the number of 
contact features. 

For the example suppose the potential contacts be- 
tween points in the environment and faces of the links 
can be described by six features shown in Figure 1, 
one for each face i whose normals are given by qi. 

-q1 0 772 0 0 0 0 0 0 0 0 o- 
0 21 0 22 0 0 0 0 0 0 0 0 
0 0 0 07/3 0774 0 0 0 0 0 
0 0 0 0 0 z3 0 z4 0 0 0 0 
0 0 0 0 0 0 0 075 0 176 0 
0 0 0 0 0 0 0 0 0 z5 0 z6 

(4) 

The propagation of forces on one link to another is 
represented by matrix 4(q) E IWGnd x6nd. 

4(q) = 

(6) 

= c+4FX (7) 

Where ‘w;~ is the total wrench from all features 
(i, ifl;.., nd). :J is the adjoint transform [ll], 
which transforms a twist in reference frame j into an 
equivalent wrench in frame i. :R is the rotation matrix 
from i to j, Q  is a vector from the origin of frame j to 
frame i, and k is matrix for the cross product with 
G  The matrix 4 is sometimes called the Composite 
Rigid Body transformation for forces [6]. 

We may then express observed torques at each of 
the joints as: 

rd (8) 

C(q) 

I wd 

2s2(q) 0 
s = (9) 

. . 

0 nd 3% (4) I 

where ‘si is the unit twist of the i-th joint. The contact 
Jacobian, C, gives the basis of all disturbance torques 
arising from the features fi. Therefore all information 
related the configuration and geometry of the arm is 
in the contact Jacobian C and the actual contact that 
occurs is parameterized by A. 

3 Contact Localization 

The contact Jacobian, C, is a (nd x np) matrix, 
where nP is the number of parameters in A. In order 
to solve for 7d using Eq. 8, we will have to make some 
assumptions on A. Generically, the initial contact be- 
tween the manipulator and the environment will occur 
at a single feature of the manipulator. Since this is 
the most important case for detecting and localizing 
collisions, we will focus on this case here. In the ex- 
ample above, the single contact assumption gives us 
6 possible solutions, each corresponding to an over- 
determined 3 x 2 system of equations. Each contact 
hypothesis corresponds to taking a different subset of 
the columns of C. We will denote the reduced system 
obtained by taking the columns of C  corresponding to 
featUre i as Ci. We may then SOhe for xi = ctTITd, or 
if Ci is over-determined, then we may take the least 
squares solution A; = (CTC)-l CTTd. 

Once we have determined a value for Xi, the cor- 
responding position on the link can be determined. 
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For our example, the position of the link is given by 
P(k) = $g 6 [O,Jq. 

To determine which contact hypothesis best ex- 
plains the observations, the contact state will be fur- 
ther analyzed as follows. In 53.1 we will check that 
the state of hypothesized contact is admissible given 
geometric and physical constraints. After this stage, 
it may be the case that more than one admissible hy- 
pothesis satisfies the constraints; in $3.2, we show how 
to construct a metric which compares the merit of the 
competing hypotheses to select an optimal hypothesis. 

3.1 Constraints 

The constraints on X depend on the parameteriza- 
tion of the features. We will give the X constraints for 
the example problem. The constraints for problems in 
3D, or with the addition of friction will be marginally 
more complicated. Typical constraints include: 

Cr: Non-negative normal force. The contact forces 
can only be “outward” relative to the surface of 
the link. 

CZ: Geometric Constraints. The contact position 
must be on the link’s surface. 

Cs: Frictional Constraints. 

For our example the constraints are: 

Cl : Ai1 5 0. (10) 
C2: O<d=&L. (11) 

where d is the position of the contact measured relative 
to Linki’s frame of reference. 

The constraints can be treated as a filter to elimi- 
nate hypotheses after the computation of the param- 
eters Xi. However the constraints are typically linear 
inequalities, AiXi 5 0; (e.g., Equations lO,ll). In this 
case the feasibility problem, 

ci/!i = rd (12) 
AiX; 5 0 (13) 

can be solved simultaneously using linear program- 
ming. 

3.2 Feature Identification 

In instances where there exists more than one ad- 
missible single-contact hypothesis which satisfies the 
constraints, we must use some means of determining 
which is most likely. For over-constrained problems, 
such as our example, a natural choice for ranking our 
solutions is the residual: 

proj; = II(I - Ci (CTC;) CT) Tdll 

the length of the projection of rd orthogonal to the col- 
umn space of Ci. This is the sum of squared differences 
of the predicted and observed disturbance torques. 

4 Results 

To investigate the effectiveness of proji as a feature 
classifier, a series of simulations involving the three 
DQF triangular-shaped manipulator were performed. 
A constant reaction force of 1N was used in generat- 
ing the feature torques, with unit link lengths (L=l). 
The feature, fi, was chosen randomly, as well as the 
position on the link. The joint angles q2 and q3 were 
chosen randomly from [0,27r]. The ideal disturbance 
torques rd were computed, to which varying noise was 
added. The relative magnitude of the noise held con- 
stant at various levels (0.01,0.02,. . . ,0.30). The direc- 
tion of the error in Iw3 was uniformly distributed. In 
this way the error was uniformly distributed amongst 
the individual disturbance torques. 

We measure success at classification in two ways: 
feature identification is measured by the percentage of 
contact features that are correctly classified; for each 
correctly identified feature, we measure the accuracy 
of feature localization. 

