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Abstract

We describe a new class of spherically symmetric, high degree of freedom robots
called “platonic beasts.” A robot in this family is kinematically equivalent to a sym-
metric polyhedron, such as one of the Platonic solids, with identical multi-purpose
limbs attached to its vertices. The symmetry and regularity of the design have several
advantages including robustness to toppling, novel gaits such as the rolling gait, and
fault tolerance.

We describe the design and programming of a prototype platonic beast robot that
we have built in our lab. The robot has four limbs, each with three degrees of freedom,
and is controlled by a network of four embedded 32-bit microcontrollers. We also
discuss the general features of these robots, including locomotion using the rolling gait
and the implications of its novel features.

1 Introduction

There has been considerable interest in legged robotics from the early 1960s and a recent
resurgence of interest in mobile robotics in general (see the surveys in [1, 2, 3, 4, 5, 6]). Most
legged robots are designed to operate in a small range of preferred orientations and therefore
are vulnerable to toppling. Their degrees of freedom are specialized as legs or as manipu-
lators due to the constraints of minimizing energy consumption during locomotion (see, for
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Figure 1: Prototype 4-beast. The robot has 4 limbs, each with 3 revolute joints.

example, the concept of gravitationally decoupled actuation [7]). The arrangements of legs
are frequently modeled after those of insects and mammals [8, 9, 10, 11], and knowledge of
animal locomotion motivates locomotion algorithms used.

The promise of legged robots as well as directions for future work was demonstrated in
August 1994 by NASA’s Dante II mission to Mount Spurr [12]. The mission was extremely
successful, accomplishing its scientific goals, and demonstrated the utility of legged robots
for locomotion on rough, hazardous terrain. However, the robot tipped over on its return
and could not recover even though it was physically unharmed, requiring an expensive and
dangerous helicopter rescue. Given rough and uncertain terrain, such falls are unavoidable;
however, the ability to recover from falls has not yet been paid enough attention.

In this paper we describe a new class of robots called “platonic beasts”. These are
spherically symmetric, high degree of freedom robots with multi-purpose limbs. These robots
are constructed by attaching a kinematic chain, i.e. a limb, at each vertex of a spherically
symmetric polyhedron. The polyhedron can be one of the five Platonic solids1 — hence the

1Platonic solids are the only five possible regular convex polyhedra in three dimensions and are the
tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron.
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Figure 2: Examples of platonic beasts. The figure sketches the 4-beast, with RRR limbs
placed at the vertices of a tetrahedron and an 8-beast with limbs at the vertices of a cube.

name of the family; however, robots based on other spherically symmetric polyhedra such
as the Archimedian polyhedra are included in this family as well.

Figure 1 shows a prototype platonic 4-beast, i.e. a 4 limbed robot with a kinematic
configuration equivalent to attaching its limbs to the vertices of a tetrahedron, that has been
constructed in our lab. Each limb of the robot has three joints, for a total of twelve actuated
degrees of freedom. Figure 2 sketches some members of this family, including a 4-beast, and
an 8-beast, based on a cube. Figure 12 depicts a 6-beast. Note that the polyhedra are only
used to specify the location of the limbs and not necessarily the actual geometry of the body
of the robot. For instance, kinematically identical robots are generated by attaching limbs
to the centroids of the faces of the dual polyhedra.

Each limb is an independent module with its own sensing, actuation, and computation.
The limbs are intended to be used for both locomotion tasks (as “legs”) and for manipulation
tasks (as “fingers” or “arms”)2.

The unique spherical symmetry of such a robot leads to several novel features not present
in conventional legged robots. Platonic beasts are capable of new gaits such as the “rolling”
gait in which the robot approximates a rolling motion by synthesizing a sphere with its limbs.
Another feature is the robustness with respect to toppling. The robot has no preferred “up”
direction and hence can recover from loss of footholds more easily. A certain degree of
additional fault-tolerance is possible due the uniform design of limbs and the large number
of degrees of freedom (particularly in beasts with more than 4 limbs). The robot can rotate
to a configuration in which the defective limbs are not used for locomotion or manipulation.

