
Fault Tolerant Locomotion for Walking Robots

Scott K. Ralph Dinesh K. P ai

Department of Computer Science

Universit yof British Columbia

Vancouver, Canada

fralph|paig@cs.ubc.ca

Abstract

We introduce a general method of planning fault tol-
eran tmotion for a robotic task based on the least
constraint (LC) framework, which uses a set of con-
strain ts on the robot's con�guration over time. A per-
formance measure called longevity is de�ned which,
for a given con�guration and type of fault, describes
the potential for future progress tow ardsthe goal.
This measure examines the connectivity of the con-
�guration space given failure. An algorithm for com-
puting longevity based on dynamic programming is
described. Using the longevity computed at discrete
points, a path is computed which is optimally fault
tolerant. The set of paths which maximize longevity
form a contingency plan for faults occurring at each
point.

Using LC w especify a gait for a four-legged w alk-
ing robot called a \Platonic Beast". A protot ypical
step is produced using the longevity measure, which
w e compare to a straight-line motion implementation.
The optimal longevity paths are shown to be signi�-
can tly more fault tolerant than the straight-line mo-
tion.

1 Introduction

Before describing the methods of constructing fault
tolerant behavior, w emust clearly de�ne what w e
mean by fault tolerance. We assume w eare giv en
a speci�cation for a robotic task that is unambiguous
and complete: ev ery state of the system is classi�ed as
valid or invalid [1]. The process of entering an invalid
state is called a failure which is irreco verable.F aults

may cause erroneous states in the system which are
still valid. F ault tolerance is the capacity of the
system to detect and correct erroneous states before
they lead to system failures.

T o successfully tolerate a fault we must be have some

degree of redundancy in our sensors and actuators.
Much of the previous work in fault tolerant robotics
has focused on kinematically redundant robots exe-
cuting motions which ha ve been explicitly prescribed.
F or example we may specify a set of via-points in the
robot's workspace [12, 13], or a v elocit y pro�le of the
robot [6]. Pro vided we stay within the kinematically
redundant workspace of the robot, we can sustain a
fault while continuing to follow the commanded mo-
tion. The choice of the inversekinematics solution
can be made according to dexterity or other perfor-
mance measures to maximize the post-failure capa-
bilities of the robot [7].

Instead of requiring the robot to be redundant with
respect to all tasks, we ha ve proposed to change the
task speci�cation to one based on constraints [9]. We
believ e that this enables us to exploit the full poten-
tial for fault tolerance of the robot with respect to a
task. Extra degrees of freedom of the robot with re-
spect to the task can be used to choose con�gurations
which are maximally fault tolerant.

The speci�cation method, called least constraint

(LC) [9], encourages the user to capture the salien t
features of the task, and allo ws incremental inclu-
sion of further constraints in to the system when new
kno wledge is acquired such as new sensor information
or the detection of a fault. This permits a straightfor-
w ard way of computing the set of reachable con�gu-
rations given a particular fault. Example 1 describes
a planar walking robot with three 2 DOF legs.

This paper makes use of the LC framework to develop
a performance measure, called longevity, which
quanti�es the amount of fault tolerance at a partic-
ular con�guration. A fault may alter the topology
of the feasible con�guration space, changing the fea-
sible regions which are reac hable from a giv en con-
�guration. Given a fault, the longevity measure ex-
amines the topological properties of the reduced set

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

of feasible con�gurations, and constructs a reco very
action which maximizes the progress measure. Thus
the longevity measure quanti�es the degree to which
a robot with a fault can continue to perform the task.
The longevity measure is then used to produce a tra-
jectory which is optimally fault tolerant with respect
to the task.

