Fault Tolerant Locomotion for Walking Robots

Scott K. Ralph

Dinesh K. P ai

Department of Computer Science
Universit yof British Columbia
Vancouver, Canada
{ralph|pai}@cs.ubc.ca

Abstract

We introduce a general method of planning fault tol-
eran tmotion for a robotic task based on the least
constraint (LC) framework, which uses a set of con-
strain ts on the robot’s configuration orer time. A per-
formance measure called longevity is defined which,
for a given configuration and type of fault, describes
the potential for future progress tow ardsthe goal.
This measure examines the connectivity of the con-
figuration space given failure. An algorithm for com-
puting longevity based on dynamic programming is
described. Using the longevity computed at discrete
points, a path is computed which is optimally fault
tolerant. The set of paths which maximize longevity
form a contingency plan for faults occurring at each
point.

Using LC w especify a gait for a four-legged w alk-
ing robot called a “Platonic Beast”. A protot ypical
step is produced using the longevity measure, which

w e compare to a straigh-line motion implementation.

The optimal longevity paths are shown to be signifi-

can tly more fault toleran than the straight-line mo-

tion.

1 Introduction

Before describing the methods of constructing fault
tolerant behavior, w emust clearly define what w e
mean by fault tolerance. We assume w eare given
a specification for a robotic task that is unambiguous
and complete: every state of the system is classified as
valid or invalid [1]. The process of entering an invalid
state is called a failure which is irreco verableF aults
may cause erroneous states in the system which are
still valid. F ault tolerance is the capacity of the
system to detect and correct erroneous states before
they lead to system failures.

T o successfully tolerate a fault ve must be have some

degree of redundancy in our sensors and actuators.
Much of the previous work in fault tolerant robotics
has focused on kinematically redundant robots exe-
cuting motions which ha e been explicitly prescribed.
F or example ve may specify a set of via-points in the
robot’s workspace [12, 13], or a v elocit y profile of the
robot [6]. Pro vided w stay within the kinematically
redundant workspace of the robot, we can sustain a
fault while continuing to follow the commanded mo-
tion. The choice of the inversekinematics solution
can be made according to dexterity or other perfor-
mance measures to maximize the post-failure capa-
bilities of the robot [7].

Instead of requiring the robot to be redundant with
respect to all tasks, we ha e proposed to change the
task specification to one based on constraints [9]. We
believ e that this enables us to exploit the full poten-
tial for fault tolerance of the robot with respect to a
task. Extra degrees of freedom of the robot with re-
spect to the task can be used to choose configurations
which are maximally fault tolerant.

The specification method, called least constraint
(LC) [9], encourages the user to capture the salien t
features of the task, and allows incremental inclu-
sion of further constraints into the system when new
kno wledge is acquired suh as new sensor information
or the detection of a fault. This permits a straightfor-
w ard vay of computing the set of reachable configu-
rations given a particular fault. Example 1 describes
a planar walking robot with three 2 DOF legs.

This paper makes use of the LC framework to develop
a performance measure, called longevity, which
quantifies the amount of fault tolerance at a partic-
ular configuration. A fault may alter the topology
of the feasible configuration space, changing the fea-
sible regions which are reac hable from a giv en con-
figuration. Given a fault, the longevity measure ex-
amines the topological properties of the reduced set

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

of feasible configurations, and constructs a reco very
action which maximizes the progress measure. Thus

the longevity measure quantifies the degree to which

a robot with a fault can contin ue to perform the task.
The longevity measure is then used to produce a tra-

jectory which is optimally fault tolerant with respect

to the task.

Example 1 (Walking in 2D)

Fig. 1 sho ws athree legged walking robot, a planar
version of the 4-beast depicted in Fig. 3, and de-
scribed in [10]. Assume only w orkspaceand static
stabilit y constrairts are present, and we are to move
from right to left tow ards thegoal region. Stability
is specified by requiring the center of mass to satisfy
inequality constraints g; and go sho wn in the figure.
Horizontal motion is achiev ed ly a moving constraint
ga(t). If a fault is introduced in the present config-
uration rendering the distal righ t join t immovable,
the body position is constrained to lie on circular arc
(sho wnas a dotted arc). By not prescribing a spe-
cific trajectory, the robot is still able to reach the goal
using the reduced workspace.

stability
constraints

failure

\Vconstraint
\

\

™ failed
\ joint

1

93

Figure 1: 2-D Walking Robot.