In this paper, we consider the features of platonic beasts, focusing mainly on the 4-
beast, its design, and its the control and programming for locomotion. In section 3 we
discuss locomotion and in particular the rolling gait. Section 2 outlines the hardware design
of the prototype 4-beast that we have built in our lab. We have tested the prototype and

2We call these “limbs” rather than legs or arms or manipulators to emphasize their multiple functions.
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demonstrated its ability to locomote using the rolling gait. Section 4 describes the kinematics
of the robot required for programming and an interactive graphical simulator that we use
for experimenting with robot designs, and verifying robot programs. Finally, in section 5 we
discuss the novel features of these robots and their implications.

2 Design of 4-beast Prototype

We have built a prototype of the simplest member of the family, the 4-beast, based on
the tetrahedron. Figure 1 is a picture of the prototype. Note that while the kinematic
arrangement is based on the tetrahedron, the body need not be – in this case it is in the
shape of an octahedron to facilitate limb attachment. The limbs are attached to the centroids
of alternate faces; the limb computer and control electronics for a limb are mounted on an
adjacent face. The robot is small – it weighs less than 5kg, the body is an octahedron of
side 17cm, and each limb has a reach of 25cm from the surface of the body.

The prototype was constructed using the principles of modular design at two levels. First,
all limbs of the robot are made of identical UBC-Zebra link modules which can be rapidly
assembled to construct kinematic chains (see also [13, 14, 15] for other work on modular
robot links). Second, each limb is a module with identical kinematic configuration, control
and computing resources.

Figure 3 shows a UBC-Zebra link module used in the design, made by Zebra Robotics to
our specifications. The module incorporates a miniature MicroMo DC motor with gearhead
and magnetic encoder, a homing switch, and a fixed reduction worm and worm gear. The
design of the link allows a variety of gearheads and motors to be used in the link. A single
connector supplies power and data connections to the link controller. An adapter at the end
of a link permits it to be attached to the drive shaft of another link in different kinematic
configurations. The effective link length can be varied by adding an extender. A limb can
thus be easily assembled in different kinematic configurations.

Each limb is an identical RRR kinematic chain. For the kinematic configuration we are
currently using (see Figure 1) the Denavit-Hartenberg parameters using the notation in [16]
of each chain are given in Table 1. The origin of the base coordinate frame is at the center
of the body polyhedron. Lengths are in mm. The length a3 varies depending on the foot
module used. Each limb is controlled by a separate limb computer, based on the Motorola
MC68332 32-bit microcontroller. The limb computer processes all sensing associated with
the limb and communicates with other limb computers and the development host over serial
lines. The communication with the host is via a serial line shared by the limb computers.
Communication with the host computer uses a simple communication protocol that time
multiplexes over the single serial line.

The robot has been designed to operate for short periods with onboard NiCd batteries
– the goal is a completely untethered robot. At this time 12V DC power is provided by an
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Figure 3: Link Module

Link d a α
1 112.0 0 π/2
2 0 98.3 0
3 0 140.0 0

Table 1: Kinematic parameters of link modules
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external power supply for convenience.
The robot is equipped with joint encoders which, due to the high gear reduction used,

provides joint position at a resolution of less than a fraction of a degree3, much smaller than
the joint uncertainties due to backlash. Twelve 1-bit tilt sensors are mounted on the body
and can be combined to determine the coarse orientation of the robot with respect to gravity.

The robot prototype has been built and tested in our lab. Motor sizing and power
consumption have been verified to satisfy the design specifications – the beast is capable to
lifting itself off the ground from even the most difficult configuration (i.e. with the limbs
straight out and horizontal) which produces the highest static loads at the joints. Power
consumption, including the power consumed by the four MC68332 MCUs, is less that 12W
with all limbs moving. Finally, we have verified the ability of the 4-beast prototype to
perform the canonical tumble step. Figure 4 shows a typical tumble.

