Computing Fault Tolerant Motions for a Robot Manipulator

Scott K. Ralph

*

Dinesh K. Pai

Department of Computer Science
University of British Columbia
Vancouver, Canada
{ralph|pai}@cs.ubc.ca

Abstract

We introduce a method of planning fault tolerant
trajectories based on the least constraint (LC) frame-
work presented in [12]. Fault tolerance is achieved in
two ways: exploiting properties of LC itself, and using
a performance measure which assess the fault toler-
ant potential of a given configuration. LC encourages
designs which are based solely on salient constraints
of the task, allowing the inherent redundancy of the
robot to be used to maintain a safe configuration.

We compute the effects of faults on the topology of
the configuration space and construct optimal recov-
ery motions for a set of faults. We describe an efficient
algorithm for computing the optimal recovery motions
for a large number of faults over the entire configura-
tion space simultaneously. A performance measure,
called longevity, quantifies the ability of the recovery
motions to complete the task. From the performance
measure fault tolerant paths are constructed.

We look at the simple task of positioning the end ef-
fector of a Puma 560 at a given point in the workspace.
We compare the fault tolerant trajectory to an equiv-
alent joint interpolated motion and show that our
method produces trajectories which are significantly
more fault tolerant.

1 Introduction

This paper investigates the problem of taking a task
specification and generating a robot program which
achieves the task with a maximum degree of fault tol-
erance. To maximize the fault tolerance of the robot,
we must first ensure that the robot is redundant with
respect to the task, and secondly we must ensure the
robot avoids configurations which, in the event of a
fault, leave the robot unable to complete the task.

First we introduce a method for specifying the task,
called Least Constraint (LC), which encourages the
designer to specify the task using only the salient con-
straints of the task. Additional degrees of freedom

*Supported in part by grants from NSERC and IRIS.

of the robot with respect to the task can be used to
maintain configurations which are fault tolerant. Also,
since the robot need only be redundant with respect to
the constraints, the inherent redundancy of the robot
can be utilized, even in cases where the manipulator
is not redundant for an arbitrary task.

An important feature of LC is that it allows for a
natural means of incorporating dynamic knowledge,
such as the addition of a fault, by inclusion of addi-
tional constraints to the task. The generality of the
mechanism for including dynamic information allows
virtually any type of fault to be modeled easily. In
addition to the straightforward actuator faults which
leave the robot with a frozen joint, we can also con-
sider the presence of an unmodeled object as a fault.

The second aspect of achieving fault tolerance is to
utilize configurations which, in the event of an actua-
tor fault, permit the robot to complete the task. Using
the LC specification we compute a performance mea-
sure which examines the topological properties of the
configuration space, and the changes to these proper-
ties when an actuator fault is introduced. We define a
utility measure for trajectories and compute optimal
recovery motions for a set of faults. The recovery mo-
tions can be stored for their timely use in the event
of a fault. The performance measure, called longevity,
uses the utility of the optimal recovery motion for a
fault as a measure the risk for the configuration. Us-
ing the worst-case fault for a configuration, the per-
formance measure gives a lower bound of the utility of
a configuration in the event of a single fault.

Consider the task of moving the end effector of a
Puma 560 to a goal position in its workspace as il-
lustrated in Fig. 1. The goal position is given by the
small cube. (a) and (b) are the same distance from
the goal in joint space, but have very different fault
tolerant capabilities. Taking the worst-case fault for
(a) and (b), resulting in a frozen actuator, we compute
the recovery motions which minimize the distances to
the goal. The endpoints for the recovery motions of
(a) and (b) are given by (c) and (d) respectively. We
see that the recovery motion of (a) is able to get much

() (d)

Figure 1: Two competing configurations, (a) and (b)
are two configurations at the same distance in joint
space from the goal. Freezing the most critical actua-
tor for each we compute the optimal recovery motion
to the goal (shown as the small cube). The endpoints
for the recovery motions for (a) and (b) are given by
(c) and (d) respectively.

closer to the the goal position as compared (b).