We examine legged locomotion as a specific example
of a task which may be loosely defined via a set of con-
strain ts. The example is based on a four-legged spher-
ically symmetric walking machine called a “Platonic
Beast” [10]. Next we will construct a motion which
maximizes the likelihood of continued service in the
event of a sensor or actuator fault during execution.

Previous work in the generation of gaits for walking
robots ha velook edat various criteria for their se-
lection including: minimizing total energy consump-
tion, maximizing stability with respect to disturbance
forces, and many others. T othe best of our knowl-
edge this is the first attempt of producing a gait
which maximizes fault tolerance with respect to actu-

ator/sensor failures. This property is important for
safet y-critical or mission-critical applications.

This work differs from existing work on fault tolerant
robotics in that it pro vides an explicit method for
specifying a robot’s behavior based on a set of task
constraints. Using this specification, a performance
measure is computed which measures the effects of
possible faults on the robot’s ability to complete the
task. The task specification is completely general and
can be applied to any robot task.

Section 2 summarizes previous work in fault tolerant
robotics and related matters. In section 3 we start b y
giving a specification for a single step of the robot.
We assume that the robot is slow moving, and thus re-
quires static stability during the entire motion of the
robot. In section 4 we dev elop a performance measure
called longevity, a global measure on the feasible con-
figuration space; experimental results are analyzed in
section 5.

1.1 Benefits of the Approach

The most important benefit of using the LC approach
is that it is applicable to a much larger class of
task/robot combinations. Since our methods of de-
scribing fault tolerant behavior are defined with re-
spect to a set of task constraints, the methods for
producing fault tolerant behavior are still meaningful
for non-redundant manipulators.

LC specification is particularly useful for describing
systems such as an autonomous robot where one may
not ha e an explicit task, but rather a set of safety
constraints which must be satisfied throughout the
en tire trajectory ,and also ensure the completion of
the task. LC easily permits the inclusion of task
constraints which are dynamic, such as obstacle con-
strain ts. Deadlines and time ordering of task con-
strain ts are easily ahiev ed since there is an explicit
measure of progress, namely time. Suc h a specifica-
tion frees the designer from explicitly constructing a
trajectory , and allers the robot the freedom to choose
the safest trajectory.

Our formulation represents a fault as an additional
task constraint, allo wing simple computation of the
effects of a fault on the set of feasible configurations.
In contrast [12] refer to a manipulator with a frozen
join t as a “reduced order deriwativ €” whid is modeled
as a new manipulator with one fewer actuator.

We argue that the explicit inclusion of time in the
task specification provides us with a natural utility of
a giv en path. The longevity measure maximizes this

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

utility o ver the set of possible recovery actions for a
giv en fault, and hence provides a natural measure of
fault tolerance of a given configuration.

The longevity differs from other performance mea-
sures, such as proximity to the goal, in that it ranks
a configuration according to the utility of the optimal
reco very action, rather than using local properties of
the configuration. Longevity is particularly meaning-
ful for tasks in which there is no specific goal, such as
those described as a set of constraints.

Because the longevity measure is dependent only on
the configuration, it can be re-used for computing
many trajectories, each of which may differ in the ini-
tial or final configurations, or for differing fault prob-
abilities.

The computation of the longevity explicitly computes
the most effective reco very action whih can be used
later on-line. This differs from [13] where the recov-
ery actions are stored implicitly in the redundancy
resolution algorithm. By explicitly computing the re-
covery actions ve ensure that we are not confronted
with problems faced by redundancy resolutions algo-
rithms: becoming stuck at a singularity, or choosing
a trajectory that violates joint angle or obstacle con-
strain ts.

2 Previous Work

Lewis and Maciejewski [7] have in westigated the fault
tolerant properties of kinematically redundant ma-
nipulators. By examining the self-motion mani-
folds of such manipulators, portions of the workspace
which are inherently suitable for critical tasks can be
iden tified.