3 Locomotion and the Rolling Gait

In general, if the limbs are long enough relative to the characteristic length of the body,
a platonic beast can place four or more of its limbs on the ground simultaneously. In
particular, this is true for our 4-beast design. Locomotion is thus possible using the crawl
or other statically stable creeping gaits [17].

The spherical symmetry of the platonic beasts permits a new gait called the rolling gait.
This gait for the 4-beast rolling on level ground can be understood as follows (see Figure 5).
The gait is generated by a sequence of isomorphic steps we call tumbles. Suppose the limbs
are numbered 1 to 4, using a right hand screw rule. A canonical tumble step starts with
limbs 1, 2, and 3 in contact with the terrain and limb 4 free, on top of the robot. The
contact point of limb i with the terrain (the “foot”) is labeled pi and the projection of the
center of mass of robot on the ground is labeled p0. The points p1, p2, and p3 define the
support polygon for the robot. As the beast performs a tumble, p0 is moved out of the
support triangle across the (p1, p2) edge, causing the p3 contact to break. Before the robot
tips across the (p1, p2) edge, limb 4 is moved into a position such that its foot contacts the
ground after the subsequent tip. The ending configuration of the tumble thus has the robot
with limbs 1, 4 and 2 on the ground and limb 3 in the air.

Figure 6 shows the gait diagram for the rolling gait along a straight path. The dark bars
indicate the duration in which the limb is in the support phase. In the general case there is
a brief dynamic “tip” episode during which only two limbs are in contact with the ground.
For the choice of kinematic parameters of our prototype, all four limbs can simultaneously
contact the ground, and thus the duration of the tip episode can be reduced to zero. Such a
zero tip gait will be slower, but will minimize the impact loads on the limb. Note that the
zero tip gait is a creeping gait [17] for the 4-beast in that at most one limb is off the ground

3Theoretically less than 0.0008 degree.
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Figure 4: Canonical tumble with 4-beast prototype.
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Figure 5: Simulation of a canonical tumble
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Figure 6: Gait diagram for rolling gait locomotion along a straight path.
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Figure 7: Successive support polygons for rolling gait locomotion along a straight path.

at any time; for beasts with 6 or more limbs, the rolling gait will have more than one limb
in the air at the same time. The rolling gait is regularly realizable in the sense of [18].

Figure 7 shows the successive support polygons for the above rolling gait. Each triangle
in the figure is a support polygon; the numbers at the vertices indicate the supporting limb
and the number at the center of the polygon indicates the limb that is in the transfer phase.

Note that the rolling gait produces a sequence of non-overlapping support triangles,
reducing the number of footfalls during locomotion. This is similar to the circulating gait
in the Ambler robot [19]. The rolling gait is a type of circulating gait — while the recovery
in Ambler is essentially in the horizontal plane4 and relies on the circular symmetry of the
leg stacks, the rolling gait utilizes the spherical symmetry of the robot to recover a limb
over the top of robot. Thus the rolling gait has the same general advantages of circulating
gaits pointed out by Bares and Whittaker [19], i.e., the number of footfalls are minimized
and locomotion requires smaller footholds (or equivalently, can use larger feet) than the

4The vertical motion of the feet is only used for ground clearance.
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follow-the-leader gaits for rough terrain.
We can denote a tumble step τ as (l1l2l3l4). By convention, the tumble occurs with the

limbs l1 and l2 in contact, limb l3 starts the tumble in contact and ends free, while limb
l4 starts free and ends in contact. Thus the canonical tumble described above is denoted
(1234).

Since a tumble does not change the handedness (orientation in the topological sense) of
the limb numbering, it is easy to see that there is a one-to-one correspondence between the
set of possible tumbles and the set of even permutations of (1234)5. This fact simplifies
locomotion planning since a single tumble plan can generate all possible tumbles by merely
permuting limb numbers.