Example 1 (Walking in 2D)

Fig. 1 sho ws athree legged walking robot, a planar
version of the 4-beast depicted in Fig. 3, and de-
scribed in [10]. Assume only w orkspaceand static
stabilit y constraints are present, and we are to move
from right to left tow ards thegoal region. Stability
is speci�ed by requiring the center of mass to satisfy
inequality constraints g1 and g2 sho wn in the �gure.
Horizontal motion is achiev ed by a moving constraint
g4(t). If a fault is in troduced in the present con�g-
uration rendering the distal righ t join t immovable,
the body position is constrained to lie on circular arc
(sho wnas a dotted arc). By not prescribing a spe-
ci�c trajectory, the robot is still able to reach the goal
using the reduced workspace.

g2

constraints
stability

goal

constraint

failure

W orkspace Constrain t

g1

joint
failed

posn

foot

Transfer

g3

g4(t)

Figure 1: 2-D Walking Robot.

We examine legged locomotion as a speci�c example
of a task which may be loosely de�ned via a set of con-
strain ts.The example is based on a four-legged spher-
ically symmetric walking machine called a \Platonic
Beast" [10]. Next we will construct a motion which
maximizes the likelihood of continued service in the
ev en t of a sensor or actuator fault during execution.

Previous work in the generation of gaits for walking
robots ha velook edat various criteria for their se-
lection including: minimizing total energy consump-
tion, maximizing stability with respect to disturbance
forces, and many others. T othe best of our knowl-
edge this is the �rst attempt of producing a gait
which maximizes fault tolerance with respect to actu-

ator/sensor failures. This property is important for
safet y-critical or mission-critical applications.

This work di�ers from existing work on fault tolerant
robotics in that it pro vides an explicit method for
specifying a robot's behavior based on a set of task
constraints. Using this speci�cation, a performance
measure is computed which measures the e�ects of
possible faults on the robot's ability to complete the
task. The task speci�cation is completely general and
can be applied to any robot task.

Section 2 summarizes previous work in fault tolerant
robotics and related matters. In section 3 we start b y
giving a speci�cation for a single step of the robot.
We assume that the robot is slow moving, and thus re-
quires static stability during the entire motion of the
robot. In section 4 we dev elop a performance measure
called longevity, a global measure on the feasible con-
�guration space; experimental results are analyzed in
section 5.

1.1 Bene�ts of the Approach

The most important bene�t of using the LC approach
is that it is applicable to a muc h larger class of
task/robot combinations. Since our methods of de-
scribing fault tolerant behavior are de�ned with re-
spect to a set of task constraints, the methods for
producing fault tolerant behavior are still meaningful
for non-redundant manipulators.

LC speci�cation is particularly useful for describing
systems such as an autonomous robot where one may
not ha ve an explicit task, but rather a set of safet y
constraints which must be satis�ed throughout the
en tire trajectory ,and also ensure the completion of
the task. LC easily permits the inclusion of task
constraints which are dynamic, such as obstacle con-
strain ts. Deadlines and time ordering of task con-
strain ts are easily achiev ed since there is an explicit
measure of progress, namely time. Suc h a speci�ca-
tion frees the designer from explicitly constructing a
trajectory , and allows the robot the freedom to choose
the safest trajectory.

Our formulation represents a fault as an additional
task constraint, allo wing simple computation of the
e�ects of a fault on the set of feasible con�gurations.
In contrast [12] refer to a manipulator with a frozen
join t as a \reduced order derivativ e" which is modeled
as a new manipulator with one fewer actuator.

We argue that the explicit inclusion of time in the
task speci�cation provides us with a natural utility of
a giv en path.The longevity measure maximizes this

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

utility o ver the set of possible recovery actions for a
giv en fault, and hence provides a natural measure of
fault tolerance of a given con�guration.

The longevity di�ers from other performance mea-
sures, such as proximity to the goal, in that it ranks
a con�guration according to the utility of the optimal
reco very action, rather than using local properties of
the con�guration. Longevity is particularly meaning-
ful for tasks in which there is no speci�c goal, such as
those described as a set of constraints.

Because the longevity measure is dependent only on
the con�guration, it can be re-used for computing
many trajectories, each of which may di�er in the ini-
tial or �nal con�gurations, or for di�ering fault prob-
abilities.

