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Abstract 
Automatic target detection (ATD) systems 

process imagery to detect and locate targets in 
imagery in support of a variety of military missions. 
Accurate prediction of ATD performance would assist 
in system design and trade stud-ies, collection 
management, and mission planning. A need exists for 
ATD performance prediction based exclusively on 
information available from the imagery and its 
associated metadata.  We present a predictor based 
on image measures quantifying the intrinsic ATD 
difficulty on an image. The modeling effort consists of 
two phases: a learn-ing phase, where image measures 
are computed for a set of test images, the ATD 
performance is measured, and a prediction model is 
developed; and a second phase to test and validate 
performance prediction. The learning phase produces 
a mapping, valid across various ATR algorithms, 
which is even applicable when no image truth is 
avail-able (e.g., when evaluating denied area 
imagery). The testbed has plug-in capability to allow 
rapid evaluation of new ATR algorithms. The image 
measures employed in the model include: statistics 
derived from a constant false alarm rate (CFAR) 
processor, the Power Spectrum Signature, and others. 
We present a performance predictor using a trained 
classifier ATD that was constructed using GENIE, a 
tool developed at Los Alamos National Laboratory. 
The paper concludes with a discussion of future 
research 

 

1. Introduction 
 
Accurately predicting ATR performance based 

on image measures has several benefits. The very 
large total number of parameters, such as sensor pa-
rameters (resolution, wavelength), operating condi-
tions (e.g. time of day, humidity, temperature), view-
ing geometries (e.g. range, angle), and scene content 
(e.g. contrast, amount of clutter), make it hard to 

quantify the performance over all relevant parameters. 
By quantifying performance with respect to a rela-
tively few number of image measures, we can greatly 
simplify performance prediction. Once the prediction 
based on the image measures has been shown to be 
sufficiently robust, quantifying performance in a 
novel scenario requires only the determination of how 
the new scenario affects the image measures.  

Previous work in ATR development and evalua-
tion has shown that performance is strongly influ-
enced by the operating conditions, which characterize 
the target, backing clutter, and the sensor. Rather than 
attempting to enumerate and quantify the full set of 
operating conditions, the image measures behave as a 
compact description of the operating condition [1].  

Aggressive deployment timelines, as well as the 
need to assess the ATR on imagery with no ground-
truth (e.g. denied area imagery) necessitate the ability 
to predict performance based purely on measures on 
the imagery. A robust performance prediction capa-
bility that rests entirely on information derived di-
rectly from the imagery can support improved system 
development and tuning, system and sensor design 
and trade studies, tasking and collection management, 
and mission planning.  

To meet the Army AMRDEC’s directorate need 
for a performance prediction testbed, we have devel-
oped a two-phase  testbed, depicted in Figure 1.  The 
first phase involves computing a set of image meas-
ures over an image training set, and computing the 
ATR performance on theses same images. The by-
product of the training is a mapping from image 
measures to a predicted ATR performance. The sec-
ond phase computes performance predictions purely 
from measures computed on the images. 

 
 

2. Architecture 
 



The system architecture consists of several 
modular components, depicted in Figure 2. A suite of 
test images are read by the Image Stream Adapter that 
interfaces to the Algorithm Plug-in. The Plug-ins are 
based on a standardized interface where images will 
be provided to the various ATR algorithms being 
tested and results are accepted back in a standard for-
mat. The candidate algorithms are scored using 
START [2], our software framework for ATR scoring 
and data truthing. This measure of observed algorithm 
performance is provided to the Performance Learning 
component that is responsible for iteratively refining 
its model of predicted performance. The Performance 
Prediction Engine consists of the various image meas-
ures used to form the performance predication using 
the Performance Estimator. 