4 Programming

4.1 Kinematics

The link modules can be configured to form limbs in several ways, and the kinematics of
a limb depends on the configuration. In the prototype, each limb has 3 joints, with the
Denavit-Hartenberg parameters given in Table 1. The forward and inverse kinematics for
positioning the end point of the limb relative to the base of the limb is thus simple. However,
complications arise due to the coordination of limbs and the specification the motion of the
robot is relative to the terrain; note that the body can be in any orientation with respect to
the terrain.

Geometrically, the body of the robot is a regular octahedron. The faces of the octahedron
are of two types: limb faces – to which limbs are attached, and control faces on which are
mounted the control, computing and communications hardware. The limbs are numbered
1,. . . ,4 as shown in figure 8. Two different assignments which are mirror images of each
other are possible. We have picked the “right-handed” assignment.

We use the following notation below. A coordinate frame with index A ∈ Z, is denoted

AE. It consists of a reference point AEo called the “origin” of the coordinate frame, and
set of orthonormal basis vectors AEx, AEy, AEz. The matrix of coordinates of a vector6 p in
coordinate frame AE is denoted

A
p. The homogeneous transformation of coordinate vectors

from frame A to frame B is written as
B

AE and is given by the 4× 4 matrix

B

AE =
(

B

AEx
B

AEy
B

AEz
B

AEo

)
where, for instance, a column

B

AEx is the vector AEx expressed in homogeneous coordinates
with respect to the frame B.

5The total number of possible tumbles is therefore 4!/2 = 12; this is of course easy to directly enumerate.
6Or other contravariant quantity.
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Figure 8: Assignment of body and limb coordinate frames

A reference frame lE for the base of each limb l = 1, . . . , 4 is attached to a limb face of
the platonic beast. Specifically, the origin of the lE frame is located at the center of the face.
The z-axis unit vector is along the outward normal to the face. The orientation of the x-axis
is also shown in Figure 8. Note that there is no “natural” assignment of these vectors7. The
body reference 0E is located at the centroid of the body as shown in figure 8. The location
of the limb reference frame lE relative to 0E is given in table 2.

7If there were any symmetric, smooth tangent vector field without zeros on the inscribed sphere, we could
pick the base x-axes from this field and obtain a natural assignment – unfortunately, the famous “hairy ball”
theorem [20] precludes the existence of such a field.

Limb l
0

l E

1 RotY(cos−1(1/
√

3)) Trans(0,0,112) RotZ(-π/3)

2 RotY(-cos−1(1/
√

3)) Trans(0,0,112) RotZ(2 π/3)

3 RotX( π + cos−1(1/
√

3)) Trans(0,0,112) RotZ(7 π/6)

4 RotX( π - cos−1(1/
√

3)) Trans(0,0,112) RotZ(π/6)

Table 2: Location of limb frame lE relative to body frame 0E, based on kinematic parameters
in Table 1

11



The body frame 0E is convenient for dealing with the kinematics of limbs but is not
convenient for specifying motions of the robot, especially for locomotion. To simplify pro-
gramming, we define some new reference frames that depend on which feet are in contact
with the ground as well as the intended direction of motion.

As discussed in section 3, we can specify the intended direction of motion by specifying
an even permutation of the limb numbers (1234). Assume, without loss of generality, that
the current permutation of the limbs is (1234) and by convention limbs 1, 2 and 3 are on the
ground, while limb 4 is possibly free. Let us denote the location of the foot of limb i as p(i).

We define the ground frame, gE, as a frame fixed with respect to the ground with origin
at p(1), the location of the foot of limb 1. The y-axis of the frame points towards foot 2;
specifically, it is

gEy
def
=

(p(2)− p(1))

|p(2)− p(1)| .

The z-axis is orthogonal to the plane defined by the feet 1, 2 and 3; it is taken to be the unit
vector along gEy × (p(3)− p(1)). This determines the ground frame and the transformation
0

gE completely.
For specifying motions relative to the body, it is often convenient to define a second frame

called the heading frame, hE, parallel to the ground frame but located at the centroid of the
body at the start of the specified motion. The origin of hE coincides with that of 0E. We
also define the instantaneous heading frame at a time t, h’E, parallel to the heading frame,
but located at the centroid of the body at time t during the motion.