The computation of the longevity explicitly computes
the most e�ective reco very action which can be used
later on-line. This di�ers from [13] where the recov-
ery actions are stored implicitly in the redundancy
resolution algorithm. By explicitly computing the re-
covery actions we ensure that we are not confronted
with problems faced by redundancy resolutions algo-
rithms: becoming stuck at a singularity, or choosing
a trajectory that violates joint angle or obstacle con-
strain ts.

2 Previous Work

Lewis and Maciejewski [7] have in vestigated the fault
tolerant properties of kinematically redundant ma-
nipulators. By examining the self-motion mani-
folds of such manipulators, portions of the workspace
which are inherently suitable for critical tasks can be
iden ti�ed.

P aredis and Khosla [13] constructed globally fault
tolerant trajectories for redundant manipulators. A
trajectory is said to be fault tolerant if at ev ery
point there exists an alternative trajectory to the goal
which satis�ed the task constraints. The alternative
trajectories are not explicitly computed, but are cho-
sen at run time by the redundancy management al-
gorithm. The set of postures which are tolerant to a
fault are computed by examining the kinematic map-
ping of the manipulator at discrete points along the
path, and grouping these postures in to regions. A
path through these regions is constructed to �nd the
�nal path.

P aredis and Khosla [12] ha ve looked at the problem
of designing a manipulator to be fault tolerant for
point-to-point tasks. Lik ethe w orkpresented here,

con tingent reac hability of points in the workspace are
characterized. LC allows us to specify a family of so-
lutions, thus pro vidingthe needed
exibility for for
fault tolerance, while still satisfying the salien tfea-
tures of the task.

Alternatively we can de�ne the manipulator's task by
specifying the manipulator velocit ypro�le _x(t) [6].
The measure of dexterit yis de�ned by the smallest
singular value of the Jacobian. Other task speci�c
performance measures have been developed (see [14]
for summary and example). The longevity perfor-
mance measure di�ers in that it examines the global
nature of the task.

Motion planning with uncertainty can be viewed as
a form of fault tolerance (see [5] for survey). Donald
considered the problem of error detection and recov-
ery for manipulation tasks [3]. Manipulation strate-
gies are produced that are guaranteed to succeed, or
fail noticeably, under the speci�c model of dynamics.

Finally, a large body of work has been devoted to the
problem of fault detection and identi�cation (see [4]
for a survey). We are concerned with the theoretical
limits on fault tolerant operation of a robot, and not
the methods for detecting the faults.

3 Task Speci�cation

The task is de�ned as a set of feasible con�gurations
over time. Let Ĉ = C�R+, with C the con�guration
space of the robot, and R+ parameterizing time; t = 0
is tak e to be the initial state of the robot. The set of
feasible con�gurations over time, written FCT � Ĉ,
is de�ned by a set of constraints as follo ws. The set
of constraint functions, hi;j : Ĉ ! R, and the corre-
sponding set of predicates, gi;j : (hi;j � 0), de�ne the
task speci�cation G = fgg. The set of valid points is
expressed in conjunctive normal form as:

G(q̂)
def
= q̂ 2 Ĉ j

_
i

^
j

gi;j(q̂) (1)

FCT
def
=

n
q̂ 2 ĈjG(q̂

o
(2)

When explicit time constraints are not present, it is
still useful to use time, or some other single parame-
ter, to c haracterize the progress tow ards the goal.

In example 1, the speci�cation consists of a set of four
constraints: g1(t) and g2 ensure the body remains
over the support in terval;g3 ensures that the body
remains above the ground; and the motion from right
to left is ac hiev ed with the time dependent constraint
g4(t).