This illustrates our goal of constructing paths
which, in the presence of a fault, are more likely to
complete the goal. Ideally we would like the perfor-
mance of the robot to degrade gradually with the ad-
dition of a fault so that, even in the cases where the
robot is unable to completely satisfy the goal, it still
approximates the goal to the best of its ability.

An additional benefit of computing the perfor-
mance measure is that the optimal recovery motions
for future faults are computed ahead of time (off line),
allowing their expedient use in the event of a fault.

The paper is laid out as follows: In §2 we review
previous work in fault tolerant robotics and related
work. In §3 we introduce LC specification and de-
scribe fault modeling. Next we define a measure of
satisfiability and utility of a trajectory in §3.2. In §3.3
we define the optimal recovery motion for a fault, and
and develop a performance measure, quantifying the
degree of fault tolerance of a configuration. In §4 we
describe an efficient algorithm for computing recovery
motions. In §5 we look at a simple task of positioning
the end effector of a Puma 560 at a point in Carte-
sian space and show the effectiveness of the recovery
motions. We compare the fault tolerant paths to the
shortest joint interpolated motion for the same task.

2 Previous Work

Least constraint was introduced in [8] as method
for programming large DOF robots. The use of LC
to specify fault tolerant trajectories was presented in
[12] which looked at the computation of a fault toler-
ant gait for a legged robot. This paper builds on [12]
by using an algorithm for computing the performance
measure and fault tolerant paths which is much more
computationally efficient. This efficiency allows us to

compute trajectories for a 5 DOF configuration space
compared to a 3 DOF problem of [12], and allows for a
much finer decomposition of the configuration space.
This work also illustrates the use of the techniques for
problems involving kinematically redundant manipu-
lators.

Lewis and Maciejewski [6] have investigated the
fault tolerant properties of kinematically redundant
manipulators. By examining the self-motion mani-
folds of such manipulators, portions of the workspace
which are inherently suitable for critical tasks can be
identified.

Paredis and Khosla [11] constructed globally fault
tolerant trajectories for redundant manipulators. A
trajectory is said to be fault tolerant if at every point
there exists an alternative trajectory to the goal which
satisfied the task constraints. The alternative trajec-
tories are not explicitly computed, but are chosen at
run time by the redundancy management algorithm.
The set of postures which are tolerant to a fault are
computed by examining the kinematic mapping of the
manipulator at discrete points along the path, and
grouping these postures into regions. A path through
these regions is constructed to find the final path.

Paredis and Khosla [10] have looked at the prob-
lem of designing a manipulator to be fault tolerant for
point-to-point tasks. Like this work, contingent reach-
ability of points in the workspace were characterized.
LC allows us to specify a family of solutions, thus pro-
viding the needed flexibility for fault tolerance, while
still satisfying the salient features of the task.

In [5] the task was defined using the manipulator
velocity profile #(t). A measure of dexterity is de-
fined by the smallest singular value of the Jacobian.
Other task specific performance measures have been
developed (see [13] for summary and example). The
longevity performance measure differs in that it exam-
ines the global nature of the task.

Motion planning with uncertainty can be viewed as
a form of fault tolerance (see [4] for survey). Donald
considered the problem of error detection and recovery
for manipulation tasks [2]. Manipulation strategies
are produced that are guaranteed to succeed, or fail
noticeably, under the specific model of dynamics.

Finally, a large body of work has been devoted to
the problem of fault detection and identification (see
[3] for a survey). We are concerned with the limits
on fault tolerant operation of a robot, and not the
methods for detecting the faults.