 
Figure 1: ETAPP Performance Prediction Testbed 

 
Figure 2: System Architecture 

3. Test Imagery 
 
In order to obtain a large variance in the set of 

operating conditions covered by the test imagery, we 
compiled a set of infrared video images taken from 
the VIVID data collect at Eglin AFB. A total of 9 
video sequences, typically 1000 frames each, were 

concatenated into a single video, and sampled at regu-
lar intervals to produce a set of 100 representative 
images. These images, depicted in  Figure 3, varied in 
the size and type of the target under consideration, the 
viewing geometry, the degree of clutter, the contrast 
of the target against the background, etc. Additionally 
we made use of FMTI closing sequence data of an 
Infrared seeker from our AMRDEC contract.  

   

  
Figure 3: VIVID Infrared Image Samples 

4. Image Measures 
 
In this section we will describe the set of image 

measures that were used in the construction of the 
performance prediction. 

4.1 Modified Constant False Alarm Rate  
The original definition of the Constant False 

Alarm Rate (CFAR) Detector, depicted in the left 
portion of Figure 4, determines whether a single pixel 
value is significantly different from the surrounding 
region [3;4].  We use a traditional t-test value to de-
termine when the center region significantly differs 
from the surrounding area. 

The t-test value is given by: 
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Figure 4: Left: Original CFAR detector. Right: 
Modified CFAR detector. Black squares are target 
pixels, gray squares are clutter and white are the 
buffer area 

The CFAR image measure can be computed 
quickly by using an Integral Image Representa-
tion , that encodes the sum of the pixel values 
lying above and to-the-left of the index .  
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4.2 Normalized Cross Correlation 
Given accurate truth information, we can com-

pute the normalized cross correlation of the image 
chip pixels at various clutter positions of the image. 
This gives an indication of how similar the clutter and 
the target appear in the image. Small cross correlation 
scores at clutter positions indicate a target that is rela-
tively easily to detect with low false alarm rates, 
while large cross correlation scores indicate situations 
where it is difficult to detect with low false alarm 
rates. 

4.3 Power Spectrum Signature 
The Power Spectrum Signature (PSS) is defined 

in terms of the pixel values  of the image contain-

ing the target, and the pixel values, , of the ex-

pected image, that is, the image with the target re-
moved. Given these values, the PSS is defined as [5]: 
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where POT is the number of pixels on target. 
While there is no way of determining what the 

pixel values would be if the target was not present, 
the guiding principal that is often used is that the ex-
pected background should not draw the attention of 
the observer. One simple approach is to compute the 
Line Expected Background of the image [5], where 
the background is assumed to vary linearly in the 
horizontal direction and to remain constant in the ver-
tical direction. To compute the gradient, we sample 
the background in regions to the left and right of the 

target (see Figure 5), and compute the corresponding 
means Lµ and Rµ respectively. The Line Expected 
Background is then taken to be: 
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Figure 5: Line Expected Background computation 

 

4.4 Clutter Metric 
The Clutter Metric can be used to estimate the 

amount of clutter in an image [5]. It is computed by 
sliding a square box over an image and subtracting 
the mean of the pixels in the box from the value of the 
pixel that the box is centered on. The box is kept to 
the interior of the image, so that its borders never 
leave the image. Ideally, the Clutter Metric should be 
performed on an image once the targets have already 
been removed (using the Line Expected Background 
and the PSS), so they will not be judged as clutter.  
The equation for computing the Clutter Metric is: 
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where b is the value of the i,j pixel, B is the mean 
of the box centered at pixel i,j, and N is the number of 
boxes convolved over the whole image. The size of 
the box is chosen to be the same approximate size as 
the target. 

4.5 Probability of Edge 
To compute the Probability of Edge (POE) we 

first convolve the image with a Difference of Gaus-
sians (D.O.G.) filter to enhance edges.. The advantage 
of the D.O.G. is that, since it is implemented as two 
Separable Gaussian Filters, it can be computed 
quickly. 

If we let τ  represent the threshold, and subdi-
vide the image into a set of regions with twice the 
apparent size of the target, then the Probability of 
Edge is defined to be: 
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where is the total number of pixels in the 

region that exceed the threshold 
τ,POE i

τ . 