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

3.1 Speci�cation of a Tumble Step

We will look at the problem of constructing a gait for
a w alkingrobot from a set of task constraints with
con�guration space, C = R

3. Figure 2 gives the ini-
tial placement of the 4-beast. Leg link lengths, as well
as the length of each of the tetrahedron edges is unity.
F or the purposes of the motion in Fig. 2 we will label
the feet as L;R; T and B meaning the \left", \right",
\top" and \back" feet respectively (See Fig. 2).

x

y

z

P olygonp1

p2
p4

p3

Front Support Polygon

Bac k Support

T

L

R

B

�

T ransfer foot

Figure 2: Starting con�guration for 4-beast.

The goal is to produce a \tumble step" [10] in which
the body translates in the (�y)-direction, placing the
top leg in fron t, and removing the bac k foot. Fig 3
sho ws a sequence of images of the platonic beast tak-
ing a tumble-step up a 20 degree slope (see [10]). The
foot positions p1; p2; p3, and p4 are c hosen to lie in an
equilateral triangle with edge length �. This maxi-
mizes the size of the feasible workspace, FCT , as well
as giving a symmetry to the kinematics of the step.

Let pcm = (x; y; z) denote the cen ter of mass of the
beast. T o simplify the analysis, w e only consider

translations of the beast, and not rotations. Each
step consists of a translation from one support trian-
gle to the next, with a rotation at the end to reorient
for the next step.

F or static stability, we require that the projection of
pcm in to the xy-plane lie within one of the tw o sup-
port triangles, 4p1p2p3 or 4p1p2p4. The static sta-
bilit y constraint for 4p1p2p3 is:

hp1p2p3(pcm; t) =

3^
i=1

(h1;i(pcm; t) � 0); (3)

where h1;1(pcm; t) = pcm � (p2 � p1) � k̂

h1;2(pcm; t) = pcm � (p3 � p2) � k̂

h1;3(pcm; t) = pcm � (p1 � p3) � k̂;

with k̂ = (0; 0; 1)T . A similar constraint, hp1p2p4 ,

can be written for the other support triangle. The
kinematic constraints relate to the relative position of
the feet to the respective vertices of the tetrahedron.
Reachability of point p1 by the left leg, for example,
is giv en as:

hp1 =

������
������p1 � pcm � (��1)

0
@

�1
2�1

2
p
3�1

2
p
6

1
A
������
������� 2; (4)

similarly we can de�ne hp2 ; hp3 and hp4 . The constant
2 arises from the radius of the spherical workspace of
eac h leg. We introduce a single \driving constraint",
gy � (hy � 0), which forces the robot to move for-
w ard:

hy(pcm; t) = y0 + y + t; y0 = 0:2165: (5)

The choice for y0 arises due to our choice to discretize
the feasible con�guration space (see x5.1). The spec-
i�cation for the feasible con�gurations is:

G = (gy^

((gp1p2p3 ^ gp1 ^ gp2 ^ gp3) _ (6)

(gp1p2p4 ^ gp1 ^ gp2 ^ gp4))) :

which simply states that we must move forward, and
remain in a reachable position above one of tw o sup-
port regions.

4 Performance Measures

Most previous examples of performance measures
ha ve exploited only local information about the
manipulator's con�guration [6] or the robot's task
[14]. We propose a fault dependent measure called
longevity which examines the connectivity of the con-
�guration space given a fault.

We will now de�ne our fault model, as well as the cor-
responding fault constraints which further constrain
the speci�cation.

4.1 F aultModel

For the sake of simplicity assume that a sensor or ac-
tuator failure results in the joint being frozen at the
point of failure, and that the position is kno wnac-
curately. In general eac h actuator will ha vean as-
sociated sensor. If either fail the actuator should
be frozen since it can not be con trolled[6]. We do
not address the problem of detecting and identifying
the fault, but instead that it has been performed for
us prior to recovery action; it does not e�ect motion
planning for optimal trajectories.

F aults will be modeled as the addition of further con-
strain ts to the speci�cation G. As a result w eha ve

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

Figure 3: Canonical tumble with 4-beast prototype up a 20 degree slope (taken from [10]).

a simple means of computing the e�ects of the intro-
duction of a fault into the system at a given con�gu-
ration.