A tumble step can be achieved by translation of the body along the x-axis of the heading
frame while rotating the body about an axis through the centroid, parallel to the y-axis hEy.
During the motion, the location of the feet will remain constant relative to the ground frame.

For instance, to translate the body a distance d while rotating the body by an angle φ,
we can define the motions

Ry =


cos φ 0 sinφ 0

0 1 0 0
− sinφ 0 cosφ 0

0 0 0 1

 , Tx =


1 0 0 d
0 1 0 0
0 0 1 0
0 0 0 1


We can compute the joint angles at the end of the motion as follows. The foot position of
limb l relative to base frame lE (denoted

l
p(l)) is easily computed from the forward kinematics

of the three link chain. The foot position relative to the ground frame is then given by

g
p(l) =

g

0E
0

l E
l
p(l), (1)

where
g

0E = (
0

gE)−1. The new position of the body frame after the motion can be computed
relative to the ground frame as

g

0’E =
g

hE Tx Ry
h

0E. (2)
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Therefore, inverting and expanding, we have

0’

g E =
0

gE
g

hE Ry−1 Tx−1 h

gE. (3)

Hence the new location of the foot of limb l relative to its limb reference frame is given by

l
p(l)′ =

l

0E
0’

g E
g
p(l). (4)

From this the new joint angles can be obtained from the inverse kinematics of the limb (see,
e.g., [21]).

4.2 Trajectory Interpolation

For large displacements of the body we interpolate the motion of the robot to achieve a
uniform motion of the body as follows. We will focus on the limbs in contact with the
ground; the rest are treated using standard trajectory interpolation techniques [21]. The
total motion of the body relative to the heading coordinate frame is given by

h

hM =
h

gE
g

0’E
0

gE
g

hE = Tx Ry. (5)

We will allow Tx and Ry to be general translations and rotations, respectively. The
twist

h
µ, corresponding to

h

hM can then be computed (see, e.g, [22]). We use the following
notation [23]: if

h
µ =

(
w
v

)
,

then

[
h
µ]

def
=


0 −wz wy vx
wz 0 −wx vy
−wy wx 0 vz

0 0 0 0

 ,
and by definition

h

hM = exp [
h
µ].

One possible interpolation strategy is to move the body with a constant spatial velocity
1
T
(

h
µ) where T is the desired duration of motion. While this is uniform motion in SE(3), the

centroid of the body need not move in a straight line and is therefore difficult for programmers
to visualize.

Instead we will move the body with constant linear velocity relative to the heading
frame hE with uniform rotation about the instantaneous heading frame h’E located at the
instantaneous centroid of the body. Specifically, define

h
ξ and

h
η from

exp([
h
ξ]T ) = Tx, exp([

h
η]T ) = Ry. (6)
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Clearly, these are of the form

h
η =

(
ω
0

)
,

h
ξ =

(
0
ν

)
. (7)

where ω is the angular velocity and ν is the translational velocity. We define the motion at
time t from the start of the motion segment as Ry′ = Rot(ωt), Tx′ = Trans(νt)

From equation 4,

l
p(l)′ =

l

0E
0’

g E
g
p(l) (8)

=
l

0E
0

gE
g

hE Ry′−1 Tx′−1 h

gE
g
p(l) (9)

=
l

hE Ry′−1 Tx′−1 h
p(l). (10)

Therefore,

d

dt
l
p(l)′ =

l

hE
(

Ry′−1 [−h
η] Tx′−1 + Ry′−1 [−h

ξ] Tx′−1
)

h
p(l) (11)

=
l

hE Ry′−1 (−[
h
η +

h
ξ]) Tx′−1 h

p(l), (12)

where

[
h
η +

h
ξ] =


0 −ωz ωy νx
ωz 0 −ωx νy
−ωy ωx 0 νz
0 0 0 0

 .
In equation 11 we have used the fact that d

dt
exp([α]t) = [α] exp([α]t) = exp([α]t)[α].