3 Task Specification

The task is defined using a set of algebraic inequali-
ties describing the set of valid configurations over time.
Let C = C x R", with C the configuration space of

the robot, and R™ parameterizing time; ¢t = 0 corre-
sponds to the initial state of the robot. The set of
feasible configurations over time, written FCT C C,
is defined by a set of constraints as follows. The set
of constraint functions, h; ; : C — R, and the corre-
sponding set of predicates, g, ; : (hi; < 0), define the
task specification G = {g}. The set of valid points is
expressed in conjunctive normal form as:

o@) = acC\V Ags@ . @

Fer {QGO|G@)}. 2)

Using algebraic inequalities to define the task allows
us to easily express static constraints, such as joint
angle limits or configuration space obstacles. It is im-
portant to note that the trajectory itself is specified
via dynamic constraints which drive the robot towards
the goal. The designer must ensure that the solutions
to Eq. 2 converge to the desired goal over time.

LC specification is particularly useful for describ-
ing systems such as an autonomous robot where one
may not have an explicit task, but rather a set of
safety constraints which must be satisfied through-
out the entire trajectory, and also ensure the com-
pletion of the task. LC easily permits the inclusion of
task constraints which are dynamic, such as obstacle
constraints. Deadlines and time ordering of task con-
straints are easily specified since there is an explicit
measure of progress, namely time. Such a specifica-
tion frees the designer from explicitly constructing a
trajectory, and allows the robot the freedom to choose
the safest trajectory.

3.1 Representing Faults

Faults are modeled as the addition of further con-
straints to the specification GG. As a result we have a
means of computing the effects of a fault at a given
configuration. Let Q@ = {f;} be a set of faults we
are considering. Elements of () are quite general,
and can be any algebraic inequality; however, later
we will make some simplifying assumptions in order
to make computation over €2 more tractable. Each
fault, f; € Q, has an associated constraint function,
i C — R, and associated predicate, w; = (a; < 0),
which describes the fault constraint. A configuration §
is feasible given a fault w if ¢ € FCT |, where FCT |,
is the reduced feasible configuration space under the
fault, w, defined as:

FCT|, = {qeFCT|w(@)}. (3)

An important aspect of the LC specification is its abil-
ity to describe the valid trajectories of the robot, as
well as various fault scenarios, using the same formal-
ism. The simplicity permits efficient computation of
recovery motions for a large number of fault scenarios.

3.2 Satisfiability and Utility

Given a task described as Eq. 2, describing the
static and dynamic constraints on the task, we seek
a trajectory T which satisfies the specification. A tra-
jectory, T : RT — C, satisfies a feasibility set, F, for
a time tyax, denoted sat(T, F, tmax), if the trajectory
remains within the set F' for all points in time up to

tIIlaX .

sat(T, F, tmax) < Vt € [0, tmax] (T(2),8) € F. (4)

We can therefore define satisfiability of the task as
sat(T, FCT , tmax), as well as satisfiability subject to a
fault w as sat(T, FCT|,,tmax). The key to effectively
computing fault tolerant paths is the efficient compu-
tation of the topological properties of FCT | over all
faults, w (see §3.3 for details).

Definition 1 (Utility of a trajectory)
The utility of a trajectory T, subject to the feasibility
set F', is the maximum time the trajectory satisfies F':

wti(T, F) = sup{t|sat(T, F,t)} (5)

This definition of utility is based on the fact that our
goal is to satisfy the specification for as long as pos-
sible into the future. Since convergence to the goal is
assumed to have been verified by the designer before-
hand, we may take time as a parameterization of the
progress towards the goal.

Our definition of utility allows us to express tasks
that are to be repeated ad infinitum. The utility,
therefore, is a measure of how far into the future the
configuration will satisfy the constraints. A trajectory,
T, which is completely fault tolerant with respect to
a fault, w, has util(T, FCT) = oo.

The utility of a configuration ¢y = (qo, to) is:

util(go) = max uwtil(7,FCT), (6)

T€eT,T(to)=a0

where 7 is the set of all trajectories.
3.3 Recovery Motions

Given a fault described by w, at a given configura-
tion Go = (qo, to), we must compute the best recovery
action. This is most concisely phrased as an optimal
control problem where we seek the best trajectory, T,
which maximizes the utility measure, util(T, FCT),
subject to the initial condition T'(t9) = qo.