Let
 = f1; � � � ; dg � R be the set of possible faults
where (i; r) 2
 indicates that the i-th actuator is af-
fected and was at position r when the fault occurred.
We could extend this to include other fault models
in the future. Each fault, fi 2
, has an associ-
ated constraint function, �i : Ĉ ! R, and associated
predicate, !i � (�i � 0), which describes the fault
constraint.

Longevity is a mapping, Ĉ �
 ! R, which tak es a
fault, presumed to occur at that con�guration, and
produces a scalar quantity. This quantity, de�ned
formally below, is the latest time that a given point
can remain in FCT giv en the fault.

De�nition 1 (reachability set)

The set of points in Ĉ which are reac hable from a
point q̂ 2 Ĉ giv en a fault described by !, is the largest

path connected subset of FCT \
n
c 2 Ĉj!(c)

o
con-

taining q̂. Let R(q̂; !) denote this set. If q̂ and ! are
not consistent, (i.e. :!(q̂)), then we set R(q̂; !) = ?.

From this we de�ne the longevity of a point q̂ with a
fault ! as the latest time that q̂ can remain in R(q̂; !).

De�nition 2 (longevity)

For a given failure described by !, the longevity of a
point q̂ is:

L(q̂; !)
def
= max

(q;t)2R(q̂;!)
t; (7)

the largest value of t for which there exists a point in
the reachable set.

We can then de�ne the w orst case and average case
longevities as:

Lw orst(q̂)
def
= min

fi2
 s:t: !i(q̂)

L(q̂; !i); and (8)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

! : q2 = qfail

q2

q̂ = (q0; t0)

q2

q1

R(q̂; !)

t

q1

FCT

q̂ = (q0; t0)

t

Figure 4: Computing the longevity of a point q̂.

Lavg(q̂)
def
=

P
fi2
 s:t: !i(q̂)

L(q̂; !i)

jffi 2
 j!i(q̂)gj
: (9)

The longevity of a point is a meaningful measure of
potential for fault tolerant operation because it gives
an upper bound on the length of time that we ma y
con tinue to satisfy the task speci�cation.

T o illustrate the process of computing thelongevity
of a point, q̂ = (q0; t0), consider the example given in
Fig. 4 with a conical FCT , and tw o actuators,q1 and
q2. A failure in q2 at time t0 results in the actuator
being frozen at q2 = qfail. The additional constraint,
!, results in the reduced con�guration space R(q̂; !).

Computing the longevity requires �nding the point
within this region with maximum time, tl. This is a
constrained optimization problem, which at present,
is implemented using gradient descent. Section 6 de-
scribes a more e�cient algorithm which w e are cur-
ren tly in the process of implementing.

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

5 Experiments

The process of constructing paths in the feasible con-
�guration space �rst involv esthe decomposing the
feasible space into a set of discrete nodes. The choice
for the path performance measure is explained be-
low. P aths are constructed through the center point
of eac h cell using the performance at this point. The
searc h w asgiv en an initial position for the start of
the search, but no endpoint was speci�ed. Instead we
only constrained the the point to lie within G. Fi-
nally ,the discrete path was smoothed using a cubic
spline.

5.1 Decomposition of FCT

To construct paths in the feasible con�guration space,
the space was �rst decomposed into an oct-tree with
cells marked as either VALID, INVALID, or MIXED [8].
The decomposition was performed to a depth of 3 and
all VALID cells collected, yielding 56 valid cells. This
depth was su�cient for capturing most of the detail
of the con�guration space, while still permitting man-
ageable path searching times.