Note that ω, ν,
l

hE =
l

0E
0

gE
g

hE, and
h
p(l) =

h

l E
l
p(l) can all be computed at the beginning

of a motion segment. Hence, during the motion, we can simultaneously compute both the
position and velocity of the foot relative to the limb frame as

Γ =
l

hE Ry′−1, (13)

P = Tx′−1 h
p(l), (14)

l
p(l)′ = ΓP, (15)

d

dt
l
p(l)′ = Γ(−[

h
η +

h
ξ])P. (16)

A piecewise cubic joint trajectory which produces this body trajectory approximately is
then computed. At knot points8 we can compute the joint angles θl as corresponding to
l
p(l)′ from the inverse kinematics of the limb. The joint velocities θ̇l are computed using
the limb Jacobian matrix Jl, by solving the linear system Jlθ̇l = d

dt

l
p(l)′. The interpolating

polynomials can then be computed (see, e.g., [21]).

8We currently use constant knot spacing; it is not difficult to modify this to adaptive knot spacing schemes.
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Figure 9: Simulator display

4.3 Simulation

The platonic beast simulator is an interactive graphics program running on a Silicon Graphics
Crimson/VGX workstation, and is designed to allow the user to explore design decisions,
by varying link lengths, body size, and masses of the components, as well as simulating
sequences of motions of a specified gait.

The position and orientation of the body, the position of the feet on the ground, and the
configuration of the free limbs can all be changed using the mouse. The user may also specify
which the contact conditions of the feet. The inverse kinematics for the contact limbs are
re-computed for the new configuration, and the beast is redisplayed in real-time.

The user may specify a path by giving a set of via-points through which the beast is to
follow. Each via-point consists of the position and orientation of the body, as well as the
position of each limb – the latter can be specified either in joint space or in the space of foot
positions. The beast is then animated by interpolating the via points in joint space. Tipping,
if present during the path, is also animated. Figure 5 shows a tumble motion generated by
the simulator. Figure 9 shows a closeup of the simulator display.

The torques at the joints of the robot due to static forces are computed and can be
displayed during motion. The program also detects tipping and signals the user by changing
the color of the body. At present the contact friction is not taken into account, but we plan
to do so in the near future. Note that since the robot moves relatively slowly and is statically
stable at all times except while tipping, the static model is adequate. The computed torques
can then be used in the design process to guide the choice of motors, as well as investigating
the feasible configuration space of the beast.

Despite the current simplicity of its dynamic models, the simulator is an extremely useful

15



tool for evaluating designs and for programming the robot. The ability to animate robot
programs allows the user to verify the correctness of a given robot program before executing
it on the actual hardware.

5 Discussion

A key benefit of the spherical symmetry of limb placement is robustness with respect to
toppling. This is particularly important for locomotion on rough terrain where it is difficult
to measure terrain orientation, friction and integrity. On such terrain, it is not possible to
guarantee toppling avoidance. Even if there is no physical damage to the robot after toppling,
most legged robots may not be able to recover since the limb placement is specialized for
operation in a small range of body orientations and the robot can land on its “back”. The
platonic beast design, on the other hand, has no direction specialized as the “up” direction,
as can be seen from the rolling gait. A statically stable foot placement is available in all
orientations of the body in three dimensions, allowing the robot to recover from a topple.
We are not aware of any other robot with this ability.

Another consequence of spherical symmetry is ease of changing directions. This is actually
a feature of having at least circular symmetry in the horizontal plane. This feature is shared
by the ODEX 1 robot [24], the original design of the Ambler robot [25] and to a lesser
extent by the prototype [19] which breaks the symmetry by separating the legs into two
stacks. Bilaterally symmetric walking machines such as the ASV [4] have to either perform
a turning maneuver to change the heading of the robot or perform a crab gait.