Definition 2 (Recovery Motion)

Given a fault described by w, and an initial configura-
tion, qo, at time tq, let Rec((qo,to),w) be the trajectory
computed from the optimal control problem:

Rec(qo,w) = arg max wtid(T,FCT,,),

TET,T(to)=qo

qAO = (qu tO)

The longevity measure maximizes the utility over the
set of possible recovery actions for a given fault, and
hence provides a natural measure of fault tolerance
of a given configuration. Configurations with a large
longevity measure have recovery motions which are
effective in continuing to complete the task given the
fault. In addition to giving us a method of computing
the optimal recovery motion, we may also use the util-
ity of the recovery motion as a measure of the robot’s
ability to sustain the fault w.

Definition 3 (Performance Measure, L(j,w))
The longevity of a configuration (§) = (qo,t0), given
a fault described by, w is the utility of the optimal re-
covery motion constructed from q:

L(Gw) = utilRec(q,w)). (7)

Hence the longevity is the mazimum utility obtainable
given a fault. Longevity is a meaningful performance
measure for fault tolerance for the configuration be-
cause it evaluates the effectiveness of the optimal re-
covery action in the face of a potential fault. The
worst-case longevity of a given configuration, denoted
by Ly is defined as:

~ def . ~

L = min L(q,w;). 8
w(q) Ce i (G, wi) (8)
which describes the worst-case failure mode of the con-
figuration 4. The worst-case longevity, therefore, gives
a lower bound on the utility of paths from ¢ given a

single fault in the future.

While the longevity measure is relatively compu-
tationally expensive to compute, it has the benefit
of providing the recovery actions for a given fault,
which may be used at run-time. To compute the re-
covery motions efficiently we use a discrete form of
the problem, and make use of dynamic programming
techniques.

4 Computation of Rec(q,w)

In order to compute the optimal recovery motions
more efficiently we exploit features of the problem as
well as making some simplifying assumptions. First
we will use a discrete form of the configuration space
to make the construction of paths through the space
more tractable. Because optimal recovery actions of
nearby configurations are likely to follow similar paths,
we use a dynamic programming approach for comput-
ing the recovery actions. Secondly, we shall restrict
the set of faults under consideration to make it more
manageable while still being general enough to de-
scribe most common faults.

4.1 Decomposition of FCT

While there are many approaches for decomposing
the valid configuration space FC7, we have chosen a

simple uniform decomposition. Given n; joints, and
assuming an open kinematic chain, ' C R™ x R™.
Dividing each of the (n;+1) axes into nq subintervals,
we get a total of N. = ng"™! (n; + 1)-dimensional
hypercubes, or cells, each 360/ny4 degrees on a side.

Let V' = {v;} be the set of vertices representing
the (n; + 1)-dimensional cells. For each vertex v; let
X(v;) = (le,xf,,xfj),xz (1,---,nq4) be the po-
sition of the cell in the lattice. The decomposition
requires us to test whether the cell lies entirely in-
side FC7, which involves a constrained optimization
problem on the task constraint functions. We say that
Cell(v;) is contained in FCT if the interior lies en-
tirely inside FC7. We use an iterative method using
the Jacobian of the manipulator. The small size of
the cells means that differential motions within the
cell are quite accurately approximated by the Jaco-
bian. As a result the performance of the constrained
optimization behaves, in practice, as a well behaved
linear optimization. Indeed for almost all cells which
do contain the goal, g,, the extremum occurred on the
boundary of the cell.

Let E = {e;;} be the set of edges connecting the
vertices. The adjacency relationships between cells,
which is dependent on dynamic constraints on the
robot, as well as the structure of the cells, are en-
coded by E. Additionally, the edges must ensure that
paths which cross them are time-monotonic. A path is
denoted by the ordered list of vertices through which
the path passes.