5. ATD Algorithm Evaluation 
 
Los Alamos National Laboratory’s GENIE (GE-

Netic Imagery Exploitation) system is a machine 
learning software package using techniques from ge-
netic genetic programming, [6], to construct informa-
tion extraction algorithms. Both the structure of the 
information extraction algorithm and the parameters 
of the individual image processing are learned. 
GENIE has been applied to a variety of target detec-
tion tasks [7;8]. We used GENIE Pro to perform tar-
get detection on two sets of infrared imagery: the 
VIVID data set and the RACER data set. 

GENIE Pro has a simple interface for loading 
imagery, selecting training data, training a classifier, 
and then apply it to other images. The system is ex-
emplar based with both positive and negative exam-
ples used, see  (Figure 6, left). Using a simple GUI 
interface, the operator “paints” the examples and 
counter-examples in the image. These pixels then 
define the training set for the classifier. The process 
begins with a set of primitive image operators, which 
are concatenated in various ways to produce the clas-
sifier.  The criteria for evolving the classifier depends 
on the percent of the training data correctly classified, 
with a penalty for complexity. If performance is not 
acceptable, the user can mark up additional training 
data and iteratively refine the classifier. 

Since GENIE produces a pixel-level classifica-
tion, a set of rules are needed to score target detection 
performance.  The specific rules were: 

• A contiguous set of target pixels which intersect 
the true target are considered a detection. 

• Two or more target regions intersecting the true 
target are considered a single detection 

• Contiguous regions that are spatially separated 
from the targets are considered false alarms. 

• A contiguous false alarm region that is the union 
of several compact, target-size regions are 
counted as multiple false alarms. 
The classifier was applied to 80 VIVID images to 

yield a set of performance results for subsequent 
analysis. The same classifier was applied to a small 
set of the RACER imagery. Finally, a new classier 
was developed by training GENIE on one scene of 
the RACER data. This new classifier was applied to a 
small set of RACER images, as well as one VIVID 
scene. Figure 7 shows sample GENIE classifier re-
sults.  

 
Figure 6: (left) User interface for GENIE Pro speci-
fying a classifier for VIVID imagery, and (right) re-
sults of applying the classifier  

  
Figure 7: (left) Classifier trained on and applied to 
RACER imagery, (right) same classifier applied to 
VIVID imagery 

We performed exploratory analysis to assess the 
relationships between the image metrics and various 
indicators of ATR performance. These measures of 
ATR performance quantify target detection, false 
alarms, and a combined measure of effectiveness 
(MOE): 
    PD = No. targets detected / No. targets in the image 
    FAR = number of False Alarms per image 
    MOE = No. targets detected /  
                  (No. targets in image + No. False Alarms) 

The initial analysis included scatter plots, sum-
mary statistics, and correlation analysis to identify 
image metrics which showed some meaningful rela-
tionship to the measures of ATR performance. The 
correlation matrix (Figure 8) shows the pair wise cor-
relations between the ATR performance measures and 
the image metrics that exhibited some degree of asso-
ciation.  Shaded entries indicate significant relation-
ships. 



 
Figure 8: Correlation matrix of image metrics. Top 
value indicates correlation, bottom value indicates 
statistical significance.  

Earlier research reported on the stepwise regres-
sion analysis that was performed to assess the rela-
tionships between each measure of ATR performance 
and the various metrics [9]. The stepwise approach 
assists in identifying strong relationships, while ex-
cluding redundant or collinear explanatory variables.  
This earlier analysis provided limited predictive 
power in the sense that the regression models based 
on the image metrics defined above only account for 
30-40 percent of the variance in the three measures of 
ATR performance. 