P aredis and Khosla [13] constructed globally fault
tolerant trajectories for redundant manipulators. A
trajectory is said to be fault tolerant if at every
point there exists an alternative trajectory to the goal
which satisfied the task constraints. The alternative
trajectories are not explicitly computed, but are cho-
sen at run time by the redundancy management al-
gorithm. The set of postures which are tolerant to a
fault are computed by examining the kinematic map-
ping of the manipulator at discrete points along the
path, and grouping these postures into regions. A
path through these regions is constructed to find the
final path.

P aredis and Khosla [12 ha e looked at the problem
of designing a manipulator to be fault tolerant for
point-to-point, tasks. Lik ethe w orkpresented here,

con tingen reac hability of points in the workspace are
characterized. LC allows us to specify a family of so-
lutions, thus pro vidingthe needed flexibility for for
fault tolerance, while still satisfying the salien tfea-
tures of the task.

Alternatively we can define the manipulator’s task by
specifying the manipulator velocit y profile @(t) [6].
The measure of dexterit yis defined by the smallest
singular value of the Jacobian. Other task specific
performance measures have been deweloped (see [14]
for summary and example). The longevity perfor-
mance measure differs in that it examines the global
nature of the task.

Motion planning with uncertainty can be viewed as
a form of fault tolerance (see [5] for survey). Donald
considered the problem of error detection and recov-
ery for manipulation tasks [3]. Manipulation strate-
gies are produced that are guaranteed to succeed, or
fail noticeably, under the specific model of dynamics.

Finally, a large body of work has been devoted to the
problem of fault detection and identification (see [4]
for a survey). We are concerned with the theoretical
limits on fault tolerant operation of a robot, and not
the methods for detecting the faults.

3 Task Specification

The task is defined as a set of feasible configurations
over time. Let ' = C xR*, with C the configuration
space of the robot, and R" parameterizing time; t = 0
is tak e to be the initial state of the robot. The set of
feasible configurations over time, written FC7 C C ,
is defined by a set of constraints as follo ws. The set
of constraint functions, h; ; : C — R, and the corre-
sponding set of predicates, g; ; : (h;; < 0), define the
task specification G = {g}. The set of valid points is
expressed in conjunctive normal form as:

G@) = eV Noii(@ (1)
i
{iecic@} (2)

When explicit time constraints are not present, it is
still useful to use time, or some other single parame-
ter, to c haracterize the progress tow ards the goal.

In example 1, the specification consists of a set of four
constraints: g;(t) and g ensure the body remains
overthe support interval;gs ensures that the body
remains above the ground; and the motion from right
to left is ac hiev ed with the time dependenconstraint

g4 (t)

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

3.1 Specification of a Tumble Step

We will look at the problem of constructing a gait for
a w alkingrobot from a set of task constraints with
configuration space, C = R*. Figure 2 gives the ini-
tial placement of the 4-beast. Leg link lengths, as well
as the length of each of the tetrahedron edges is unity.
F or the purposes of the motion in Fig. 2 ve will label
the feet as L, R, T and B meaning the “left”, “right”,
“top” and “back” feet respectively (See Fig. 2).

z

P olygon

N p2

Front Support Rlygon
T ransfer foot

Figure 2: Starting configuration for 4-beast.

The goal is to produce a “tumble step” [10] in which
the body translates in the (—y)-direction, placing the
top leg in fron t,and removing the bac k foot. Fig 3
sho ws a sequence of images of the platonic beast tak-
ing a tumble-step up a 20 degree slope (see [10]). The
foot positions p1, p2, p3, and ps are chosen to lie in an
equilateral triangle with edge length «. This maxi-
mizes the size of the feasible workspace, FCT, as well
as giving a symmetry to the kinematics of the step.

Let pem, = (¢,y,2) denote the cen ter of mass of the
beast. T osimplify the analysis, w eonly consider
translations of the beast, and not rotations. Each
step consists of a translation from one support trian-
gle to the next, with a rotation at the end to reorient
for the next step.