The utility of a vertex, denoted util(v;), is taken as
the minimum over configurations interior to the cell.
We will take the most conservative approach and take:

util(v;) = min

ti1(g, FCT).
thCell(vi)u ' (q)

4.2 Fault Model

Thus far we have placed few limitations on the
types of faults which are considered using our meth-
ods; any fault which can be represented as a set of
algebraic inequalities on C can be modeled. For the
present we limit our scope to a simple fault model,
leaving more complicated fault models for a future
date. In accordance with the definition “1-fault tol-
erance” given in [10], we consider only faults which
result in the actuator being frozen at the position at
which the fault was detected. Using this limited fault
model, a parameterized set of faults is given as:

o &

{17"'anj}XR7 (9)
where (i,7) € indicates that the i-th actuator is
frozen at position r. For the sake of simplicity assume
that a sensor or actuator failure results in the joint

being frozen at the point of failure, and that the po-
sition is known accurately. In general each actuator
will have an associated sensor. If either fail the ac-
tuator should be frozen since it can not be controlled
[5]. We do not address the problem of detecting and
identifying the fault, but instead assume it has been
performed for us prior to recovery action; it does not
effect motion planning for optimal trajectories.

4.3 Recovery Motion Algorithm

The optimal recovery motion is the shortest mo-
tion in the reduced configuration space which has the
largest utility measure. The computation of the op-
timal recovery motion for the set of vertices V', using
edges F, is relatively easy given our fault assumption.
A fault in joint j, while at node v;, constrains the mo-
tion to a n; dimensional hyper-plane of C. The sub-
space of the robot with the frozen actuator, j, some-
times called a reduced order derivative [10], is the set
of vertices:

rod(v;,j) = {’Uk ‘xi = xf }) (10)

where the position of the j-th joint, mf, is fixed. To
compute the set of all recovery motions, we must con-
sider each of the n; actuators, at each of the ng po-
sitions. For each fault we must compute the path
through rod(v;,j) which maximizes the utility. The
following algorithm describes how to compute the op-
timal recovery motion, given a fault, for all vertices
simultaneously. We can represent the recovery motion
as an array:

rec[l---N.J[1---n;] € V.

The recovery motions are stored as a linked list where
recli[j] gives the recovery motion from v; for a fault in
actuator j at position X7/. The recovery motion is con-
structed by following the linked-list until termination.
We let reci][j] = 0 when v; has the optimal utility,
hence the optimal recovery motion is null. Thus the
array recli][j] contains a compact representation of all
of the recovery motions of the robot.

RecoveryMotions (j € [1,n;], posn € [1,n4])

/* Given a fault in joint j at position posn

* compute the recovery motions of all cells in

* rod(v;, j) where 27 = posn.*/

1. For each vy, € rod(v;, j), compute connected
components using Union_Find operation.

2. For each connected component C' Do

3. Let v, have the maximum utility in C
4. Perform BFS from v, to each vertex in C
endFor

For the purposes of computing the topological prop-
erties of the reduced configuration space, we use a

graph in which each cell is connected to the (2n;)
which share a face. The number of vertices in
rod(v;,7), is ng™ , hence the time complexity of line 1
is O(ng™) since Union_Find takes O(n) for practical
values of n. The breadth first search at line 4 takes
O(n;ng™), since at each step of the search we must
examine each neighbor. Hence the overall time com-
plexity is O(n;jng"), which for practical problems has
n; < ng, the time complexity becomes O(N,).

We can then define the longevity of a vertex v; as:

i) el =0
L(i,j) = {L(rec[i][j]) Other{?vise (11)
iell,N] J € [1,n]

This simply involves following the linked list of the
recovery motion to the largest utility value.