Table 1 shows the effect of noise on the error rate of 
the feature identification. The error rates of the clas- 
sification scheme utilizing the constraints Ci in con- 
junction with proji are very small; features were mis- 
classified in less than 2% of the tests for relative errors 
in rd up to 30%. This indicates that proj; is very effec- 
tive in the identification of the feature involved in the 
collision, even when the disturbance torques contain a 
large relative error. 

It should be noted that the error rates do not in- 
clude contacts with features fr and f2 on Link1 (i.e., 
only features fs, .. , fs). All simulated contacts on 
features fr and fz are wrongly classified as fa and 
f4 respectively. This is due to the fact that a small 
error associated with the torque at q2 will always pro- 
duce an explanation of a collision on Link2 very close 
to the proximal end of the link. Since the system is 
under-constrained for Ci and Cz, any solution using 
the disturbance torques of 42, . . . , qn,, reflect only the 
noise. Features fa and f4 are chosen rather than fs, 
fe because we are looking for the smallest X satisfying 
Eq(8). In practice, this can be easily dealt with; for 
example small disturbance torques at the distal joints 
of the manipulator can be set to zero or solutions with 
positions very close to the proximal end of the link can 
be rejected. 

Since we have a large degree of confidence in the 
feature identification, we now turn our attention to 
the localization of the contact. The same method 
of constructing random collision examples was per- 
formed with the same noise models, and an estimate 
of each collision location was computed for each ex- 
ample. Only samples in which the correct feature was 
identified were considered. Additionally, only contacts 
involving f3, .. . , fs were considered since position can- 
not be recovered for collisions on the first link as it is 
underconstrained. 
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Figure 2: Cumulative distribution of localization errors for varying relative error in rd. 

0.02 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 

Percentage 
Mis-classification 

0.02 
0.04 
0.11 
0.39 
0.70 
0.98 
1.39 
1.71 

Table 1: Classification error rate with varying relative 
errors in ‘i-d. 

Fig. 2  shows the effects of noise on  the conf idence 
level of our  scheme in localizing the collision to various 
tolerances. Consider the task of resolving the collision 
to within 5 %  of its true value. W e  can see that our  
conf idence level is is very high, 98.6% for 1 %  relative 
error, 91.7% for 2 %  relative error, and  72.3% for 5 %  
relative error. 

5  Extensions 

W e  are currently investigating extensions of the 
above approach to include three-dimensional links, 
frictional forces, and  links with curved surfaces. W e  
briefly describe these extensions here. Three dimen- 
sional links and  frictional forces can be  modeled by 
extending the number  of parameters for each feature. 

Curved link geometr ies are more difficult because of 
the non-linearities introduced. 

For example, addit ion of friction to our  two- 
dimensional problem adds an  additional parameter,  
the component  of reaction force tangent to the surface, 
as  well as  an  additional frictional constraint. Thus 

(14) 

05)  

where p  is the coefficient of friction. Since there are 
three parameters, we will may only determine the col- 
lision posit ion for collisions with link 3  or higher. 

Table 2  gives the number  of parameters needed  for 
various types of contact [lo]: 

Contact 1  2-D [ 3-D 
Point contact without friction I 2  I 3  

Point contact with friction 3  
Soft contact 3  z 

Table 2: Contact Parameters 

Thus for S-dimensional frictional contacts we have 
6  parameters. In general  this will require that the 
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contact occur on Linki, i 2 6, if we are to determine 
exactly the position of the contact. In some cases, 
this may restrict our ability to recover (contact geom- 
etry. However, the increased number of constraints 
may sufficiently restrict the set of feasible contacts to 
still be of use for contacts on prior links. For some 
restricted applications we may have the required in- 
formation to recover contact geometry exactly. For 
example, knowledge of the shape of the payload of a 6 
or greater DOF manipulator will allow clollisions of the 
payload with the environment to be recovered. This 
might be useful for teleoperation tasks for example. 

The example we have been looking at has involved 
links whose surfaces are easy to parameterize. In some 
applications, links will have curved surfaces, leading to 
a feature matrix F = F(X) which is non-linear. This 
requires the solution of non-linear system of equations 
for X;. An alternative approach is to approximate the 
surface of the link by a series of polyhedral faces. This 
approximation can be hierarchical and successively re- 
fined, i.e., if a solution is feasible at given level of ap- 
proximation, the face can be decomposed into smaller 
faces, and the process is repeated. Thus at each step 
we may eliminate a large fraction of the remaining sur- 
face of feasible contacts. The assumption that we are 
making is that while there may be localization inaccu- 
racies due to the errors in approximating the normals 
of the surface with polygons, the positional informa- 
tion will be sufficient to constrain the position to a 
polygonal region. Results of the decomposition proce- 
dure are preliminary, but seem promising. 

6 Conclusions 

We have described a method by which unmodeled 
manipulator collisions can be identified, and the po- 
sition of the contact can be localized. The method 
is based purely on the observed disturbance torques, 
and a set of features given by the geometry of the ma- 
nipulator. The formulation provides an easy means of 
testing collision hypotheses, as well as a method for 
ranking competing hypotheses. We also describe ex- 
tensions that are currently being investigated. Simula- 
tions of the method on a planar manipulator indicate 
that the method is robust with respect to noise for 
both collision feature identification, as ,well as feature 
localization. 
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