5.2 Path Performance

There are tw o natural candidates for the performance
of a cell, Lw orst and Lavg. Additionally w emay
choose to take the a verage, or the \sorted minimum"
[11] performance along the path. The sorted mini-
mum performance criterion sorts paths increasing or-
der of performance, and then compares them in a
pair-wise lexicographic manner. Using the average
performance along a path has the e�ect of producing
paths which meander in regions of high performance
while not proceeding tow ardsthe goal. Using the
minimum performance removes this problem, but in-
troduces a potential for \ravine e�ects" in which tw o
paths which contain a common region of poor perfor-
mance will not be compared meaningfully using the
minimum performance value. The poor behavior of
the average path performance metric w asexhibited
with the longevity paths, producing paths which or-
bited regions with large z-values while not proceeding
tow ards the goal.Unless otherwise speci�ed we will
use the minimum path performance criteria.

5.3 Path Analysis

Next we shall attempt to quantify the degree of the
fault tolerance of each of the paths. As a benchmark
for performance w ewill compare the trajectories to
a straigh t-linemotion. The straigh tline motion in
parametric form is:

p0(t) =

0
@ 0

0:2165
0:9375

1
A+ t

0
@ 0

�1
�0:325

1
A : (10)

This path is chosen as the shortest straight-line path
passing through the cen ters of starting cell to the
smallest attainable y-value. Fig. 5 sho wsthe paths
generated with Lavg and Lw orst, as w ell as the
straigh t-line motion implementation of the same task.
The total path lengths for the straigh t-linemotion
and Lavg and Lw orstpaths is 0.607, 1.58 and 1.60
units respectively, indicating longevity paths are ap-
pro ximately 2.5 times as long as the straight-line mo-
tion.

start

end

Lavg 3

333
3
3
3
33333333

3

3

3
3
3
3
3

-0.1
-0.05

0
0.05

-0.3 -0.2 -0.1 0 0.1 0.2

0.4
0.5
0.6
0.7
0.8
0.9
1

x y

z

Lw orst
straigh t

Figure 5: Longevity paths generated with � = 1:0
using Lavg and Lavg and straight-line motion.

Since at the point of maximum longevity, ŷ = y0+y+
t, we can compute the value of y which corresponds to
the longevity value allowing us to interpret longevities
as displacement.

ŷavg(q̂)
def
= �y0 � Lavg(q̂) (11)

ŷw orst(q̂)
def
= �y0 � Lw orst(q̂): (12)

T o compare each path, 20 samples were tak en along
the trajectory such that the arc length betw een sam-
ples was equal. F or eac h sample ^yavg and ŷw orstw as
computed, as well as the y-positions for the straight
line motion, denoted ŷavg;S and ŷw orst;S . The re-
sults are depicted in Fig. 6.

Comparing the average-case fault behaviors of ŷavg
against the corresponding ŷavg;S w e see that the
longevity path consistently performs muc h better. If
we were to arbitrarily de�ne success as reaching a y

value of say,�0:35, we would see that over half of the
longevity path would be fault tolerant on a verage.

Comparing the w orst-case fault behaviors of ŷavg
against ŷw orst;S w e see that the longevity path con-
sisten tly performs signi�cantly better. The larger rel-
ativ e improvement is likely due in part to the fact

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

ŷw orst

ŷw orst;S

ŷavg
ŷavg;S

ŷavg and ŷw orstvs. arc len.

Scaled arc length

y

10.80.60.40.20

0.05

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

-0.4

Figure 6: Final y-positions, ŷavg; ŷw orst, and end
positions ŷavg;S and ŷw orst;S .

that the minimum path performance criteria was used
which is better suited for computing worst-case paths
than for average-case paths.

6 Computing Longevity

When computing the longevity for a large number
of points there is a great deal of w asted computa-
tion since for nearby points the paths through FCT
which realize the optimal longevity will often be very
similar.

We can avoid this wasted computation by using dy-
namic programming to compute the longevities; how-
ev er it requires that w euse a discrete form of the
problem [2]. Since the results of partial paths are kept
during the computation, we can compute the longevi-
ties of an entire set of discrete cells at the same time.