4.4 Computation of Paths

Thus far we have described the computation of the
recovery motions and the related performance mea-
sure, longevity. What remains is the computation
of the path from the initial configuration to the goal
which maximizes this performance measure along the
path. The algorithm for computing the paths is simi-
lar to Dijkstra’s edge relaxation algorithm [1] for com-
puting minimum-cost paths from a single source, how-
ever rather than using a simple weight to express the
cost of a given edge, we use a the sorted minimum
performance [9], defined below, which is better suited
our problem. Additionally we use the set of nodes
with the largest performance measure, Vj C V =
{v; |perf(v;) = max; perf(v;) }, as the source node in
Dijkstra’s algorithm. To modify Dijkstra’s algorithm
for multiple source nodes involves adding a single ver-
tex vg, adjacent to each of the source nodes, connected
with a zero weight edge.

The computational complexity is O(V?2), however
for sparse graphs we can use modified Dijkstra’s algo-
rithm to achieve O((V+E)log, V) or O(E log, V') (see
[1, p. 527-531] for details). With a modification of the
edge-relaxation procedure to use the sorted-minimum
performance, the algorithm updates the paths so as
to keep the safest paths. The sorted-minimum per-
formance is a conservative estimate of the safety of a
configuration and is described below.

4.5 Sorted Minimum Performance

Given a performance measure perf(-) to be max-
imized along a path, a seemingly natural metric for
comparing paths is the average performance along the
path. However, there are some difficulties difficulties
with this metric. First, there is no penalty for allow-
ing extremely large paths which stay in regions with
good performance and never attaining the goal. Also

from a practical point of view, we want a metric which
penalizes the use of nodes with bad performance, but
do not overly penalize their use if it is inevitable. A
metric for paths which captures the above is the sorted
minimum.

Given two paths p = {v1,---,v,}, and p' =
{vi, -, v}, let z = {z} and 2’ = {2/} be the respec-
tive lists of perf(v;) and perf(v}), sorted in increasing

. o . o .
order. We write p > p’ if, when comparing in a lexi-
cographical manner:

j—1
35 < min(m,n), </\ zi = z{) Azj > 25

(3

If z or 2’ are prefixes of the other, then the shorter
path is ranked higher.

The dominant cost of the computation of the re-
covery motions is the cost of comparing the sorted
minimum performances of two paths. For each path
we store the minimum performance encountered along
the path. In cases where the minimum performances
are unique, the comparison takes constant time. Oth-
erwise the paths must be sorted in ascending order,
and then compared. If we assume that each vertex has
degree 9, and the path lengths are bounded by pjq,
an upper bound on the floating point comparisons is:

5Ncplen (1Og2 NC) (IOgQ plen) . (12)

5 Results

Consider the task of placing the end effector of a
Puma 560 at a given position in the workspace, with
no constraints on the orientation. Since the last joint
does not contribute to the positioning of the object,
we consider only the first 5 actuators. The position-
ing task requires only 3 DOF, so we have 2 redundant
DOF’s. The DH parameters of the Puma 560 are sim-
plified according to [7, p. 218-219]:

Link | Angle | Displace- | Length | Twist | Range (°)
On ment d, In an
1 01 660.4 0 +90° —160, 160
2 (2> 149.5 432 0° —225,45
3 03 0 0 —90° —45,225
4 04 432 0 +90° —110,170
5 05 0 0 —90° —100, 100
6 O¢ 56.5 0 0° —266, 266

We define a goal position, g,, in the robot’s
workspace where the end effector is to be positioned.
To simplify the specification of the task, as well as
permitting a simple interpretation of the results, we
define the proximity of the end effector as:

dmax — ||p(Q) - gp”

dmax

prox(a) — (13)

where p(q) is the position of the end effector, and dyax
is the maximum distance of any point of the workspace

to the goal point. The range of prox(q) is the unit
interval, and is at a maximum when the end effector
is at the goal. We then define the task as a simple
relation on the proximity:

G(@) = {i=(qt)[prox(q) =t AJL(q)}. (14)

where JL(q) are the joint angle constraints. Thus we
require that the robot reach the goal in one time unit.
We can interpret the longevity L(§,w) as the proxim-
ity of the closest possible configuration attainable after
the fault occurred, and therefore can be interpreted as
a dimensionless distance.