Figures 10 and 11 show the gait of a 4-beast turning a sharp corner. The robot can use
this gait to pass an obstacle such as a wall. Limb 1 is held in contact while the robot rolls
about it, effectively synthesizing a cone.

In this paper we have concentrated mainly on the locomotion task in a 4-beast, but the
uniform design of the limbs and the relatively large number of degrees of freedom permit
more flexibile limb utilization. The multi-purpose limbs can be recruited to solve different
tasks based on need. A limb could serve for a period as a “leg” and later switch to a “finger.”
Figure 12 depicts possible uses of this flexibility. A 6-beast could use four of its limbs for
locomotion and 2 limbs as a hand to carry or manipulate simple objects. To manipulate
more complex objects, 3 or more limbs could be used for grasping with fewer limbs available
for locomotion. The figure also shows how a 6-beast could be used as a 3-fingered mobile
hand. The robot first locomotes using a rolling gait to the desired location. Then with
three limbs in point contact with the ground, the body can have any rigid motion in a small
range9. Multiple objects could also be manipulated, e.g., 4 limbs can be used as 2 “hands”

9This can be seen qualitatively from the fact that each limb has three revolute joints, so that the entire
system has 6 + 3 × 3 = 15 dof; each point contact reduces 3 dof leaving 6 dof for the body. A study of the
range of motion possible for the body using our simulator indicates that the range is acceptably large.
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Figure 12: A 6-beast can be used as a 4-limbed crawling machine with a 2 fingered hand or
as a 3-fingered mobile hand.

with 2 fingers each.
The flexible use of limbs provides a certain degree of tolerance to loss or catastrophic

failure of a limb. The uniformity of the limbs means that any limb can be used as a leg. For
example, if a 6-beast loses operation of a limb while rolling, it can simply reorient the body
so that the defective limb is on top and no longer used for locomotion, and walk with the
slower quadruped crawl gait.

The spherical symmetry of the platonic beasts and rolling gait can be disadvantageous in
some applications. During the rolling gait, the body does not maintain constant attitude –
hence it is difficult to carry a payload that is sensitive to orientation (e.g., human passengers)
without adding gimbals or other stabilizing devices. Since the limbs are intended to perform
a variety of functions, they are not optimized for energy efficiency during locomotion or
for simplicity of kinematics and motion planning. The simplicity of the kinematics will
decrease in significance over time given the constant improvement in performance and price
of computational resources. A tether or an internal combustion engine may be necessary to
supply power to operate a platonic beast for extended periods. Energy efficiency is important
for legged locomotion in many appications such as exploring remote areas [7, 25] and for
walking robots for the consumer market. However, we believe there is an important niche
of applications for which the robustness to toppling and fault tolerance are more critical
factors.

Finally, in addition to the possible utility of the robot design, it is interesting to study
locomotion in these and other robots such as [25] which differ significantly from animal
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locomotors. They focus our attention on the essential requirements of legged locomotion
rather than on the emulation and implementation of locomotion algorithms perceived to be
used in nature.

6 Conclusions

We have described the concept a new family of multi-limbed robots called Platonic Beasts and
outlined the design and construction of an experimental protype. This family has a number
of interesting features, including the spherical symmetry of limb placement, uniform modular
multipurpose limbs, and a large number of degrees of freedom. These features provide the
following advantages: novel gait — in addition to typical quadruped creeping gaits, a new
rolling gait is possible; robustness to toppling and fault tolerance; flexible utilization of
limbs; and modular distributed control. We believe this class of robots is well suited for
some application areas, particularly locomotion in rough and uncertain terrain, such as the
outdoor environments found in exploration tasks and the indoor environments found in fire-
fighting and security tasks. For future work, we plan to develop high level constraint-based
programming tools for these complex robots [26], and to incorporate additional sensing,
including low-resolution vision sensors, making the robot more reactive and terrain-adaptive.
We also plan to develop a 6-beast and explore locomotion and manipulation by these robots.
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