For static stability, we require that the projection of
Pem into the xy-plane lie within one of the tw o sup-
port triangles, Ap1paps or Apipaps. The static sta-
bility constraint for Ap;paps is:

3
hp1p21)3 (pcmat) = /\(hl,i(pcmat) < 0)7 (3)
i=1
where h11(pem,t) = Ppem X (p2—p1) -k
hi2Pemst) = Pem X (03 —p2) -k
h1,3(pcm:t = DPem X (pl _p3) .]%7

with & = (0,0,1)T. A similar constraint, Ay, pyps,

/
=< Bac k Support

can be written for the other support triangle. The
kinematic constraints relate to the relative position of
the feet to the respective vertices of the tetrahedron.
Reachability of point p; by the left leg, for example,
is given as:

=1
2

hp, = ||p1 = pem — (a=1) % -2, (4)
2v6
similarly we can define hy,, hy, and hp,. The constant
2 arises from the radius of the spherical workspace of
eac h leg. We introduce a single “driving constraint”,
gy = (hy < 0), which forces the robot to move for-
w ard:

hy(Pem:t) =yo +y +t, yo = 0.2165. ()
The choice for yq arises due to our choice to discretize
the feasible configuration space (see §5.1). The spec-
ification for the feasible configurations is:

G = (gyN
((gp1P2P3 A gpl A gpz A gpa) \ (6)
(gp1p2p4 A gp1 A gpz A gp4))) .

which simply states that we must move forward, and
remain in a reachable position above one of tw o sup-
port regions.

4 Performance Measures

Most previous examples of performance measures
ha ve exploited only local information about the
manipulator’s configuration [6] or the robot’s task
[14]. We propose a fault dependent measure called
longevity which examines the connectivity of the con-
figuration space given a fault.

We will now define our fault model, as well as the cor-
responding fault constraints which further constrain
the specification.

4.1 F aultModel

F or the sale of simplicity assume that a sensor or ac-
tuator failure results in the joint being frozen at the
point of failure, and that the position is kno wnac-
curately. In general each actuator will ha vean as-
sociated sensor. If either fail the actuator should
be frozen since it can not be con trolled[6]. We do
not address the problem of detecting and identifying
the fault, but instead that it has been performed for
us prior to recovery action; it does not effect motion
planning for optimal trajectories.

F aults will be modeled as the addition of further con-
strain tsto the specification G. As a result w eha ve

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

Figure 3: Canonical tumble with 4-beast prototype up a 20 degree slope (taken from [10]).

a simple means of computing the effects of the intro-
duction of a fault into the system at a given configu-
ration.

Let Q = {1,---,d} x R be the set of possible faults
where (i,7) € Q indicates that the i-th actuator is af-
fected and was at position r when the fault occurred.
We could extend this to include other fault models
in the future. Each fault, f; € , has an associ-
ated constraint function, «; : C — R, and associated
predicate, w; = (a; < 0), which describes the fault
constraint.

Longevity is a mapping, C x Q — R, which tak es a

fault, presumed to occur at that configuration, and
produces a scalar quantity. This quantity, defined
formally below, is the latest time that a given point
can remain in FCT giv en the fault.

Definition 1 (reachability set)
The set of points in €' which are reac hable from a
point ¢ € C' giv en a fault described by w, is the largest

path connected subset of FCT N {c € C'|w(c)} con-

taining ¢. Let R(g,w) denote this set. If ¢ and w are
not consistent, (i.e. —w(q)), then we set R(q,w) = L.

From this we define the longevity of a point ¢ with a
fault w as the latest time that § can remain in R(§,w).

Definition 2 (longevity)
For a giwen failure described by w, the longevity of a
point ¢ is:
~ def
L(g,w) = max t, 7
(@.2) (g,t)ER(G,w))

the largest value of ¢ for which there exists a point in
the reachable set.

We can then define the w orst case and aerage case
longevities as:
def

Ly orsfd) = f-egrl?_?w.(q)l/((j’w")’ and (8)

w a2 = 4fqaql
t

q2 /
a1

q = (90, to)

q1

Figure 4: Computing the longevity of a point §.

> L(gwi)

o def fi€Q st wi(q)
L = . 9
ave(d) e @) ®)

The longevity of a point is a meaningful measure of
potential for fault tolerant operation because it gives
an upper bound on the length of time that we ma y
con tin ue to satisfy the task specification.

T o illustrate the process of computing thelongevity
of a point, § = (qgo, to), consider the example given in
Fig. 4 with a conical FCT, and tw o actuators,q; and
q2. A failure in ¢» at time t(results in the actuator
being frozen at g2 = grqs. The additional constraint,
w, results in the reduced configuration space R(§,w).