Also, since we are not imposing any time con-
straints throughout the motion of the manipulator,
we can omit the time dimension of the decomposition,
and let ¢ = q, and reduce dimension of the space from
6 to 5.

We use the worst-case longevity, Lw(q) in con-
structing the performance measure of a configuration.

Lw(q) if Lw(q) <1

perf(q) = {1+util(q) if Lw(q)=1 (15)

This ensures that we rank configurations first accord-
ing to the ability to complete the task given a failure,
and secondly according to the utility of the configura-
tion. Paths which maximize this performance measure
ensure that much of the path lies in regions where we
are guaranteed to be able to position the end effector
at the goal position exactly, (i.e. perf(q) > 1).

Taking the goal position g, = (55, —430, 1472), and
taking ng = 20, resulted in a total of 470,400 cells
within the joint angle limits, each 18° on a side. Each
cell is connected to all valid cells that share a face,
thus each vertex has a minimum degree of 5, and a
maximum degree of 10. Paths were constructed using
the center points of each of the cells through which the
path passed. The initial configuration was taken to be
q = (171°,-171°,27°,153°, —27°)T corresponding to
a manipulator position of (101.6,155.7,216.0)7 mea-
sured in mm from the center of the base.

To quantify the degree of fault tolerance of the path
generated by the longevity performance measure, we
computed a joint interpolated motion from the ini-
tial configuration to the closest configuration satis-
fying the goal. The shortest-distance joint interpo-
lated motion thus served as a baseline for our algo-
rithm. Fig. 2 gives the trajectories of the Puma 560
for both the fault tolerant (FT) path generated with
the longevity performance measure, and the joint in-
terpolated motion (JI). Both paths were 20 steps in
length. The optimal recovery motions for the worst-
case faults were computed at each step for both the
FT and JI paths and are shown in Fig. 3.

Fig. 4 gives the utility and worst-case longevity
measures for each step of the FT and JI paths. Re-

=]
B
B
B
=]
=]
=]
B

. 9 T 94 oTow oW u Ay
., TP 99 % 9 4 4 f &
CarryYY Y44
S T A

Figure 2: Trajectories fault tolerant path (FT) generated with Lw() measure, and joint interpolated motion (JI).

B R Y A O R
B A A A
b4 dddd
L Ll L4444

Figure 3: Endpoint configurations for optimal recovery motions for the worst-case faults for both the fault tolerant
path (FT) and the joint interpolated path (JI).

Worst case longevities for Fault Tolerant (FT) and Joint Interpolated (JI)

1 . o 1
409
0.95 |
J08
09 | 407
>
= J06
085 %
5 405
-l

A FTlong() —+— 0.4

0.8 (
~t Jllong() —<—+
J FT util() ---+-= 0.3
075 F Jlutil() -
-4 0.2
0.7 1 1 1 1 1 1 1 1 1 1 0.1

0 2 4 6 8 10 12 14 16 18 20
Path Length

Figure 4: Longevity and utility vs. path length for
optimal and straight-line motion paths.

call that the longevity can be interpreted as the prox-
imity of the endpoint of the optimal recovery mo-
tion for the worst-case fault. We can see that the
joint interpolated motion has a much closer prox-
imity, especially through steps 1-14. We can com-
pute the actual distance knowing dy,.x = 1826mm, so
d(q) = (1 — prox(q))dmax. The proximity value (util-
ity) at step 14 is only 0.365 (1160mm) for the FT path
while the JI path is 0.653 (634mm). While the prox-
imity values of the JI path are almost monotonically
increasing, the values for the FT path remain almost
constant at 0.725 (502mm) for steps 1-11.