The investigations presented here extend the ear-
lier work by exploring the relationship between the 
training set of imagery used to develop the ATD algo-
rithm and the test set for which ATD performance has 
been scored. To quantify the “distance” from a test 
image to the training data, the image metrics defined 
above were computed for the training set.  The abso-
lute value of the difference between the image metric 
for training imagery and for the current test image 
provides a new image metric. These metrics are de-
noted with the “D_” prepended to the variable name. 
In other words, let X be an image metric.  Then, for 
the ith test image, the value of the new image metric 
based on the relationship to the training data is de-
fined by: 

D_M = || Mi  - Mtrain || 
The analysis used all of the original metrics de-

fined above, along with all of the new metrics con-
structed from the relationship to the training imagery.  
The full set of metrics was included in a stepwise 
regression analysis to identify the factors that pro-
vided good explanatory power.  This approach 
yielded substantially better explanatory power, with 
R2 ranging from 0.72 to 0.80 for the various models 
Table 1. 

 
 
 

Table 1. Improvement in R2 Using Distance 
From Training Set 

Dependent 
Variable 

Old R-
square 

New R-
square 

PD 0.54 0.8 
FAR 0.29 0.72 
MOE 0.21 0.72 

The results for each measure of ATR perform-
ance appear in Table 2 through Table 4. When the 
image metrics are analyzed jointly in the regression 
analysis, the final models differ from the specific met-
rics identified by the simple correlation analysis. This 
arises from the relationships among the various image 
metrics and the fact that the stepwise procedure will 
exclude redundant variables. Similarly the procedure 
will include variables that offer additional explana-
tory power, given the variables already entered in the 
model. 

The major findings of this analysis are: 

• Some image metrics provide indications of ATR 
performance 

• The simple correlation analysis provides only 
partial understanding, due to the relationships 
among the image metrics 

• In general, image metrics that are good indicators 
of detection performance are not necessarily 
good indicators of false alarm performance  

• For all three models, only a portion of the total 
variance is explained. Thus, there is still room for 
improvement 

6. Conclusions 
 
The analysis presented here offers a method for 

predicting ATR performance based on information 
extracted directly from the imagery. While the image 
metrics offer some explanatory power, especially for 
predicting detection rates, there is room for improve-
ment. The relationship of the training data to the test 
data is important in predicting ATR performance and 
inclusion of this information has improved perform-
ance of these models over the results reported earlier. 
Examination of the individual images indicates that 
ATR performance degrades for images that are sub-
stantially different from the training set in terms of 
the operating conditions. We quantified this effect 
using the set of image metrics. Thus, the explanatory 
variables considered for this modeling effort included 
the actual image metrics for each image and the abso-
lute differences of these metrics from the mean value 
for the training set, the later representing “distances” 
from the training set.  Stepwise regression analysis 
was performed to determine the effect these measures 



play in predicting performance.  The result was a sub-
stantial increase in the explanatory power of the mod-
els.  
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Table 2: Regression model for predicting P(Det)

Variable 
Coeffi-

cient Std. Error t-statistic P value 

(Constant) 0.822 0.08 10.3 < 0.0005 

D_CM -0.018 0.002 -7.9 < 0.0005 

Mean_POT 0.0001 0.00011 4.9 < 0.0005 
NCC_Mea

n 0.816 0.323 2.5 0.014 
R-square = 0.80 

 

Table 3: Regression model for predicting FAR

Variable 
Coeffi-

cient Std. Error t-statistic P value 
(Con-

stant) -5.92 2.39 -2.5 0.016 
clut_cfs 1.84 0.285 6.4 < 0.0005 

D_clutcfs 1.542 0.397 3.9 < 0.0005 
D_poe -10.13 2.681 -3.8 < 0.0005 

poe -3.515 1.349 -2.6 0.011 
PSS 0.002 0.001 2 0.048 

R-square = 0.72 
 

Table 4: Regression model for predicting MOE

Variable 
Coeffi-

cient Std. Error t-statistic P value 
(Constant) 0.99 0.081 12.3 < 0.0005 

D_Target 
CFAR Mean -0.019 0.003 -7.1 < 0.0005 

D_Clutter 
CFM -0.167 0.054 3.1 0.003 

D_NCC_S
D 1.42 0.633 2.2 0.028 

R-square = 0.72 
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