Computing the longevity requires finding the point
within this region with maximum time, ¢;. This is a
constrained optimization problem, which at present,
is implemented using gradient descent. Section 6 de-
scribes a more efficient algorithm which w e are cur-
ren tly in the process of implemerting.

Proceedings of the 1997 |EEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

5 Experiments

The process of constructing paths in the feasible con-
figuration space first involv esthe decomposing the
feasible space into a set of discrete nodes. The choice
for the path performance measure is explained be-
low. P aths are constructed through the cetter point
of eac h cell using the performance at this poit. The
search w asgiv en an initial position for the start of
the search, but no endpoint was specified. Instead we
only constrained the the point to lie within G. Fi-
nally ,the discrete path was smoothed using a cubic
spline.

5.1 Decomposition of FCT

To construct paths in the feasible configuration space,
the space was first decomposed into an oct-tree with
cells marked as either VALID, INVALID, or MIXED [8].
The decomposition was performed to a depth of 3 and
all VALID cells collected, yielding 56 valid cells. This
depth was sufficient for capturing most of the detail
of the configuration space, while still permitting man-
ageable path searching times.

5.2 Path Performance

There are tw o natural candidates for the performance
of a cell, Ly orgtand Layg. Additionally w emay
choose to take the a verage, or the “sorted minimm”
[11] performance along the path. The sorted mini-
mum performance criterion sorts paths increasing or-
der of performance, and then compares them in a
pair-wise lexicographic manner. Using the average
performance along a path has the effect of producing
paths which meander in regions of high performance
while not proceeding tow ardsthe goal. Using the
minimum performance removes this problem, but in-
troduces a potential for “ravine effects” in which tw o
paths which contain a common region of poor perfor-
mance will not be compared meaningfully using the
minimum performance value. The poor behavior of
the average path performance metric w asexhibited
with the longevity paths, producing paths which or-
bited regions with large z-values while not proceeding
tow ards the goal. Unless otherwise specified we will
use the minimum path performance criteria.

5.3 Path Analysis

Next we shall attempt to quantify the degree of the
fault tolerance of each of the paths. As a benchmark
for performance w ewill compare the trajectories to
a straigh t-linemotion. The straigh tline motion in
parametric form is:

0 0
po(t) = [02165 | +¢| -1 |. (10)
0.9375 ~0.325

This path is chosen as the shortest straight-line path
passing through the cen ters of starting cell to the
smallest attainable y-value. Fig. 5 sho wsthe paths
generated with Lavg and Ly orgy as well as the
straigh t-line motion implemetation of the same task.
The total path lengths for the straigh t-linemotion
and Lavg and Ly orgtpaths is 0.607, 1.58 and 1.60
units respectively, indicating longevity paths are ap-
pro ximately 2.5 times as long as the straiglt-line mo-
tion.

z
0 é B start
0.8 |-
0.7 + i . 5 Lavg S
0.6 -
0.5 - straight—
0.4
-0.1

-0.05

Figure 5: Longevity paths generated with a = 1.0
using Lavg and Lavg and straight-line motion.

Since at the point of maximum longevity, § = yo+y+
t, we can compute the value of y which corresponds to
the longevity value allowing us to interpret longevities
as displacement.

. o def

Javg(d) =
~ A def
Jw orsfd) =

—yo — Lavg(q) (11)
—yo — Ly ors{qA)- (12)

T o compare eah path, 20 samples were tak en along
the trajectory such that the arc length betw een sam-
ples was equal. F or eac h samplg/avg and gy orgtW as
computed, as well as the y-positions for the straight
line motion, denoted gavgs and Yy orgts- The re-
sults are depicted in Fig. 6.

Comparing the average-case fault behaviors of gavg
against the corresponding gavgs wesee that the
longevity path consistently performs much better. If
we were to arbitrarily define success as reaching a y
value of say, —0.35, we would see that over half of the
longevity path would be fault tolerant on a erage.