Computing longevity is essen tially the same problem

as constructing an optimal control policy for a system
with a discrete sets of states and control inputs, with
the di�erence that we are attempting to construct op-
timal trajectories subject to the in troduction of the
additional fault constraints. The collection of paths
which maximizes the longevities for varying con�g-
urations thus comprises a contingency plan for each
possible fault along the path.

In the discrete form of the problem FCT is decom-
posed in to a cells labeled Qi, Q = fQig, suc h that
eac h cell lies entirely within FCT . The interior of a
cell is denoted Cell(Qi). The adjacency relationships
bet ween cells, which is dependent both on dynamic
constraints on the robot, as well as the structure of
the cells, is encoded in the edges ei;j 2 E.

We will let L�(Qi) be the longevity of all points in

Qi

Qj

ei;j

Qk

!

Figure 7: Discrete longevity computation.

Cell(Qi) with no fault. Computing the longevity at
node Qi subject to failure constraint ! requires that
w e searc h the graph for nodes that are path-connected
to Qi, and do not violate !. More speci�cally, let
�(Q) : Q ! 2
 be the set of faults that are \tolera-
ble" at Q, that is:

�(Q)
def
= ffij9q̂ 2 Cell(Q); !i(q̂)g : (13)

F or example, in Fig. 7, ! 2 �(Qi); ! 2 �(Qj), but
! 62 �(Qk). Lik ewisew ecan de�ne a set of faults
tolerable over a path as:

�(Q1; � � � ; Qn)
def
=

n\
i=1

�(Qi): (14)

Key to the e�cient computation of the longevity is
the simplicity of � . In general �(Q) will be a small
set of in tervals:

�(Qj) = f(i; (rmin; rmax))g; (15)

meaning all faults of the i-th actuator with position in
the range (rmin; rmax) are tolerable. Computing this
set of in tervalsinvolv essolving a small constrained
optimization problem for each cell. This optimization
problem will generally be muc h easier to solv e than
the corresponding longevity constrained optimization
problem.

Given � w ecan no wcompute the longevities L(Qi)
iterativ ely.We will let

�0k (Qi) = f(r1; r2; L
�(Qi))j (16)

(k; (r1; r2)) 2 �(Qi)g

which is a set of 3-tuples in which r1 and r2 giv e the
range over which w ecan tolerate a fault in actua-
tor k, and L�(Qi) is a conservativ e estimate for the
longevity of points in Cell(Qi). F or example we ma y
tak e:

L�(Qi) = min
(q;t)2Cell(Qi)

t: (17)

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

�n
k
(Qi) giv es the longevity of Qi using paths consist-

ing of n or few eredges. We may de�ne Ln+1

k
(Qi)

recursiv ely as:

�n+1
k

(Qi) = �nk (Qi) [f(a1; b1) \ (a2; b2);max(l1; l2)j

(a1; b1; l1) 2 �nk (Qi);

(a2; b2; l2) 2 �nk (Qj); (18)

ei;j 2 Eg :

We then compute �m
k
(Qi) for some minimum

value m < N for which �m
k
(Qi) con verges, (i.e.

8Qi; �
m
k
(Qi) = �m+1

k
(Qi)), where N is the total num-

ber of cells. The longevity of a cell Qi giv en a fault
fj in actuator k at position r is:

L(Qi; k; r) =

(
max

(r1;r2;l)2�mk (Qi);r1<r<r2

l

? If fj not tolerable at Qi

)
: (19)

F or e�ciency, when implementing Eq. 18 w ew ould
perform the set union, but would also suppress inter-
vals for which the longevity was not a maximum.

We ha ve implemented the dynamic programming al-
gorithm and tested it on a 6-DOF platonic-beast
problem in which q̂ 2 R

3 � SO(3). The longevity
measures and corresponding optimal recovery actions
w ere computed for each of the 50; 249 valid cells for
eac h of the 12 types of failures. The computation re-
quired approximately one hour of CPU time running
on a 200 MHz Silicon Graphics Indigo. The time re-
quirements are not prohibitive since they need only
be computed once for each task speci�cation.