Looking at the longevity values for both paths we
see that the FT path is able to make considerable gains
over the interpolated motion. The mean longevity
value for the FT path is 0.907, and for JI motion
it is 0.849 for a difference of 0.058 (106mm). This
means that given a fault in both FT and JI paths,
the FT path will, on average, get 106mm closer to
the goal. The maximum difference in the longevity
values occurred at step 11 where the FT path had a
longevity value which exceeded the JI path by 0.114.
A significant feature of the longevity plots is that the
longevity values remain at the optimal value of unity
from step 14 to the end of the motion for the FT
path. The JI path on the other hand does not reach a
longevity value of unity until step 19. This means that,
even though the proximity at step 14 is only 0.365 at it
is guaranteed to reach the goal under any 1-fault sce-
nario. From the plots of utility and longevity it is clear
that the FT path is optimizing the longevity measure
by choosing configurations which are not closer to the
goal, but rather are safer.

6 Conclusions

We have demonstrated an effective algorithm for
computing fault tolerant motions for a 5 DOF ma-

nipulator. We have further developed the LC frame-
work and related performance measures as an effec-
tive means of computing fault tolerant trajectories for
robots performing a specific task. The framework al-
lows for a unified method for expressing trajectories
and recovery motions of the robot, as well as a method
for quantifying the risk of a given configuration to the
completion of the task. The fast computation of re-
covery motions for a large set of faults has been devel-
oped which can be stored efficiently to expedite their
use in the event of a fault. The performance measure
longevity has been shown to be an effective measure of
the fault tolerance of a configuration since it considers
the topological properties of the configuration space,
and the effects of the faults on the available recovery
motions.

References

[1] Thomas H. Corman, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms (McGraw-Hill edition).
McGraw-Hill, 1990.

[2] B. R. Donald. Error Detection and Recovery for Robot
Planning with Uncertainty. PhD thesis, MIT Department
of Electrical Engineering and Computer Science, 1987.

3

Paul M. Frank. Fault diagnosis in dynamic systems using
analytical and knowledge-based redundancy — a survey and
some new results. Automatica, 26(3):459-474, 1990.

[4

Jean-Claude Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, MA., 1991.

Christopher L. Lewis and Anthony A. Maciejewski. Dex-
terity optimization of kinematically redundant manipula-
tors in the presence of failures. Computers and Electrical
Engineering, 20(3):273-288, 1994.

Christopher L. Lewis and Anthony A. Maciejewski. An
example of failure tolerant operation of a kinematically
redundant manipulator. In International Conference on
Robotics and Automation, pages 1380-1387, 1994.

Phillip John McKerrow. Introduction to Robotics.
Addison-Wesley Publishing Co., Sydney, 1991.

Dinesh K. Pai. Least constraint: A framework for the
control of complex mechanical systems. In Proceedings of
the American Control Conference, pages 1615-1621, 1991.

[9] Dinesh K. Pai and L. M. Reissell. Multiresolution rough
terrain motion planning. In IEEE International Confer-
ence on Intelligent Robots and Systems (IROS), volume 2,
Pittsburgh, PA., 1995.

[10] C. J. J. Paredis and P. K. Khosla. Kinematic design of
fault tolerant manipulators. Computers and Electrical En-
ginerring, 20(3), 1994.

[11] Christiaan J. J. Paredis and Pradeep K. Khosla. Global
trajectory planning for fault tolerant manipulators. In 1995
IEEE/RSJ International Conference on Intelligent Robo-
tis and Systems, volume 2, 1995.

[12] Scott K. Ralph and Dinesh K. Pai. Fault tolerant locomo-
tion for walking robots. In IEEE International Symposium
on Computational Intelligence in Robotics and Automa-
tion, pages 130-137, Monterey, CA, July 10-11 1997.

=

6

7

B

[13] Kees van den Doel and Dinesh K. Pai. Constructing perfor-
mance measures for robot manipulators. In International
Conference on Robotics and Automation, pages 1601-1607,
1994.