Comparing the w orst-casefault behaviors of gavg
against Yy orsts W e see that the longeviy path con-
sisten tly performs significartly better. The larger rel-
ativ e improvemert is likely due in part to the fact

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

Yavg and Jy orstVs- arc len.
0.05 T I I I

0 . -

0.05 FA N -

> 01F % N Yavgs —— =
015 F NN _ Javg ©—

0.2 "k \\\ yvg orsts ——— _]

_|__
0.25 \ Yw orst |

0.3 -AE NP N
-0.35 |-
0.4

0 0.2 0.4 0.6 0.8 1

Scaled arc length

Figure 6: Final y-positions, Javg, Jw orsy and end
positions Javgs and Yy orsts-

that the minimum path performance criteria was used
which is better suited for computing worst-case paths
than for average-case paths.

6 Computing Longevity

When computing the longevity for a large number
of points there is a great deal of w asted computa-
tion since for nearby points the paths through FCT
which realize the optimal longevity will often be very
similar.

We can avoid this wasted computation by using dy-
namic programming to compute the longevities; how-
ever it requires that w euse a discrete form of the
problem [2]. Since the results of partial paths are kept
during the computation, we can compute the longevi-
ties of an entire set of discrete cells at the same time.

Computing longevity is essen tially the same problem
as constructing an optimal control policy for a system

with a discrete sets of states and control inputs, with

the difference that we are attempting to construct op-

timal trajectories subject to the introduction of the

additional fault constraints. The collection of paths

which maximizes the longevities for varying config-

urations thus comprises a contingency plan for each

possible fault along the path.

In the discrete form of the problem FCT is decom-
posed into a cells labeled @;, Q = {Q;}, such that
each cell lies ertirely within FC7T. The interior of a
cell is denoted Cell(Q;). The adjacency relationships
bet ween cells, which is dependent both on dynamic
constraints on the robot, as well as the structure of
the cells, is encoded in the edges e; ; € E.

We will let L*(Q);) be the longevity of all points in

' []
=

Figure 7: Discrete longevity computation.

Cell(Q;) with no fault. Computing the longevity at
node @; subject to failure constraint w requires that
w e searc h the graph for nodes that are path-connected
to @;, and do not violate w. More specifically, let
7(Q) : Q — 2% be the set of faults that are “tolera-
ble” at (), that is:

Q) ¥ {fi|3d € Cell(Q),wi(@)}. (13)

Forexample, in Fig. 7, w € 7(Q;),w € 7(Q;), but
w & 7(Qr). Lik ewisew ecan define a set of faults
tolerable over a path as:

Qe Q) E (@) (19

Key to the efficient computation of the longevity is
the simplicity of 7. In general 7(Q)) will be a small
set of in tervals:

T(Qj) = {(Z: (TminarmaX))}a (15)

meaning all faults of the i-th actuator with position in
the range (rmin, "max) are tolerable. Computing this
set of intervalsinvolv esolving a small constrained
optimization problem for each cell. This optimization
problem will generally be much easier to solve than
the corresponding longevity constrained optimization
problem.

Given 7 w ecan no wcompute the longevities L(Q;)
iterativ ely .We will let

Qi) = {(r1,r2,L*(Q:))l (16)
(k, (ri,m2)) € 7(Q4)}
which is a set of 3-tuples in which r; and ry giv e the
range over which w ecan tolerate a fault in actua-
tor k, and L*(Q;) is a conservativ e estimate for the
longevity of points in Cell(Q;). F or example ve ma y
tak e:

L*(Q;) = i t. 17
(@) (4.)eCell(Q:) a7)

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

T4 (Q;) giv es the longevity of (); using paths consist-
ing of n or few eredges. We may define LI (Q;)
recursiv ely as:

Q) = T(Qi) U{(as,b)N
(a’labla)ETk()7

(az,b2,l2) € 7(Q;), (18)
€i,j € E}

(az,b2), max(l1,12)]

We then compute 77*(Q;) for some minimum
value m < N for which 7*(Q;) con verges, (i.e.
VQi, T (Q:) = 7" T1(Q4)), where N is the total num-
ber of cells. The longevity of a cell @); given a fault
f; in actuator k at position r is:

max l
L(Q“ k, ,,-) — (r1,m2,) €T (Qi),r1<r<rz . (19)
L If f; not tolerable at Q;
Forefficiency, when implementing Eq. 18 w ew ould
perform the set union, but would also suppress inter-
vals for whidh the longevity was not a maximum.