7 Conclusions & Future Work

We ha vedev eloped a performance measure, called
longevity, which quanti�es the potential for fault tol-
eran toperation of a robot giv en a set of potential
faults. This measure can be applied to any task that
is described as a set of constraints on the con�gura-
tion o ver time.

This measure has been applied to produce optimal
trajectories for a four legged robot. The trajectories
w ere compared to a straight-line motion implementa-
tion for the same task, with respect to the worst and
average case failure modes of points along the respec-
tive trajectories. The longevity paths were sho wn to
obtain muc h better progress tow ards the goal for both
average and worst case failures along the path.

A dynamic programming algorithm for the compu-
tation of the longevities for a set of points has been
giv en. As a byproduct of the computation, a com-
plete contingency plan can be generated which giv es

the optimal recovery action for each point along the
path.

In future work, we plan to develop stochastic models
fault process. This w ouldallo w the construction of
expected performance along a path, which would be
more relevan t to planning of real-world tasks, as well
as being easier to interpret.

References

[1] T. Anderson and P. A. Lee. Fault tolerance, principles
and practice. Prentice Hall, Englewood Cli�s, NJ., 1981.

[2] R. Boudarel, J. Delmas, and P. Guic het. Dynamic Pro-

gramming and its Application to Optimal Control. Aca-

demic Press, New York, 1971.

[3] B. R. Donald. Error Detection and Recovery for Robot

Planning with Uncertainty. PhD thesis, MIT Department

of Electrical Engineering and Computer Science, 1987.

[4] P aul M. Frank. F ault diagnosis in dynamic systems using

analytical and knowledge-based redundancy { a survey

and some new results. Automatica, 26(3):459{474, 1990.

[5] Jean-Claude Latombe. Robot Motion Planning. Klu w er

Academic Publishers, Boston, MA., 1991.

[6] Christopher L. Lewis and Anthon y A. Maciejewski. Dex-

terity optimization of kinematically redundant manipula-

tors in the presence of failures. Computers and Electrical
Engineering, 20(3):273{288, 1994.

[7] Christopher L. Lewis and Anthon y A. Maciejewski. An
example of failure tolerant operation of a kinematically

redundan t manipulator. In In ternational Conference on

Robotics and Automation, pages 1380{1387, 1994.

[8] D Meagher. Geometric modeling using octree encoding.

Computer Graphics and Image Processing, 19(2):129{147,

June 1982.

[9] Dinesh K. Pai. Least constrain t: A framework for the

control of complex mechanical systems. In Proceedings

of the American Con trolConference, pages 1615{1621.

American Automatic Control Council, 1991.

[10] Dinesh K. P ai, Roderic k A. Barman, and Scott K.

Ralph. Platonic beasts: Spherically symmetric m ultil-

im bed robots. Autonomous Robots, 3(2):191{202, 1995.

[11] Dinesh K. Pai and L. M. Reissell. Multiresolution rough
terrain motion planning. In IEEE International Confer-

ence on In telligent Robots and Systems (IROS), v olume 2,

Pittsburgh, PA., 1995.

[12] C. J. J. Paredis and P. K. Khosla. Kinematic design of

fault toleran t manipulators. Computers and Electrical En-

ginerring, 20(3), 1994.

[13] Christiaan J. J. Paredis and Pradeep K. Khosla. Global

trajectory planning for fault tolerant manipulators. In

1995 IEEE/RSJ International Conference on Intelligent

Robotis and Systems, volume 2, 1995.

[14] Kees v an den Doel and Dinesh K. Pai. Constructing per-

formance measures for robot manipulators. In Proceed-

ings of the 1994 In ternational Conference on Robotics and
Automation, pages 1601{1607, 1994.

Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA’97)
0-8186-8138-1/97 $10.00 � 1997 IEEE