We ha e implemented the dynamic programming al-
gorithm and tested it on a 6-DOF platonic-beast
problem in which § € R* x SO(3). The longevity
measures and corresponding optimal recovery actions
w ere computed for eah of the 50,249 valid cells for
each of the 12 types of failures. The computation re-
quired approximately one hour of CPU time running
on a 200 MHz Silicon Graphics Indigo. The time re-
quirements are not prohibitive since they need only
be computed once for each task specification.

7 Conclusions & Future Work

We ha vedev eloped a performance measure, called
longevity, which quantifies the potential for fault tol-
eran toperation of a robot givena set of potential
faults. This measure can be applied to any task that
is described as a set of constraints on the configura-
tion o ver time.

This measure has been applied to produce optimal
trajectories for a four legged robot. The trajectories
w ere compared to a straigh-line motion implementa-
tion for the same task, with respect to the worst and
average case failure modes of poirts along the respec-
tive trajectories. The longevity paths were sho wn to
obtain muc h better progress tow ards the goal for both
average and vorst case failures along the path.

A dynamic programming algorithm for the compu-
tation of the longevities for a set of points has been
given. As a byproduct of the computation, a com-
plete contingency plan can be generated which giv es

the optimal recovery action for each point along the
path.

In future work, we plan to develop stochastic models
fault process. This w ouldallo w the construction of
expected performance along a path, which would be
more relevan t to planning of real-world tasks, as well
as being easier to interpret.

References

[1] T. Anderson and P. A. Lee. Fault tolerance, principles
and practice. Prentice Hall, Englewood Cliffs, NJ., 1981.

[2] R. Boudarel, J. Delmas, and P. Guic het. Dynamic Pro-
gramming and its Application to Optimal Control. Aca-
demic Press, New York, 1971.

[3] B. R. Donald. Error Detection and Recovery for Robot
Planning with Uncertainty. PhD thesis, MIT Department
of Electrical Engineering and Computer Science, 1987.

[4] Paul M. Eank. F ault diagnosis in dynamic systems using
analytical and knowledge-based redundancy — a survey
and some new results. Automatica, 26(3):459-474, 1990.

[5] Jean-Claude Latombe. Robot Motion Planning. Klu w er
Academic Publishers, Boston, MA., 1991.

[6] Christopher L. Lewis and Anthony A. Maciejewski. Dex-
terity optimization of kinematically redundant manipula-
tors in the presence of failures. Computers and Electrical
Engineering, 20(3):273-288, 1994.

[7] Christopher L. Lewis and Anthony A. Maciejewski. An
example of failure tolerant operation of a kinematically
redundan t manipulator. In International Conference on
Robotics and Automation, pages 1380-1387, 1994.

[8] D Meagher. Geometric modeling using octree encoding.
Computer Graphics and Image Processing, 19(2):129-147,
June 1982.

[9] Dinesh K. Pai. Least constraint: A framework for the
control of complex mechanical systems. In Proceedings
of the American Con trol Conference, pages 1615-1621.
American Automatic Control Council, 1991.

[10] Dinesh K. Pai, Roderic k A. Barman, and Scott K.
Ralph. Platonic beasts: Spherically symmetric m ultil-
im bed robots. Autonomous Robots, 3(2):191-202, 1995.

[11] Dinesh K. Pai and L. M. Reissell. Multiresolution rough
terrain motion planning. In IEEE International Confer-
ence on In telligent Robots and Systems (IFDS), v olume 2,
Pittsburgh, PA., 1995.

[12] C. J. J. Paredis and P. K. Khosla. Kinematic design of
fault toleran t manipulators. Computers and Electrical En-
ginerring, 20(3), 1994.

[13] Christiaan J. J. Paredis and Pradeep K. Khosla. Global
trajectory planning for fault tolerant manipulators. In
1995 IEEE/RSJ International Conference on Intelligent
Robotis and Systems, volume 2, 1995.

[14] Kees v an den Doel and Dinesh K. Ri. Constructing per-
formance measures for robot manipulators. In Proceed-
ings of the 1994 In ternational Conference on Robotics and
Automation, pages 1601-1607, 1994.

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 © 1997 |IEEE

